89,595 research outputs found

    A Novel Admission Control Model in Cloud Computing

    Full text link
    With the rapid development of Cloud computing technologies and wide adopt of Cloud services and applications, QoS provisioning in Clouds becomes an important research topic. In this paper, we propose an admission control mechanism for Cloud computing. In particular we consider the high volume of simultaneous requests for Cloud services and develop admission control for aggregated traffic flows to address this challenge. By employ network calculus, we determine effective bandwidth for aggregate flow, which is used for making admission control decision. In order to improve network resource allocation while achieving Cloud service QoS, we investigate the relationship between effective bandwidth and equivalent capacity. We have also conducted extensive experiments to evaluate performance of the proposed admission control mechanism

    Effectiveness of segment routing technology in reducing the bandwidth and cloud resources provisioning times in network function virtualization architectures

    Get PDF
    Network Function Virtualization is a new technology allowing for a elastic cloud and bandwidth resource allocation. The technology requires an orchestrator whose role is the service and resource orchestration. It receives service requests, each one characterized by a Service Function Chain, which is a set of service functions to be executed according to a given order. It implements an algorithm for deciding where both to allocate the cloud and bandwidth resources and to route the SFCs. In a traditional orchestration algorithm, the orchestrator has a detailed knowledge of the cloud and network infrastructures and that can lead to high computational complexity of the SFC Routing and Cloud and Bandwidth resource Allocation (SRCBA) algorithm. In this paper, we propose and evaluate the effectiveness of a scalable orchestration architecture inherited by the one proposed within the European Telecommunications Standards Institute (ETSI) and based on the functional separation of an NFV orchestrator in Resource Orchestrator (RO) and Network Service Orchestrator (NSO). Each cloud domain is equipped with an RO whose task is to provide a simple and abstract representation of the cloud infrastructure. These representations are notified of the NSO that can apply a simplified and less complex SRCBA algorithm. In addition, we show how the segment routing technology can help to simplify the SFC routing by means of an effective addressing of the service functions. The scalable orchestration solution has been investigated and compared to the one of a traditional orchestrator in some network scenarios and varying the number of cloud domains. We have verified that the execution time of the SRCBA algorithm can be drastically reduced without degrading the performance in terms of cloud and bandwidth resource costs

    Dynamic Adaptive Point Cloud Streaming

    Full text link
    High-quality point clouds have recently gained interest as an emerging form of representing immersive 3D graphics. Unfortunately, these 3D media are bulky and severely bandwidth intensive, which makes it difficult for streaming to resource-limited and mobile devices. This has called researchers to propose efficient and adaptive approaches for streaming of high-quality point clouds. In this paper, we run a pilot study towards dynamic adaptive point cloud streaming, and extend the concept of dynamic adaptive streaming over HTTP (DASH) towards DASH-PC, a dynamic adaptive bandwidth-efficient and view-aware point cloud streaming system. DASH-PC can tackle the huge bandwidth demands of dense point cloud streaming while at the same time can semantically link to human visual acuity to maintain high visual quality when needed. In order to describe the various quality representations, we propose multiple thinning approaches to spatially sub-sample point clouds in the 3D space, and design a DASH Media Presentation Description manifest specific for point cloud streaming. Our initial evaluations show that we can achieve significant bandwidth and performance improvement on dense point cloud streaming with minor negative quality impacts compared to the baseline scenario when no adaptations is applied.Comment: 6 pages, 23rd ACM Packet Video (PV'18) Workshop, June 12--15, 2018, Amsterdam, Netherland

    Foveated Video Streaming for Cloud Gaming

    Full text link
    Good user experience with interactive cloud-based multimedia applications, such as cloud gaming and cloud-based VR, requires low end-to-end latency and large amounts of downstream network bandwidth at the same time. In this paper, we present a foveated video streaming system for cloud gaming. The system adapts video stream quality by adjusting the encoding parameters on the fly to match the player's gaze position. We conduct measurements with a prototype that we developed for a cloud gaming system in conjunction with eye tracker hardware. Evaluation results suggest that such foveated streaming can reduce bandwidth requirements by even more than 50% depending on parametrization of the foveated video coding and that it is feasible from the latency perspective.Comment: Submitted to: IEEE 19th International Workshop on Multimedia Signal Processin

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Quality of experience driven control of interactive media stream parameters

    Get PDF
    In recent years, cloud computing has led to many new kinds of services. One of these popular services is cloud gaming, which provides the entire game experience to the users remotely from a server, but also other applications are provided in a similar manner. In this paper we focus on the option to render the application in the cloud, thereby delivering the graphical output of the application to the user as a video stream. In more general terms, an interactive media stream is set up over the network between the user's device and the cloud server. The main issue with this approach is situated at the network, that currently gives little guarantees on the quality of service in terms of parameters such as available bandwidth, latency or packet loss. However, for interactive media stream cases, the user is merely interested in the perceived quality, regardless of the underlaying network situation. In this paper, we present an adaptive control mechanism that optimizes the quality of experience for the use case of a race game, by trading off visual quality against frame rate in function of the available bandwidth. Practical experiments verify that QoE driven adaptation leads to improved user experience compared to systems solely taking network characteristics into account
    • …
    corecore