
Quality of experience driven control of interactive
media stream parameters

Bert Vankeirsbilck, Tim Verbelen, Dieter Verslype, Nicolas Staelens, Filip De Turck, Piet Demeester and Bart Dhoedt
Department of Information Technology, Internet Based Communication Networks and Services (IBCN) Ghent University - iMinds

Gaston Crommenlaan 8 Bus 201, B-9050 Gent, Belgium
Email: bert.vankeirsbilck@intec.ugent.be

Abstract—In recent years, cloud computing has led to many
new kinds of services. One of these popular services is cloud
gaming, which provides the entire game experience to the users
remotely from a server, but also other applications are provided in
a similar manner. In this paper we focus on the option to render
the application in the cloud, thereby delivering the graphical
output of the application to the user as a video stream. In more
general terms, an interactive media stream is set up over the
network between the user’s device and the cloud server. The
main issue with this approach is situated at the network, that
currently gives little guarantees on the quality of service in
terms of parameters such as available bandwidth, latency or
packet loss. However, for interactive media stream cases, the
user is merely interested in the perceived quality, regardless of
the underlaying network situation. In this paper, we present
an adaptive control mechanism that optimizes the quality of
experience for the use case of a race game, by trading off visual
quality against frame rate in function of the available bandwidth.
Practical experiments verify that QoE driven adaptation leads
to improved user experience compared to systems solely taking
network characteristics into account.

I. INTRODUCTION

With the advent of cloud computing, new services such
as cloud gaming emerged. In this cloud gaming paradigm,
the game is hosted on a server in the cloud. The controls
and button presses from the user are transmitted to the server
for processing, and the server then sends back the game’s
response to this user input as a video stream. Examples of
popular cloud gaming platforms include onLive and Gaikai.
But also other applications than games can be delivered in
a similar way. Benefits of this cloud execution approach are
mainly related to the fact that the application is not installed on
the end user’s device, leading to, amongst others, less chance
for viruses, low disk space requirements, low-end devices
without extreme hardware support needed to support the latest
demanding applications and less piracy and illegal copying
of applications. A service provider can invest in hardware
and optimize the usage by serving multiple users with this
hardware to ensure it’s return on investment (ROI).

In a simplified model of the cloud computing concept that
is valid for this paper, three main parties are involved, namely
the user, the network and the cloud service provider. All of
these parties have independent goals and requirements. As the
service provider typically benefits from serving as many users
as possible, a tendency to let the service quality degrade to a
sub-excellent level exists. In contrast, the user has less interest
in service degradation due to concurrency, and expects quali-

tative access to the cloud service in proportion to the usage fee
paid. The network is unaware of the application level quality,
and offers a best effort transport mechanism. It hopes to
serve many concurrent connections, and has a limited amount
of survival mechanisms such as TCP congestion control at
it’s disposal. In conclusion, a satisfying level of Quality-of-
Experience (QoE) for the user must be reached while operating
in a benefit-driven setting for the service provider and using
a network that can only offer best-effort Quality-of-Service
(QoS).

This paper presents a QoE-driven control system that
enables management of cloud application execution quality
by optimizing interactive video streaming parameters to user
perceived QoE, within the constraints of the underlaying
network QoS parameters and the restrictions derived from
the service provider’s benefit margins. This system bases its
decisions on a QoE model of the application being managed,
and feedback from monitoring metrics. Section III presents
the architecture of the cloud computing system that has been
augmented with the proposed control system. As the logic
of the controller is centered around models to base its de-
cisions on, Section IV details how the necessary models for
the estimation of compression and QoE are acquired. The
controller algorithm is presented in Section V. To validate
our QoE-aware control mechanism, we applied it to a race
game. The results of this experimental validation are described
in Section VI. Section VII concludes this paper, including
directions for future work.

II. RELATED WORK

In view of the current explosion in cloud-based gaming, a
survey of the degradation of the performance due to network
latency and packet loss on QoE is presented in [1]. In the field
of gaming experience in general, many studies have assessed
the effect of network impairments on game experience [2], [3],
[4], [5]. In most cases, an indirect application level metric is
used to quantify this experience, e.g., the kill/death ratio for
a shooter game or lap times in a racing game. This approach
requires adaptation to the game (or more generally, the applica-
tion that is remotely executed), which is not a desired method
of operation. Also, such metrics are not generally applicable
to other application types, especially when the concept “score”
is not well-defined. Alternatives for measuring the interactivity
QoE that are not restricted to games consist of logging usage
times (departure rate) [6] or mean task execution times [7].
Still, these metrics do not give sufficient information to manage

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55683901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Architecture of the cloud gaming system augmented with the QoE aware controller. By altering the video stream parameters, the controller optimizes
the estimated QoE within the current network circumstances gathered from a monitoring component.

a video stream’s parameters in real-time. As a conclusion, we
can state that the assessment of interactive media is mostly
restricted to games, probably due to the large user base
and the demanding nature of these games in comparison to
other applications that are either specialized (e.g., Computer
Aided Design (CAD) programs) or less demanding concerning
resources or graphical behaviour (e.g., office applications).

In [8], motion and scene complexity are measured for
various video games within a range of game genres. The
main conclusions are that the perspective of a game has
an undeniable impact on motion and scene complexity. This
discovery shows us that, for our study, it is unlikely to find
one model that is suited for all games. Furthermore, the author
found that streaming games as a video is only viable for games
with very low display resolution and motion. However, we aim
to improve the quality of experience by adapting the video
stream, to be able to play even more complex games remotely.

Many adaptive controllers for video streams are proposed
that are based on the stream-switching technique: the server
encodes the video content at different bitrates and it switches
from one video version to another based on client feedbacks
such as the available bandwidth. For example, in [9], a Quality
Adaptation Controller is designed to select the best pre-
encoded chunk in a video stream in function of the available
bandwidth. Similarly, in [10], a QoE driven selection of such
pre-encoded video files is made. Also, in the emerging field of
HTTP Adaptive Streaming (HAS), initial work in optimizing
QoE using bitrate switching is presented in [11]. In contrast,
our case requires real-time encoding of the video content, since
the source graphics need to be generated by the application
first, making multiple-bitrate encoding unfeasible due to scal-
ability. Hence, on-the-fly adaptation of the parameters of the
encoding is demanded to match the network circumstances.

In [12], a QoE driven sender bitrate adaptation scheme
at pre-encoding stage is presented that is computes the Peak
Signal to Noise Ratio (PSNR) of the delivered media stream.
However, in our case, such an approach is practically infeasi-

ble, since real-time encoding is required, making pre-encoding
impossible. Furthermore, PSNR does not include the QoE-
effect of frame rate which, as will be clear further in this paper,
is an interesting adaptation parameter for remote application
execution. Also, PSNR does not take the difference in user
goals into account and hence would not make any difference
between the different game genres as was found important
in other literature. In [13] a cross-layer adaptation system
is made, that controls application bitrate, but also alters the
network settings to optimally deliver the video packets. They
focus on non-interactive applications such as video playback
or file download, as opposed to our case where in essence
the interactivity is the main subject of study. The important
difference is that for video playback, the quality of the content
is the main factor that influences the QoE, while for interactive
media the most important factor in the QoE is related to
the goal that the user wants to achieve. Depending on this
goal, per-frame quality might be secondary to having a crisp
response to user actions.

III. ARCHITECTURE

The architecture of the cloud based gaming system aug-
mented with the QoE aware controller is presented in Fig. 1.
At the client side, user input is captures and forwarded to the
server for processing. The returned video stream is presented
on screen. At server side, the user events are delivered to
the game, and the corresponding graphics are captured, and
encoded as a video stream. Furthermore, the proposed QoE-
aware controller was added, that interfaces with the encoder
to alter video streaming parameters in real-time. Examples
of such parameters include frame rate (FR) and quantisation
parameter (QP). The controller receives feedback about the
output bitrate from the encoder. Throughput is measured at the
client (e.g., in the form of received bitrate or achieved frame
rate) and is communicated to the controller in the server.

Although in Fig. 1, we represent the control cycle of just
one connected user, the purpose of cloud computing is actually



serving multiple users from one server. Therefore, in a practical
setting, information about the load on the server could also
be taken into consideration by the controller, for instance to
decide to change the encoder parameters to mitigate server
overloads. The architecture presented here is easily extendible
to this broader viewpoint. However, for the current paper, we
focus on the effect of altering the encoder parameters on the
experienced quality by the user, independent of whether the
decision to alter the settings is based on network metrics, as
is the subject of study in this paper, or on other metrics such
as global server load or user subscription type.

IV. MODEL ACQUISITION

QoE is hard to measure at runtime, since this would require
input from the user who is supposed to be performing his tasks
with the application. Although research exists into the direction
of measuring implicit QoE metrics such as facial expressions,
heart pulse and blood pressure, we believe the resulting QoE
scores are dependent of the total context in which the user
is situated, e.g., events in the user’s personal life can make
facial expression and body parameters fluctuate. Besides, facial
recognition is known to be quite computationally intensive and
the need to attach and set up additional hardware to control
QoE, such as a camera for facial recognition or sensors for
heart pulse or blood pressure, is expected to be experienced
as too intrusive for the user.

In contrast, we assume a model of the QoE in function
of the video stream parameters to be present, specifically
for the targeted application. Such a model can be acquired
using an evaluation framework developed in previous work
[14]. This framework mimics cloud computing on a single
machine, and allows to alter network conditions and video
streaming parameters in real-time, whilst letting a user interact
with a given application, such as the race game VDrift: Open
Source Racing Simulator [15] in this case. At regular intervals,
the user is asked to provide input to a questionnaire about
the playability of the game using the current settings, after
which new streaming parameters are set for a new evaluation
iteration. Applying this method for multiple test users for a
given kind of application, a model can be deduced that relates
the Mean Opinion Score (MOS) to the relevant streaming
parameters. Also, during the tests, the output bitrate of the
video streamed application is recorded to create a compres-
sion model, that allows to estimate the effect of the various
streaming parameters to the output bitrate for the application.

This way, we performed such an assessment with twenty-
one test subjects that rated the playability of a race game under
varying frame rates and per-frame visual quality settings (con-
trolled via Quantisation Parameter (QP) in the streamer). The
models were built for a video stream resolution of 1280×1024.
By fitting functions to the acquired data samples, models for
QoE and compression were obtained. The QoE model, in its
analytical form in (1), was obtained by fitting a four parameter
logistic (4PL) function which ensures monotonicity, and relates
to the measured data with a coefficient of determination R2 of
0.95.

QoE =
−4.7/(1 + (FR/6)2.414) + 4.7

1 + (QP/42)6
+ 0.04398 (1)

(a) QoE model.

Framerate (fps)

5
10

15
20

25

QP

10

20
30

40

co
m

pr
es

si
on

 ra
tio

 (%
)

20

40

60

80

(b) Compression model.

Fig. 2. Models acquired with the subjective test platform, for the VDrift
racing game at resolution 1280× 1024.

The compression model, with analytic function in (2), is
a linear combination of the individual parameter dimensions,
yielding a coefficient of determination R2 of 0.99. It should
be noted that the value of QP varies between 0 and 51. The
compression is computed relative to the least compressed video
format, i.e., a frame rate of maxFR (in our tests, the maximum
frame rate was defined as 30 fps) and a QP of 0.

Compression = 1−
[

FR

maxFR
× (2

−QP
10 )

]
(2)

Figure 2 presents plots of these functions. Figure 2(a)
shows that the QoE model has cut-off thresholds of 15 frames
per second (FPS) and a QP of 20 as it comes to playability of
the game, meaning that for the race game providing a frame
rate above 15 FPS and a QP lower than 20, the user can
be expected to be generally satisfied of the quality. If, for
some reason, one or both parameters fail to be kept within
these boundaries, the user will experience degraded quality,
according to the descent presented in the graph. Notice that
a MOS of 3 corresponds to fair quality, and 2 corresponds
to poor quality with an annoying impairment connotation.
Figure 2(b) shows that the compression increases linearly with
decreased frame rate, i.e., when one halves the frame rate,
the compression (measured over a period of time) logically
doubles, as only half of the amount of frames is sent. The QP
exhibits an exponential curve.

Combining the two acquired models, as presented in Fig. 3,
we conclude that simply choosing settings that result in the
most appropriate compression level could lead to suboptimal



QoE. For example, we selected two configurations that demon-
strate the difference best. When a frame rate of 6 fps and a QP
of 4 is configured, a compression ratio of 84.84% is obtained
leading to a MOS of 2.39, denoting a rather poor quality would
be experienced. However, configuring a frame rate of 18 fps
and a QP of 20 yields about the same compression ratio (85%)
but results in a MOS of 4.38, which can be interpreted as
good quality. Namely, for the race game, at these levels of
needed compression, it seems that users tend to appreciate a
slight drop in both frame rate and per-frame quality better
than having frame rate set very low to provide better per-
frame quality. Additionally, this figure provides insight into the
amount of compression that can be applied without disturbing
the user’s experience too hard. If therefor a minimum MOS
of 3 (fair quality) is to be provided, the graph teaches us that
configurations exist to guarantee this as long as the needed
compression ratio stays below 95.6%. If one targets to provide
good quality (MOS score higher than 4), the compression ratio
is supposed to stay below 91.6%. If the best setting, i.e., QP
of 0 and a frame rate of 30 fps, corresponds to a bitrate of 30
Mbps, the respective minimum available bandwidths required
are 1.32 Mbps and 2.52 Mbps. However, it must be noted that
the user will notice the degraded quality, but the QoE model
only describes whether the game is playable or not.

Fig. 3. Depending on the needed compression level, different parameter
configurations can be chosen that each lead to a certain MOS. Whenever a
choice is to be made amongst different parameter sets, the data represented
in this graph can guide the selection of the best tradeoff between QoE and
compression.

V. QOE-DRIVEN CONTROL ALGORITHM

The QoE-driven control algorithm has real-time control
over the video stream parameters used in the encoder of the
application graphics. As input, it takes the models described
higher to estimate the compression and QoE achieved by the
various settings it can make, as well as the current output
bitrate from the encoder and the feedback of the received
bitrate at the client.

The control algorithm, expressed in pseudocode in Algo-
rithm 1 aims to adapt the compression to match the available
bandwidth on the network, or a possibly administered band-
width limit, while keeping user perceived quality as high as

possible. First, we propose to load the compression model
as a sorted map to be able to easily traverse parameter
settings starting from given compression values, as in line
1. It also keeps track of sampleCounter that indicates the
number of consecutive samples for which the received bitrate
is high compared to the encoder output bitrate. To be able to
control the speed with which the algorithm responds to better
network conditions, the improveTimer variable is defined, and
is adapted inside the algorithm (lines 2 - 3). Upon receiving
a new sample, the algorithm compares the difference between
the client received bitrate and the server output bitrate (note
that comparing frame rates could make a valid alternative).
If the client received bitrate is within a range under the
server output bitrate (line 5), the controller interprets this as
a network that is able to transfer all of the video stream.
In this case, if the sampleCounter reached improveTimer,
the control algorithm tries to alter the parameters to provide
higher QoE. First, the QoE improvement mode is activated, by
setting the improveTimer value to 1, the system can gradually
improve QoE at a faster pace (line 7). A step-wise approach
is taken, selecting the first lower compression value from the
compressionMap that gives a better QoE than the current (line
8) and applying it to the encoder (line 9). If the client received
bitrate is more than a given threshold under the server output
bitrate (line 13), it is assumed that the network can’t cope with
the video stream in its current quality. The sampleCounter
and improveTimer are reset to back off improving the QoE
(lines 14 and 15). Higher compression is to be applied to stay
under the client received bitrate, as the latter is considered an
indication of what the network can cope at that moment. The
amount of compression needed is computed in line 18. Then,
the algorithm searches for the pair of frame rate and QP that
gives the highest QoE with a compression value higher than
the needed target compression (lines 19 - 24), and applies it
to the encoder (line 25).

This algorithm responds fast to degraded network con-
ditions, and waits for the network to stabilize before trying
to improve the QoE again. This approach is necessary since
the decisions made upon the measurements of the network
conditions actually come down to deciding to act at a given
time to a network situation in the recent past. Hence, network
degradations should be acted upon immediately to accelerate
its recovery, while to improve the quality of the service,
careful, stepwise initiatives should be taken.

VI. EXPERIMENTAL VALIDATION

With the framework used for the model acquisition, de-
scribed in Section IV, we executed the VDrift game [15] for
which the models were derived earlier. This framework is
installed on a server with an Intel R©CoreTMi7 CPU 920 @ 2.67
GHz, 6 GB RAM Graphics Card NVidia GeForce GTS 250,
128 CUDA cores with Ubuntu Linux operating system. The
game server software, with the game execution environment,
the video encoder and the QoE-driven controller are co-located
with the viewer software that decodes the video stream and
captures the user input, using the localhost network to transmit
the user events and the video stream. This approach implies
having more stable control over the network parameters com-
pared to executing viewer and server on separate machines.
The Linux traffic control package (tc and tcng) can be used
to introduce e.g., packet loss, bandwidth drops or latency. For



Algorithm 1 QoE-driven control algorithm
1: compressionMap = loadCompressionModel()
2: sampleCounter = 0
3: improveT imer = 1
4: while running do
5: if Bitratereceived ≥ Bitrateoutput − threshold then
6: if sampleCounter ≥ improveT imer then
7: improveT imer = 2
8: (FR,QP )improved (first lower compression with

higher QoE)
9: encoder.apply(FRimproved, QPimproved)

10: else
11: sampleCounter ++
12: end if
13: else
14: sampleCounter = 0
15: improveT imer = 5
16: FRadapted = FRcurrent

17: QPadapted = QPcurrent

18: compressiontarget =
Bitratereceived

[
Bitrateoutput

(1−compressioncurrent)
]

19: for all (FR,QP ) ∈ {(FR,QP )>compressiontarget
}

do
20: if QoE(FR,QP ) > QoE(FRadapted, QPadapted)

then
21: FRadapted = FR
22: QPadapted = QP
23: end if
24: end for
25: encoder.apply(FRadapted, QPadapted)
26: end if
27: end while

these experiments, the network degradations were constrained
to bandwidth variations. A video resolution of 1280 × 1024
was configured, matching the created models.

Figure 4 shows how the QoE-aware controller manages to
provide higher QoE over other approaches that keep either
frame rate or QP factor fixed while varying the other. The
chosen fixed frame rates were 30 fps and 25 fps, the fixed
QP values were chosen at 0 and 5. These values represent
the top two least degraded values of frame rate and visual
quality that the QoE-aware controller takes into account. It
can also be seen that for the race game targeted in this use
case, keeping the per-frame quality high (setting a low QP
value) while degrading the frame rate to achieve compression
performs worse than focusing on maintaining a high frame
rate. Our algorithm always aims to find a trade-off between
the two parameters, hence provides the optimal quality for the
current network bandwidth.

Figure 5(a) reports how the algorithm reacts to bandwidth
variations that were deployed using a shaper. The blue line
indicates the available bandwidth in the network configured
with this shaper, the red line indicates the output bitrate of
the encoder that is achieved with the QoE aware controller.
Although large fluctuations in the configured bandwidth exist,
the algorithm succeeds in gracefully adapting to the available
bandwidth. In the time intervals where large bandwidth in-
creases exist (55 to 60 seconds and 80 to 120 seconds), it
is visible that a conservative, stepwise approach to increasing

3,00

3,50

4,00

4,50

5,00

M
O

S

2,00

2,50

3,00

051015202530

Bandwidth (Mbps)

Fixed FR = 30 Fixed FR = 25 Fixed QP = 5 Fixed QP = 0 Proposed algorithm

Fig. 4. Comparison of the QoE obtained with the QoE-aware control
algorithm, versus simpler approaches that keep either frame rate or QP fixed
and varying the other parameter to get the necessary compression.

the QoE is taken. On the other hand, bandwidth drops are
handled more aggressively, as visible in the graph at times
about 120 seconds and the steep descending behaviour of the
bandwidth at the end of the test. As the monitoring values are
only communicated to the controller after bandwidth changes
have occured in the network, we see that for bandwidth drops
the corrective decision always falls one sample behind at
least. However, since the available bandwidth cannot be easily
measured without overloading the network, one is restricted to
a reflective approach as taken in the proposed algorithm.

Figure 5(b) shows the QoE achieved during the test. It
shows that, despite the fluctuations in the bandwidth, the
QoE is high, and fairly constant. However, it must be noted
that, although real-time updating of the encoder parameters is
guaranteed, a stepwise changing of the encoder parameters will
be visible to the user. This graph does not provide information
on how this frequent quality changing is experienced by the
user, and it is possible that the user would prefer a more
constant, beit a possibly lower quality, over highly frequent
updates of the encoder settings.

VII. CONCLUSION

In this paper a QoE-driven control system is proposed
that enables management of cloud gaming quality by, in real-
time, optimizing interactive video streaming parameters to an
estimation of the user perceived QoE, within the constraints
of the underlaying network QoS parameters and possibly
the restrictions expressed from the service provider to allow
scaling the service for a large user base. This system bases its
decisions on different QoE models for the various game genres
offered in the service, and feedback from monitoring metrics.
The acquisition of the QoE models is performed offline with
a selected test public, using a dedicated subjective evaluation
framework. Although our study focused on one game type,
literature indicates that different QoE models will be found
depending on the game genre, e.g., for shooter games it is
expected that frame rate will be found more important for
the QoE than per-frame visual quality, while for a rather
slow-paced text based game the readability of the graphics
demand priority over frame rate. Upon receiving samples of



(a) Reaction of the controller to bandwidth variations deployed with a
shaper. The blue line represents the available bandwidth (i.e., the target
of the shaper), the red line indicates the encoder output bitrate.

(b) The QoE achieved in the course of the bandwidth variation.

Fig. 5. Validation experiment results using bandwidth shaper

the received bitrate or frame rate from the viewer, the control
algorithm decides whether to downgrade the video streaming
quality to mitigate network degradations or to try to upgrade
the quality to provide better experience to the user. This control
algorithm responds fast to degraded network conditions, and
waits for the network to stabilize before trying to improve the
QoE again. Experimental validation results obtained with an
implementation of the controller while managing the playabil-
ity of a race game are presented. The results show that the
controller optimizes the QoE to the network circumstances
better than naive approaches to mitigate network degradations.
However, although theoretically the optimal QoE is aimed for
at any moment, it should be investigated whether it is better
to stay with suboptimal settings for a while over switching
qualities frequently. We expect that the proposed algorithm
might need an additional QoE parameter in the models, i.e.,
to avoid overly frequent stream quality switching, which is a
possibility to study in more detail.

Future work also includes acquiring and comparing addi-
tional models for different game genres and even non-game
applications, to verify the ability of the proposed controller
to manage the QoE of arbitrary applications in the cloud. It

would also be interesting to thouroughly evaluate the fairness
while executing multiple controlled applications, and the QoE
achieved when the system contends with an unmanaged appli-
cation. Finally, subjective assessment with test persons playing
the game managed by the QoE-driven controller over a longer
period of time would be an important improvement to evaluate
and demonstrate the potential of the work presented in this
paper.

REFERENCES

[1] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hossfeld, “Gaming
in the clouds: QoE and the users’ perspective,” Mathematical and
Computer Modelling, 2012.

[2] M. Dick, O. Wellnitz, and L. Wolf, “Analysis of factors affecting play-
ers’ performance and perception in multiplayer games,” in Proceedings
of 4th ACM SIGCOMM workshop on Network and system support for
games, ser. NetGames ’05. New York, NY, USA: ACM, 2005, pp.
1–7.

[3] P. Quax, P. Monsieurs, W. Lamotte, D. De Vleeschauwer, and N. De-
grande, “Objective and subjective evaluation of the influence of small
amounts of delay and jitter on a recent first person shooter game,” in
Proceedings of 3rd ACM SIGCOMM workshop on Network and system
support for games, ser. NetGames ’04. New York, NY, USA: ACM,
2004, pp. 152–156.

[4] M. Ries, P. Svoboda, and M. Rupp, “Empirical study of subjective
quality for massive multiplayer games,” in Systems, Signals and Image
Processing, 2008. IWSSIP 2008. 15th International Conference on, june
2008, pp. 181–184.

[5] A. F. Wattimena, R. E. Kooij, J. M. van Vugt, and O. K. Ahmed,
“Predicting the perceived quality of a first person shooter: the Quake
IV G-model,” in Proceedings of 5th ACM SIGCOMM workshop on
Network and system support for games, ser. NetGames ’06. New
York, NY, USA: ACM, 2006.

[6] K.-T. Chen, P. Huang, and C.-L. Lei, “How sensitive are online gamers
to network quality?” Commun. ACM, vol. 49, no. 11, pp. 34–38, Nov.
2006.

[7] S. H. Yoo and W. C. Yoon, “Modeling users’ task performance on
the mobile device: PC convergence system,” INTERACTING WITH
COMPUTERS, vol. 18, no. 5, pp. 1084–1100, sept 2006.

[8] M. Claypool, “Motion and scene complexity for streaming video
games,” in Proceedings of the 4th International Conference on Foun-
dations of Digital Games, ser. FDG ’09. New York, NY, USA: ACM,
2009, pp. 34–41.

[9] L. De Cicco, S. Mascolo, and V. Palmisano, “Feedback control for
adaptive live video streaming,” in Proceedings of the second annual
ACM conference on Multimedia systems, ser. MMSys ’11. New
York, NY, USA: ACM, 2011, pp. 145–156. [Online]. Available:
http://doi.acm.org/10.1145/1943552.1943573

[10] A. Khan, L. Sun, E. Jammeh, and E. Ifeachor, “Quality of experience-
driven adaptation scheme for video applications over wireless net-
works,” Communications, IET, vol. 4, no. 11, pp. 1337 –1347, June
2010.

[11] V. Menkovski and A. Liotta, “Intelligent control for adaptive video
streaming,” in In Proceedings of the International Conference on
Consumer Electronics, Las Vegas, US, January 2013.

[12] A. Khan, L. Sun, E. Ifeachor, J. Fajardo, and F. Liberal, “Video
quality prediction model for h.264 video over umts networks and their
application in mobile video streaming,” in Communications (ICC), 2010
IEEE International Conference on, may 2010, pp. 1 –5.

[13] S. Thakolsri, S. Khan, E. Steinbach, and W. Kellerer, “Qoe-driven cross-
layer optimization for high speed downlink packet access,” Journal of
Communications, vol. 4, no. 9, 2009.

[14] B. Vankeirsbilck, D. Verslype, N. Staelens, P. Simoens, C. Develder,
P. Demeester, F. D. Turck, and B. Dhoedt, “Platform for real-time sub-
jective assessment of interactive multimedia applications,” Multimedia
Tools and Applications, 2013, 10.1007/s11042-013-1395-y.

[15] VDrift, “VDrift Open Source Racing Simulator, version 2011-10-22,”
http://www.vdrift.net.


