572 research outputs found

    Design Minkowski Shaped Patch Antenna with Rectangular Parasitic Patch Elements for 5.8 GHz Applications

    Get PDF
    Abstract—This paper presents the parametric study on the Minkowski shaped antenna with the rectangular parasitic patch elements. This patch antenna consists four parts – patch, feed line, ground plane and parasitic elements. The rectangular parasitic patch elements are located at the bottom of the Minkowski shaped patch. The parametric study of different patch sizes (Design 2A, Design 2B, Design 2C, Design 2D and Design 2E) is presented in this paper. The antenna parameters studied in this paper are resonant frequencies, return loss at the resonant frequency, bandwidth and realized gain. The target frequency of this antenna is 5.80 GHz for Worldwide Interoperability for Microwave Access (WiMAX) application. It shows the return loss of – 24.477 dB, bandwidth of 254 MHz (5.676 GHz to 5.930 GHz) and a gain of 2.351 dB. Index Terms—Minkowski; patch antenna; gain; return loss; bandwidt

    A Review: Circuit Theory of Microstrip Antennas for Dual-, Multi-, and Ultra-Widebands

    Get PDF
    In this chapter, a review has been presented on dual-band, multiband, and ultra-wideband (UWB). This review has been classified according to antenna feeding and loading of antennas using slots and notch and coplanar structure. Thereafter a comparison of dual-band, multiband, and ultra-wideband antenna has been presented. The basic geometry of patch antenna has been present along with its equivalent circuit diagram. It has been observed that patch antenna geometry for ultra-wideband is difficult to achieve with normal structure. Ultra-wideband antennas are achieved with two or more techniques; mostly UWB antennas are achieved from coplaner structures

    Bandwidth Optimization of Microstrip Patch Antenna- A Basic Overview

    Get PDF
    An antenna is a very important device in wireless applications. It converts the electrical energy into RF signal at the transmitter and RF signal into electrical energy at the receiver side. A micro strip antenna consists of a rectangular patch on a ground plane separated by dielectric substrate. The patch in the antenna is made of a conducting material Cu (Copper) or Au (Gold) and this can be in any shape of rectangular, circular, triangular, elliptical or some other common shape. Researches of past few year shows that, various work on Microstrip Patch Antenna is attentive on designing compact sized Microstrip Antenna with efficiency and bandwidth optimized. But inherently Microstrip Patch Antenna have narrow bandwidth so to enhance bandwidth various techniques are engaged. Today’s Communication devices need several applications which require higher bandwidth; such as mobile phones these days are getting thinner and smarter but many applications supported by them require higher bandwidth, so microstrip antenna used for performing this operation should provide wider bandwidth as well as their shape should be more efficient and size should be compact so that it should occupy less space while keeping the size of device as small as possible. In this review paper, a review of different techniques used for bandwidth optimization & various shapes of compact and broadband microstrip patch antenna is given

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Parasitic Layer-Based Reconfigurable Antenna and Array For Wireless Applications

    Get PDF
    Antenna is one of the most important components in wireless systems since signal transmission and reception are conducted through the antenna interface. Therefore, the signal quality is highly affected by the properties of the antenna. Traditional antennas integrated in devices such as laptops or cell phones have fixed radiation properties and can not be changed to adapt to different environments. Thus the performance of thefwhole system will be negatively affected since the antenna will not operate in the optimum status in different environments. To solve this problem, reconfigurable antenna, which can dynamically change its operation frequency, radiation pattern, and polarization, has gained a significant interest recently. Recongurable antennas are considered smart antennas, and can maximize the capacity of the wireless system. This dissertation focuses upon the theoretical analysis and design of smart antennas with recongurable radiation properties. The presented multi-functional reconfigurable antennas (MRAs) are aimed to applications in WLAN (wireless local area network) systems. The theoretical analysis of the MRA was rst investigated to validate the design concept, and then applied for practical applications. The multi-functional recongurable antenna array (MRAA), which is a new class of antenna array, is also created as a linear formation (4 1) of MRA, with theoretical analysis and design of the MRAA fully described. This work developed three MRA(A)s for practical implementation in WLAN systems. The rst design is the MRA operating in 802.11 b/g band (2.4-2.5 GHz), with nine beam steering directions in a parasitic layer-based MRA structure. The second is a MRA operating in 802.11ac band (5.17-5.83 GHz) with three beam steering directions in a simplied parasitic layer-based MRA structure. The third is a MRAA extension of the second design. The design process of these MRA(A)s is realized with the joint utilization of electromagnetic (EM) full-wave analysis and multi-objective genetic algorithm. All three MRA(A) designs have been fabricated and measured. The measured and simulated results agree well for both impedance and radiation characteristics. These prototypes can be directly employed in a WLAN system since practical limits have been taken into account with real switches and components implemented. Finally, this dissertation work concludes with plans for future work, which will focus on development of MRA(A)s with dual-frequency operation

    Multi-Functional Reconfigurable Antenna Development by Multi-Objective Optimization

    Get PDF
    This dissertation work builds upon the theoretical and experimental studies of radio frequency micro- and nano-electromechanical systems (RF M/NEMS) integrated multifunctional reconfigurable antennas (MRAs). This work focuses on three MRAs with an emphasis on a wireless local area network (WLAN), 5-6 GHz, beam tilt, and polarization reconfigurable parasitic layer-based MRA with inset micro-strip feed. The other two antennas are an X band (8-12 GHz) beam steering MRA with aperture-coupled micro-strip fed and wireless personal area network (WPAN), 60 GHz, inset micro-strip fed MRA for dual frequency and dual polarization operations. For the WLAN (5-6 GHz) MRA, a detailed description of the design methodology, which is based on the joint utilization of electromagnetic (EM) full-wave analysis and multi-objective genetic algorithm, and fundamental theoretical background of parasitic layer-based antennas are given. Various prototypes of this MRA have been fabricated and measured. The measured and simulated results for both impedance and radiation characteristics are given. The work on the MRAs operating in the X band and 60 GHz region focuses on the theoretical aspects of the designs. Different than the WLAN MRA, which uses inset fed structure, the aperture-coupled feed mechanism has been investigated with the goal of improving the bandwidth and beam-tilt capabilities of these MRAs. The simulated results are provided and the working mechanisms are described. The results show that the aperture-coupled feed mechanism is advantageous both in terms of enhanced bandwidth and beam-steering capabilities. Finally, this dissertation work concludes with plans for future work, which will build upon the findings and the results presented herein

    Planar EBG Loaded UWB Monopole Antenna with Triple Notch Characteristics

    Get PDF
    A triple band-notched ultra-wideband (UWB) monopole antenna using a planar electromagnetic bandgap (EBG) design is proposed. The EBG unit cell composed by an Archimedean spiral and inter-digital capacitance demonstrates the notch frequencies. The antenna with EBG cells near the feed line occupies only 30 Ă— 36 mm2 with triple band-rejection characteristics. The three notched bands at 4.2 GHz, 5.2 GHz, and 9.1 GHz can be used in C-band satellite downlink, wireless local area network (WLAN), and X-band radio location for naval radar or military required applications. In addition, the proposed design is flexible to tune different notched bands by altering the EBG dimensions. The parametric analysis is studied in details after placing the EBG unit cells near the feed line to show the coupling effect. The input impedance and surface current distribution analysis are also analyzed to understand the effect of EBG at notch frequencies. The proposed design prototype is fabricated and characterized. A fairly considerable agreement is observed between simulated and measured results

    Antenna Design for 5G and Beyond

    Get PDF
    With the rapid evolution of the wireless communications, fifth-generation (5G) communication has received much attention from both academia and industry, with many reported efforts and research outputs and significant improvements in different aspects, such as data rate speed and resolution, mobility, latency, etc. In some countries, the commercialization of 5G communication has already started as well as initial research of beyond technologies such as 6G.MIMO technology with multiple antennas is a promising technology to obtain the requirements of 5G/6G communications. It can significantly enhance the system capacity and resist multipath fading, and has become a hot spot in the field of wireless communications. This technology is a key component and probably the most established to truly reach the promised transfer data rates of future communication systems. In MIMO systems, multiple antennas are deployed at both the transmitter and receiver sides. The greater number of antennas can make the system more resistant to intentional jamming and interference. Massive MIMO with an especially high number of antennas can reduce energy consumption by targeting signals to individual users utilizing beamforming.Apart from sub-6 GHz frequency bands, 5G/6G devices are also expected to cover millimeter-wave (mmWave) and terahertz (THz) spectra. However, moving to higher bands will bring new challenges and will certainly require careful consideration of the antenna design for smart devices. Compact antennas arranged as conformal, planar, and linear arrays can be employed at different portions of base stations and user equipment to form phased arrays with high gain and directional radiation beams. The objective of this Special Issue is to cover all aspects of antenna designs used in existing or future wireless communication systems. The aim is to highlight recent advances, current trends, and possible future developments of 5G/6G antennas

    Ultra-Wideband Antenna and Design

    Get PDF
    • …
    corecore