110 research outputs found

    Manipulating Highly Deformable Materials Using a Visual Feedback Dictionary

    Full text link
    The complex physical properties of highly deformable materials such as clothes pose significant challenges fanipulation systems. We present a novel visual feedback dictionary-based method for manipulating defoor autonomous robotic mrmable objects towards a desired configuration. Our approach is based on visual servoing and we use an efficient technique to extract key features from the RGB sensor stream in the form of a histogram of deformable model features. These histogram features serve as high-level representations of the state of the deformable material. Next, we collect manipulation data and use a visual feedback dictionary that maps the velocity in the high-dimensional feature space to the velocity of the robotic end-effectors for manipulation. We have evaluated our approach on a set of complex manipulation tasks and human-robot manipulation tasks on different cloth pieces with varying material characteristics.Comment: The video is available at goo.gl/mDSC4

    DeformerNet: Learning Bimanual Manipulation of 3D Deformable Objects

    Full text link
    Applications in fields ranging from home care to warehouse fulfillment to surgical assistance require robots to reliably manipulate the shape of 3D deformable objects. Analytic models of elastic, 3D deformable objects require numerous parameters to describe the potentially infinite degrees of freedom present in determining the object's shape. Previous attempts at performing 3D shape control rely on hand-crafted features to represent the object shape and require training of object-specific control models. We overcome these issues through the use of our novel DeformerNet neural network architecture, which operates on a partial-view point cloud of the manipulated object and a point cloud of the goal shape to learn a low-dimensional representation of the object shape. This shape embedding enables the robot to learn a visual servo controller that computes the desired robot end-effector action to iteratively deform the object toward the target shape. We demonstrate both in simulation and on a physical robot that DeformerNet reliably generalizes to object shapes and material stiffness not seen during training. Crucially, using DeformerNet, the robot successfully accomplishes three surgical sub-tasks: retraction (moving tissue aside to access a site underneath it), tissue wrapping (a sub-task in procedures like aortic stent placements), and connecting two tubular pieces of tissue (a sub-task in anastomosis).Comment: Submitted to IEEE Transactions on Robotics (T-RO). 18 pages, 25 figures. arXiv admin note: substantial text overlap with arXiv:2110.0468

    Hierarchical Reinforcement Learning of Multiple Grasping Strategies with Human Instructions

    Get PDF
    Grasping is an essential component for robotic manipulation and has been investigated for decades. Prior work on grasping often assumes that a sufficient amount of training data is available for learning and planning robotic grasps. However, since constructing such an exhaustive training dataset is very challenging in practice, it is desirable that a robotic system can autonomously learn and improves its grasping strategy. In this paper, we address this problem using reinforcement learning. Although recent work has presented autonomous data collection through trial and error, such methods are often limited to a single grasp type, e.g., vertical pinch grasp. We present a hierarchical policy search approach for learning multiple grasping strategies. Our framework autonomously constructs a database of grasping motions and point clouds of objects to learn multiple grasping types autonomously. We formulate the problem of selecting the grasp location and grasp policy as a bandit problem, which can be interpreted as a variant of active learning. We applied our reinforcement learning to grasping both rigid and deformable objects. The experimental results show that our framework autonomously learns and improves its performance through trial and error and can grasp previously unseen objects with a high accuracy
    • …
    corecore