
REGULAR PAPER

Hierarchical Reinforcement Learning of Multiple Grasping Strategies

T. Osaa,b∗, J. Petersc,d and G. Neumanne

a University of Tokyo, Tokyo, Japan; b RIKEN, Tokyo, Japan; c Technische Universität
Darmstadt, Darmstadt, Germany; dMax-Planck Institute, Tübingen, Germany; e University
of Lincoln, Lincoln, UK;

ARTICLE HISTORY

Compiled December 29, 2017

ABSTRACT
Grasping is an essential component for robotic manipulation and has been investi-
gated for decades. Prior work on grasping often assumes that a sufficient amount of
training data is available for learning and planning robotic grasps. However, since
constructing such an exhaustive training dataset is very challenging in practice, it
is desirable that a robotic system can autonomously learn and improves its grasp-
ing strategy. In this paper, we address this problem using reinforcement learning.
Although recent work has presented autonomous data collection through trial and
error, such methods are often limited to a single grasp type, e.g., vertical pinch
grasp. We present a hierarchical policy search approach for learning multiple grasp-
ing strategies. Our framework autonomously constructs a database of grasping mo-
tions and point clouds of objects to learn multiple grasping types autonomously. We
formulate the problem of selecting the grasp location and grasp policy as a ban-
dit problem, which can be interpreted as a variant of active learning. We applied
our reinforcement learning to grasping both rigid and deformable objects. The ex-
perimental results show that our framework autonomously learns and improves its
performance through trial and error and can grasp previously unseen objects with
a high accuracy.

KEYWORDS
reinforcement learning, grasping, point clouds, active learning, bandit problem

1. Introduction

Grasping is an essential motion for robotic manipulation, which has been investigated
for decades [1,2]. Many approaches for robotic grasping are data driven and can lever-
age a dataset of grasping motions and objects. Prior work on data-driven grasping
methods often assumes that the sufficient amount of training data is available for
learning and planning robotic grasps. For instance, geometry-based methods such as
[3,4] require thousands of example grasps. However, since constructing such exhaustive
training datasets is very challenging in practice, it is desirable that a robotic system
autonomously learns and improves its grasping strategy. Recent work has presented
autonomous data collection through trial and error [5,6]. However, such methods are
often limited to a single grasp type, e.g., vertical pinch grasps. Since grasping various
objects requires multiple grasp types in practice [7], it is necessary to develop a method
for autonomously learning multiple grasping policies for different grasp types.

∗CONTACT. Email: takayuki@robot-learning.de

When we learn multiple grasp types, it is essential to learn how to grasp objects
with specific grasp types and how to select grasp types according to given objects. In
addition, since an object often has multiple potential grasp locations, it is also neces-
sary to learn how to select the grasp locations among multiple options. In this work, we
address such autonomous learning of multiple grasp types. We propose reinforcement
learning of a hierarchical policy where lower-level policies learn how to grasp given
locations with specific grasp types and an upper-level policy learns how to select the
grasp type and location. We address the selection of the grasp type and location using
an active learning approach. Our approach learns to grasp objects with multiple grasp
types and autonomously improves the grasping performance through trial and error.
This paper consolidates our recent work on reinforcement learning of robotic grasping.
In our prior study in [8], we presented our preliminary work on reinforcement learning
for multiple grasping types. We present a rigorous description of our approach in this
paper, including a collision cost for grasping selection, which was not presented in
our previous study. While our previous study reported only results of grasping rigid
objects based on analytical scores, this paper also presents results of learning to grasp
a deformable object from human evaluations. Grasping a deformable object is a chal-
lenging task for the template-based approach because the deformation of an object is
often hard to model and predict. Since the deformation of the object often leads to
slip of the object, grasping deformable objects requires different grasping strategies
from that for rigid objects. The experimental results show that our system can adjust
the grasping strategy for rigid objects to a deformable object through trial and error
on a real robot.

The remainder of this paper is structured as follows. The next section describes
related work on grasping and policy search. We present our reinforcement learning
method in Section 3. The experimental results are presented in Section 4. After we
discuss our results and future work in Section 5, we conclude this paper in Section 6.

2. Related Work

Our work is closely related to two domains: grasping in robotics and policy search in
machine learning. We first describe prior worked related to robotic grasping and we
subsequently discuss prior work related to policy search.

2.1. Grasping

Although early studies on data-driven grasping utilize a library of 3D object models [3],
recent work demonstrates that grasp planning based on point clouds or RGB-D images
can be applied to various objects without solid 3D models [4,9–13]. However, the
performance of the existing methods often significantly depends on the quality of
the training dataset of grasping motions and objects. For example, a method in [4]
computes Height Accumulated Features (HAF) and detects the grasp locations. This
method performs well even in scenarios with multiple objects. However, it requires
a training dataset with thousands of grasps. The work by Lenz at al. shows that
the potential grasp locations can be detected using a convolutional network (CNN)
[10]. This method also requires large amount of data to train the CNN. In addition,
many methods are merely based on the geometric properties of objects and do not
consider the physical interaction with objects. For example, Kopicki et al. proposed
to a method for determining where to grasp based on the density of the object point

2

cloud [9]. Although this method does not require a huge amount of the training data,
it does not incorporate the quality of the resulting grasp motion.

To address the issue of data collection in grasp learning, reinforcement learning has
been employed in recent work. The study in [5] showed the feasibility of autonomously
collecting a dataset with thousands of grasps and training a CNN to predict grasp
locations as rectangles in a 2D image. Likewise, the study in [6] presented a method
for learning the hand-eye coordination for grasping. A vision-based feedback control
is learned with a CNN and a dataset of grasping motion and images are constructed
autonomously in [6]. Since these methods utilize the results of the executed grasps in
order to predict the grasp probability, the physical interaction between objects and a
robotic hand is implicitly incorporated. However, the methods in [5,6] are limited to
specific grasp types, e.g., a vertical precision grasp. In addition, these methods rely
on 2D image inputs lacking depth information. However, the use of depth information
and learning multiple grasp types are essential to achieve dexterous manipulations.

2.2. Hierarchical Policy Search

Policy search is a subset of reinforcement learning [14]. Instead of directly working
on the state-action space, policy search explores a solution in a parameterized space.
Methods for learning a policy that generates different parameters according to a task
context is often referred to as contextual policy search [14]. In grasp learning, we learn
a policy that generates grasping motion according to a given grasp location, which
is considered the context of the task. Thus, selecting a grasp location among several
options in grasp learning is equivalent to selecting a context in the contextual policy
search setting. Contextual policy search with active context selection is investigated
as active contextual policy search in [15]. However, this active contextual policy search
has not been extended to learning a hierarchical policy.

Interests on methods for learning a hierarchical policy has been increasing [16–19].
The goal of hierarchical policy search is to learn a hierarchical policy where multiple
lower-level policies represent different strategies and an upper-level policy selects the
appropriate lower-level policy from the multiple options. For instance, Daniel et al.
have developed the hierarchical relative entropy policy search (HiREPS) algorithm
for learning a hierarchical policy through reinforcement learning [19]. HiREPS learns
a hierarchical policy through the EM-like procedure based on relative entropy policy
search (REPS) [20]. Likewise, the option-actor critic proposed in [16] learns a hierar-
chical policy using an extended version of actor-critic [21]. Prior work on hierarchical
reinforcement learning indicates that learning multiple option policies improves the
robustness of the policy [19] and that exploitation of the hierarchical policy structure
exponentially reduces the search space [22]. However, these methods do not incor-
porate an active selection of the context as it is needed for grasping. The study by
Kroemer et al. proposed to formulate the selection of grasp locations as a bandit prob-
lem [23]. This study shows that a grasping policy can be efficiently learned by actively
selecting the grasp location in order to deal with the trade off between maximizing the
information gain and maximizing the expected grasp quality. However, reinforcement
learning of a hierarchical grasping policy is not addressed in [23] and the method in
[23] does not generalize its grasping policy to unknown objects.

In this work, we formulate the active selection of both the grasp location and the
grasp type as a bandit problem. In contrast with prior work, our approach has the
following important properties: 1) learning of multiple grasp types, 2) autonomous

3

construction of a grasp database through trial and error, and 3) planning grasping
motions based on point clouds, and 4) an active selection of the grasp type and location.
To the best of our knowledge, prior work has not developed a grasp learning method
that has all of these properties.

3. Hierarchical Reinforcement Learning for Grasping

We describe our grasp learning framework in this section. After describing the overview
of our learning method, we explain the details of each component.

3.1. Overview of the Proposed Method

In the scenario of grasp learning using point clouds of objects, the goal is to learn a
policy that plans the grasping motion based on a given point cloud. By following the
formulation of contextual policy search, this problem can be formulated as

π(θ|P) = arg max
π

E[R(θ,P)|π(θ|P),P], (1)

where P is a point cloud of the given object, π(θ|P) is a policy that generates a
grasping motion parameter θ and R(θ,P) is the return, which represents the quality
of the grasp. However, directly working on point clouds as contexts is not feasible due
to the high dimensionality of point clouds. To make this problem tractable, we extract
potential grasp locations from the given point cloud and compute local features si for
each of these locations. Using these local features, the grasp learning problem can be
reduced to

π(θ|S) = arg max
π

E[R(θ,S)|π(θ|S),S], (2)

where S is a finite set of feature vectors si of potential grasp locations in the given
point cloud. We consider a hierarchical policy where lower-level policies πl learn how
to grasp objects with a specific grasp type and an upper-level policy πu learns how to
select the grasp type and where to grasp. Therefore, our hierarchical grasping policy
is given by

π(θ|S) =
∑
s,g

πu(s, g|S)πl(θ|s, g), (3)

where g is the index of the grasp type. Note that our upper-level policy πu is deter-
ministic. To learn this hierarchical policy, we divide the problem of grasp learning into
four steps:

(1) Find the potential grasp locations. Given a point cloud of a target object
and the database of the contact information of successful grasps, we find local
subsets of the point cloud that represent potential grasping locations, i.e.,

P 7→ {P ′1, ...,P ′N}, (4)

where P ′i is the ith subset of the point cloud that represents a potential grasp
location.

4

Execute the grasp with the type g* and location s*

Record the score of the executed grasp

Demonstration

of grasp type 1

Learn grasp score

),(~ 1 sθGPR

Learn grasp score

),(~ sθGR GP

Point cloud of a new object

Evaluate the grasp types

and locations

Select the grasp type

and location

),(maxarg],[
,

** g

l
g

g ss
s
L

Find potential grasp locations

for each grasp type

},...,...,,...,{ 1

11

1

G

N

G

N ssssS

),(),,(ss
g

lR

g

lR

…

Update policy

(q | s)

Update policy

(q | s)

Demonstration

of grasp type G

…

Demonstration

of grasp type g

Learn grasp score

),(~ sθgR GP

Update policy

(q | s)

Create a

contact database

Create a

contact database

Create a

contact database G

l

g

l

1

l

:u

Update the dataset and

the policy for grasp type g*

Learning for

grasp type 1

Learning for

grasp type g

Learning for

grasp type G

Learning for

grasp selection

Figure 1. Overview of the algorithm. First, the grasping policy is initialized, and the dataset
of contact information is created based on human demonstration. The individual lower-level
policy πl is learned for each grasp type. The grasp quality R is approximated with Gaussian
Processes (GPs). GPs are used to evaluate each combination of grasp type and location. When
the point cloud of a new object is given, potential grasp locations are estimated using the grasp
dataset. Subsequently, the upper-level policy πu selects the grasp type and location. After every
grasp execution, the grasping policy and the dataset are updated. πg

l = πl(θ|s, g) in this figure.

(2) Select the grasp type and location. Given a set of grasping policies G =
{π1

l , ..., π
G
l } that represents multiple grasp types and subsets of point clouds

{P ′1, ...,P ′N} that represent potential grasping locations, we select a grasp type
and a grasp location. For this purpose, we compute a local feature vector si for
each local point cloud P ′,

P ′i 7→ si for i = 0, ..., N. (5)

We approximate the return function with a Gaussian Process

R ∼ GP(θ, s) (6)

as a function of the motion parameter θ and the point cloud feature s. Using this
approximation, we can compute E[R|s, g] and its variance for each combination
of the grasping policy πl and the feature s. The upper-level policy πu selects the
grasping policy and the location based on an objective function U , i.e.,

πu : [s∗, g∗] = arg max
s∈S,g∈G

U(s, g), (7)

where S is a set of features of possible grasp locations. The objective function
U needs to deal with the trade-off between maximizing the expected return and
maximizing the information gain, which is often referred to as the “exploration-
exploitation trade-off.” In this work, we employ upper confidence bounds (UCB)
as the objective function.

(3) Perform the selected grasp. The grasping motion is planned and performed
using the selected grasp type and grasp location by drawing the motion param-
eter from the selected lower-level policy, i.e.,

θ ∼ πl(θ|s∗, g∗). (8)

5

The result of the grasp execution is evaluated and stored in a database D =
{(Ri,θi, s∗i , g∗i)}. The local point cloud P ′ that represents the selected grasp
location is also stored in the database.

(4) Update the grasping policy. Using the data obtained from the new grasp
execution, we update the grasping policy and the database of the contact infor-
mation. This policy update is formulated as a contextual policy search problem,
which we describe in Section 3.4.

Our framework is summarized in Fig. 1. By repeating steps (1)-(4), the grasping policy
and the database of grasping motions and contact information improve through trial
and error. In the following sections, we describe the details of each step.

3.2. Finding Potential Grasp Locations

(a) (b) (c)

Figure 2. (a) and (b):Point cloud of object
with contact points. Blue points represent the
point cloud of the object P. Red points repre-
sent contact points. Green points represent the
neighbors of the contact points C. (c)Example
of the result of ICP. Blue, green, red, and yel-
low points represent a partial point cloud Pi

of a given object, the contact part Cj from the
dataset of successful grasps, the result of ICP
algorithm Hj

icpCj , and the estimated grasp part
Pgrasp, respectively.

Given a point cloud of a target ob-
ject, our framework firstly finds poten-
tial grasp locations, which are often re-
ferred to as “grasp affordances” [11]. For
this purpose, our framework constructs
a database of the contact information of
successful grasps through trial and er-
ror. This database of contact informa-
tion consists of local point clouds of con-
tact surface of each finger for success-
ful grasps. Given a point cloud of a tar-
get object, the system searches for lo-
cal regions that are similar to the con-
tact region stored in the successful grasp
database Dcontact. In this process, we use
the Iterative Closest Points (ICP) algo-
rithm [24], which finds a homogeneous
transformation Hicp that minimizes the
distance between two point clouds.

When a point cloud of a target object Ptarget is given, the system randomly samples
a subset of the point cloud of the target object Pi ⊂ Ptarget. Subsequently, ICP is
performed between Pi and each contact region in our dataset Cj ∈ Dcontact. ICP
returns the residual distance dicp between Pi and Cj . Using the result of ICP with the
smallest residual distance d∗icp, we can find the point cloud subset that is similar to the
contact region in the dataset. The point cloud of the potential contact region Pgrasp

can be estimated as a point cloud in the neighborhood of Hj∗

icpCj∗ from Ptarget. Fig. 2
shows examples of the contact regions in the dataset and the behavior of ICP. As our
experimental result show, this local search enables to find potential grasp locations
even if the given point cloud does not exactly fit with the samples in the database.
The process of estimating potential grasp locations is summarized in the Algorithm
1. Multiple potential grasp locations can be found by repeating this local search for
different subsets of Ptarget.

Separate datasets of successful grasps are maintained for different grasp types, and
this process is performed for each grasp type. Our method does not require the en-
tire point cloud of the target object because it searches for local features of the point
cloud. This property is useful for grasp planning in real systems in which complete

6

Algorithm 1 Finding potential grasp locations

Initialization: Store contact regions in M successful grasps Dcontact = {C1, . . . , CM}
Input: number of the grasp candidates N , point cloud of the target object Ptarget

for i = 1 : N do
Randomly choose a subset of the point cloud of the new object Pi ⊂ Ptarget

for j = 1 : M do
Perform ICP algorithm between Pi and Cj ∈ Dcontact.

[djicp, H
j
icp] = ICP(Pi, Cj)

end for
Compute j∗ = argminj d

j
icp

Find a point cloud P igrasp in the neighborhood of Hj∗

icpCj∗ from Ptarget

Compute the features of the estimated contact region, P igrasp 7→ si
end for

point clouds of objects are not available. The database of the successful grasps is ini-
tialized with demonstrated grasps and updated through trial and error in our frame-
work. Therefore, the performance of finding potential grasp locations also improves
autonomously.

In order to obtain a concise description of the local point cloud Pgrasp at the es-
timated grasp location, we compute the center of the contact points and the normal
vector at the center of the contact points for each finger as

s> = [x1
center,n

1
center, . . . ,x

F
center,n

F
center], (9)

where xicenter is the center of the contact region of the ith finger, nicenter is the normal
vector at the center of the contact region of the ith finger, and F is the number of
fingers of the hand. This local description of contact points s is used as a context
for contextual policy search of the lower-level policies πgl . Although we used this local
description of point clouds, our method is not limited to a specific description. Other
descriptions of point clouds such as principal curvatures [25] can be also used in our
framework.

3.3. Learning to Select the Grasp Type and the Grasp Location

In our framework, the goal of the upper-level policy is to learn how to select the optimal
grasp type and grasp location for a given object. For this purpose, we consider the
upper-level policy given by

πu : [s∗, g∗] = arg max
s∈S,πl∈G

U(s, g),

where U(s, g) is the objective function. For grasp selection, we must consider the
trade-off between gaining more information and maximizing the expected quality of
the grasp. We can interpret the selection of the grasp type and grasp location as
a variant of contextual bandit problem in which the context is given by a target
object [26]. Therefore, we use an acquisition function based on upper confidence bounds
(UCB) [27], which has been shown to perform well in practice. The learner selects the

7

grasp type and location by maximizing the objective function

U(s, g) = E[R∗|πgl , s] + βσR(πgl , s
g), (10)

where πgl = πl(θ|s, g), σR is the variance of predicting E[R∗|πgl , s] and β is a positive
constant that controls the exploration-exploitation trade-off, τ is the trajectory to
reach the grasp position.

For evaluating the expected grasp quality E[R|πgl , s], we approximate the grasp

quality R of the gth grasp type with a GP as a function of the grasp motion parameters
θ and the grasp location features s, i.e.,

R(θ, s) ∼ GPg
(
m (z) , k

(
z, z′

))
(11)

where z = [θ, s]>. We use a squared exponential covariance function

k (zi, zj) = σ2
f exp

(
−‖zi − zj‖

2

2l2

)
+ σ2

nδzizj
, (12)

where l is the bandwidth of the kernel, σ2
f is the function variance and σ2

n is the

noise variance. The hyperparameters of GP models [σ2
f , l, σ

2
n] are optimized after every

rollout by maximizing the marginal log likelihood [28]. Assuming zero mean prior, i.e.,
m(z) = 0, the joint distribution of the quality measure R1:N of the training set and
the quality measure of a test data point R∗ is Gaussian, i.e.,[

Rg
1:N
R∗

]
∼ N

(
0,

[
Kg kg

k>g k(z∗, z∗)

])
(13)

where Kg is the Gram matrix and Rg
1:N is a column vector that contains returns of

rollouts of the gth grasp type as Rg
1:N = [Rg1, · · · , R

g
N]>. In our framework, we employ

a stochastic policy for generating the grasp motion parameters, which is represented
by a Guassian distribution πgl (θ|s) ∼ N (µg(s),Σg(s)). In order to estimate E[R|πgl , s]
using GPs, we can assume that a query data point z∗ for the GP is drawn from a
Gaussian distribution

z∗ ∼ N (µz∗ ,Σz∗) where µz =

[
µg(s)
s

]
,Σz =

[
Σg(s) 0

0 0

]
. (14)

Strictly speaking, this Gaussian distribution is singular. To estimate the expected
return for grasp type g when given a context s, we need to compute the integral over
z∗, i.e.,

p(R∗|µz∗ ,Σz∗) =

∫
p(R∗|z,D)p(z∗)dz∗, (15)

where D represents the dataset of motion parameters, contexts, and resulting returns.
The studies in [29–31] show that this marginal distribution can be approximated by a

8

Algorithm 2 Learning Multiple Grasp Types

Input: point cloud of the object Ptarget, number of grasp location candidates N ,
number of grasp types G

Initialization: Initialize policies and GP models based on demonstrations
repeat

for g = 1 : G do
Find grasp location candidates Ptarget 7→ {P1

grasp, . . . ,PNgrasp}
Compute feature vectors of grasp location candidates Sg = {sg1, . . . , s

g
N}

for every grasp location candidate sg ∈ Sg do
Compute E[R∗|πgl , s

g] and σ(πgl , s
g) using (16) and (17)

end for
end for
Select the grasp type and location using the acquisition function in (10)
Execute grasp with the grasp parameter θ ∼ πl(θ|s∗, g∗)
Update the GP model for the g∗th grasp type
Update the policy for the g∗th grasp type with a policy search method

until grasping learned

Gaussian distribution with mean µR and variance σR

µR = E[R∗|πgl , s
g] = q>β (16)

σR = kg (z∗, z∗)− k>gK−1
g kg + Tr

[
K−1

g (kgk
>
g −Q)

]
+ Tr

[
ββ>(Q− qq>)

]
(17)

where β = K−1
g R

g, and the vector q and the matrix Q are given by

qj =
exp

(
− 1

2 (µz∗ − zj)>(Λ + Σz∗)−1(µz∗ − zj)
)

|Σz∗Λ−1 + I|1/2
, (18)

Qij =
exp

(
− 1

2

[
(µz∗ − zd)>(Λ

2 + Σz∗)−1(µz∗ − zd) + (zi − zj)>(2Λ)(zi − zj)
])

|2Σz∗Λ−1 + I|1/2
, (19)

where zd = 1
2(zi + zj), and Λ is a diagonal matrix with Λ = l2I. We learn this GP

model for each grasp type. The learned GP models are used to evaluate the use of the
lower-level policy πl with the grasp location described by s.

3.4. Learning the Policy for the Desired Grasp Type

In order to learn the lower-level policies πl(θ|s, g) that generate the grasping motion
parameter vector θ for a given context, we use the episodic version of the contextual
relative entropy policy search (REPS) algorithm [14,20]. In policy search, a policy is
updated in order to maximize the expected return. However, if the “difference” between
the old and updated policies in the policy update step is too large, the exploration in
the policy space can be unstable. To address this issue, REPS constrains the differences
between the updated and old policies. Policy search without this property might end
up with a policy very different from the initial policy, which is not preferable because
the resulting behavior is not predictable. In our framework, each lower-level policy is
initialized by human demonstrations, and REPS finds a locally optimal policy that is
associated with the grasp type indicated by human demonstrations.

9

REPS employs the KL divergence to quantify the difference between the updated
and old policies in its policy update. The policy update using contextual REPS is
formulated as a constraint optimization problem,

max
π

∫
µs(s)

∫
π(θ|s)R(θ, s)dθds (20)

s.t. ε ≥
∫
µs(s)KL (π(θ|s)||q(θ|s)) ds, 1 =

∫
π(θ|s)ds, (21)

For details, please refer to the original study and its extensions [20,32]. Contextual
REPS models a policy as a Gaussian distribution

π(θ|s) = N (φ(s)>w,Σθ)

with a mean vector µθ = φ(s)>w that is linear in the context features φ(s). Since
robotic grasping is a complex task, we require a policy that is non-linear in the original
context s. Therefore, we use a squared exponential feature, which is defined by M
context samples sf randomly selected from our dataset, i.e., the ith dimension of φ is
given by

φi(s) = exp

(
−1

2

(
sfi − s

)>
Λφ

(
sfi − s

))
, (22)

where Λφ is a diagonal matrix that defines the bandwidth for each element of the
context vector s. This nonlinear feature function φ(s) allows us to learn a policy that
is nonlinear to the original context.

3.5. Extension with Additional Metrics for Grasp Selection

In practice, we can often analytically evaluate a metric of the motion quality before
the actual execution. For example, methods for analytically computing the cost of
colliding with objects have been developed in the field of trajectory optimization [33,
34]. Although we can learn and estimate the expected return for selecting the grasp
type and grasp location using the method described in Section 3.3, we can reduce
the learning costs by incorporating such an analytically computable metric. In our
framework, we can incorporate additional metrics for the grasp selection by extending
the objective function in (10) as

Ucol(s, g) = E[R∗|πgl , s] + βσR(πgl , s
g)− cadd(τ), (23)

where cadd(τ) is the additional cost which we would like to incorporate.
In this work, we employed the cost of colliding with objects cobs(τ) proposed in [34]

as cadd(τ) = cobs(τ). We denote by u the index of the body point and by xu(t) the
position of the body point u in task space at time t. The obstacle cost cobs(τ) can be
computed as

cobs(τ) =
1

2

∫ 1

0

∫
B
c (xu(t))

∥∥∥∥ ddtxu(t)

∥∥∥∥ du dt, (24)

10

where B is a set of body points which comprise the robot body, and the local collision
cost function c(xu) is defined as

c(xu) =

0, if d(xu) > ε,

1
2ε(d(xu)− ε)2, if 0 < d(xu) < ε,
d(xu) + 1

2ε, if d(xu) < 0,
(25)

where ε is a constant that scales the margin, and d(xu) represents a signed distance
between the body point u and the nearest obstacle. d(xu) is negative when the body
point is inside obstacles, and zero at the boundary. By considering the collision cost,
we can select a grasp location which has less risk of colliding with objects in a given
environment. Although we employed the collision cost as the additional metric in our
experiments, other metric can be used when available.

4. Experimental Results

We evaluated the performance of our grasp learning framework in simulation and on
a real robot platform using rigid and deformable objects.

4.1. Simulations

1 2 3 4 5 6

Figure 3. Objects used to learn multiple grasp
types: objects 1 and 2 were used for precision
grasps, objects 3 and 4 were used for power
grasps, and objects 5 and 6 were used for
medium-wrap grasps.

We first evaluate the learning perfor-
mance of our framework in simulation.
The system learned three grasp types
with a five-finger hand: precision grasp,
power grasp, and medium wrap [7]. In
order to initialize the grasping policy,
a human operator specified the control
parameters to demonstrate each grasp
type. For each grasp type, 12 demonstra-
tions were used to initialize the policy. After initializing the grasping policy,the system
learned to generalize the control parameters for given objects in different positions.
During the learning phase, point clouds of objects were provided to the system, and
the system autonomously chose the grasp type and location and executed the grasp
using the motion parameters θ. The grasping policy was updated after every grasp
execution. We used the model of KUKA Light Weight Robot and DLR/HIT II Hand
as a robotic manipulator in the simulation.

The motion parameter θ of the lower-level policies was defined as

θ = [xgrasp,xvia, qgrasp], (26)

where xgrasp is the grasp position of the end-effector in task space, xvia is the via point
of the end-effector in task space, and qgrasp is a quaternion that represents the orien-
tation of the end-effector in the grasp position. The finger configuration was initialized
using the human demonstration, and was not included in the motion parameter for
the learning phase. We used the contact information of the thumb and index finger of
the hand as a context s. Therefore, the context vector s had 12 dimensions.

The grasp quality R for each rollout is computed based on the force-closure condition

11

(a)

0 100 200 300 400
Number of rollouts

0

25

50

75

100

G
ra

sp
 s

uc
ce

ss
 r

at
e

[%
]

REPS+UCB
REPS+EPS
RWR+UCB
RWR+EPS

(b)

0 100 200 300 400
Number of rollouts

-1

0

1

2

3

4

5

E
rr

or
 o

f
re

tu
rn

 e
st

im
at

io
n

(c)

Figure 4. Performance in simulation. (a) Grasps performed in simulation. (b) Improvement
in grasp success rate. (c) Improvement in grasp quality estimation.

and L1 grasp quality measure [35–37] as

R = c1Q+ c2δFC, (27)

where Q is the L1 grasp quality measure, and δFC is equal to 1 when the grasp is force-
closure and is equal to zero otherwise. The variables c1 and c2 are positive constants.

We compared Reward-Weighted-Regression (RWR) algorithm [38] with REPS in
learning lower-level policies in the proposed framework. RWR is a policy search method
that performs well for real robot tasks, however, it does not constrain the KL diver-
gence in the policy update. Therefore, a comparison between REPS and RWR indicates
how the KL bound in the policy update influences the proposed framework. With re-
gard to the upper-level policy, we compared ε-greedy policy with UCB [21]. We set
ε = 0.05 for the ε-greedy policy. We used six objects shown in Fig. 3. Objects 1 and 2
were used to demonstrate precision grasps, objects 3 and 4 were used to demonstrate
power grasps, and objects 5 and 6 were used to demonstrate medium-wrap grasps.
In the learning phase, test objects were randomly selected from these objects. These
objects were designed such that the system can grasp them with only one of the three
grasp types. Therefore, it was expected that grasping fails when the system chose the
wrong grasp type.

Simulation results show that our method is able to learn and improve policies for
multiple grasp types through trial and error. Fig. 4(a) shows grasps performed in sim-
ulation. The collision cost is not used in the upper-level policy in the results shown
in Fig. 4. The grasp success rate improved through trials from 67.5% at the begin-
ning to 94.1% after 400 trials of grasping (Fig. 4(b)). In addition, the estimation
of the grasp quality with GPs improved through trials as shown in Fig. 4(c). The
comparison between REPS and RWR shows that the KL bound in the policy up-
date leads to better solutions. The differences between REPS+UCB and RWR+UCB
and between REPS+EPS and RWR+EPS are statistically significant at the 5% level.
The comparison between UCB and the ε-greedy implied that UCB can deal with
the exploration-exploitation trade-off better than the ε-greedy policy in the proposed
framework, although the differences between RWR+UCB and RWR+EPS and be-
tween REPS+UCB and REPS+EPS were not statistically significant.

The effect of the collision cost embedded in the upper-level policy is shown in Fig. 5.
By using the collision cost in the upper-level policy, the system achieved a success rate
of 98.0% while a success rate was 94.1% without the collision cost. If the collision cost
is not explicitly used in the upper-level policy, the system needs to implicitly learn the

12

0 100 200 300 400
Number of rollouts

0

25

50

75

100

G
ra

sp
 s

uc
ce

ss
 r

at
e

[%
]

REPS+UCB+COLL
REPS+EPS+COLL
REPS+UCB
REPS+EPS

(a)

0 100 200 300 400
Number of rollouts

-1

0

1

2

3

4

5

E
rr

or
 o

f
re

tu
rn

 e
st

im
at

io
n

(b)

Figure 5. The effect of the collision cost. The performance of the system using the collision
cost is shown by ”REPS+UCB+COLL” and ”REPS+EPS+COLL”. (a) Improvement in grasp
success rate. (b) Improvement in grasp quality estimation. By using the collision cost in the
upper-level policy, a higher success rate can be achieved.

1 2 3 4 5 6 7 8 9 10

Figure 7. Objects used in the experiment. We used a set of objects such that multiple grasp types were

necessary to grasp them.

effect of collisions, which results in slower learning.

4.2. Transfer to a Real Robot with Unseen Objects

Perform ICP with contact parts in

a successful grasp in the dataset

Estimate a potential

grasping part
Point clouds from Kinect

Figure 6. Examples of the process of finding local fea-
tures that are similar to stored successful grasps. In

the middle figures, the green dots represent the con-
tact part in the dataset of successful grasps, and the

red dots represent the result of ICP. In the right figures,
the green dots represent the estimated contact region of

the thumb, and the orange dots represent the estimated
contact region of the index finger.

We tested whether our learned model
can be transferred to a real robotic sys-
tem. The grasping policy was learned
through 400 grasp executions in the sim-
ulation described in Section 4.1. We used
10 different objects as shown in Fig. 7
for the real robot evaluation. For each
object, grasps were tested five times by
changing the object position and orien-
tation. KUKA Light Weight Robot and
DLR/HIT II Hand were used for this
experiment. The arm and fingers of the
robot were controlled using impedance
control.

Table 1. Performance of grasping rigid objects with a real robotic system. The object numbers correspond to

the numbers in Fig. 8. The grasping policy learned in simulation was successfully transfered to a real robotic

system.

Obj. No. 1 2 3 4 5 6 7 8 9 10 Avg.
Success rate 5/5 4/5 5/5 5/5 5/5 5/5 4/5 5/5 4/5 3/5 90.0 %

13

1 2 3 4 5 6 7 8 9 10

Figure 8. Grasps performed in the experiment. The robot chose the appropriate grasp types and successfully
executed the grasps using the given point clouds.

Figure 9. The deformable object used in the experiment. Left: A picture of the slippery and deformable

plastic bag of cables used in the experiment in Section 4.3. Middle and right: A point cloud of the object from

two different points of view. The point clouds were captured from a single fixed point of view using a Kinect
sensor. As shown in the right figure, the backside of the object is not visible.

The results of the experiment are sum-
marized in Table 1. The success rate
was 90%, and the performed grasps are
shown in Figure 8. Figure 6 shows the
process for finding potential grasping regions. As shown, the potential grasp locations
were estimated with partial point clouds of given objects, and the system estimated
the contact location for each finger. In addition, as shown in Figures 3 and 7, the
shapes of the objects are different from ones used in simulations. Hence, these results
show that the our approach can work well with partial point clouds of unseen objects
in a real robotic system.

4.3. Grasp Refinement for Deformable Objects using Human Evaluation

When grasping a slippery and deformable object, collision between the hand and the
object is often negligible, while collision is problematic when grasping a rigid object.
On the other hand, the object needs to be grasped firmly such that the object is held
stably in the hand. Therefore, grasping deformable objects often requires a grasping
strategy different from the one for rigid objects.

In this experiment, we trained a grasping policy in simulation using rigid objects
and subsequently fine-tuned using a real robot and a deformable object. We used a
slippery and deformable plastic bag of cables, which is shown in Figure 9, as a target
object. In the additional training using a real robot, we used a binary return based on
the evaluation from a human operator instead of analytically computing a grasping
quality. The force closure condition is hard to compute in a real robotic system since it
is challenging to measure the contact position and the contact force. When the human
operator considered a given grasp successful, a constant positive value was given as a
return to the system. Otherwise, the return given to the system was zero.

The experimental results show that our grasping system can learn a policy for grasp-

14

Slipping

Grasping firmly

(a)

0-10 11-20 21-30 31-40 41-50

G
ra

sp
 s

uc
ce

ss
 r

at
e

[%
]

0

20

40

60

80

100

(b)

Figure 10. Results of grasping a deformable object. The left figure in (a) shows the result of the fourth trial,

and the right figure in (a) shows the result of the 30th trial. After learning with a real robot, the deformable

object was grasped firmly.

ing a deformable object through trial and error using human evaluations. Figure 10
illustrates our results. In the beginning of learning, the system planned to grasp the
top of the object, which would be a good solution for a rigid object. As a result, the
object often slipped from the robot hand. After additional training with a real robot,
the system learned to firmly grasp the center of the object as shown in Figure 10(a).
Although the robot hand occasionally collided with the object when approaching, the
deformable object could still be grasped due to the compliance of the object. The
grasp success rate improved from 40% in the first 10 trials to 80% in after 30 trials as
shown in Figure 10(b).

5. Discussion

Our approach locally explores the action-state space using REPS, although explo-
ration of the entire action-state space is infeasible. This local exploration makes grasp
learning tractable and stable. Since our framework is not limited to specific policy
search methods, we can also use recent policy search methods such as [39,40], which
have the constraint of the KL divergence in the policy update as in REPS.

In hierarchical policy search, learning the upper-level and lower-level policies simul-
taneously is not trivial in many cases since the behaviors of policies in different layers
often influence each other. For instance, the method in [15] learns the state value
function V (s) for selecting the context. Since the true value of V (s) is dependent on
πl(θ|s), the estimate of V (s) needs to be updated when the lower-level policy πl(θ|s)
is updated. On the contrary, we approximate the return function R(θ, s), which is
independent of the lower-level policies πl(θ|s). The estimation of the return function
using GPs steadily improves as the system increases the number of data samples.
Using GPs, we can analytically approximate the expected return for each lower-level
policy and potential grasp locations. When the upper-level policy has learned to select
a grasp type for a given context, the rest of the process is a standard policy search
problem since each lower-level policy is learned independently in our framework. Thus,
the policy updates of the lower-level policies are expected to be stable. Although the
independence of lower-level policies simplifies the problem, such learning does not ex-
ploit the data obtained from different grasp types. Transferring the policies between
different grasp types may lead to a more efficient learning method in future work. In
addition, the number of the grasp types needs to be specified in our framework. Re-

15

cent studies on hierarchical reinforcement learning [19,41] have proposed methods for
automatically optimizing the number of lower-level policies. Automatic identification
of the necessary grasp types is also interesting research direction.

With regard to finding grasp affordances, although we used the method described
in Section 3.2 to find potential grasp parts in point clouds, our hierarchical learning
algorithm is not limited to specific methods for finding grasp affordances. Therefore,
the alternative methods such as [11,13] can also be used to find grasp affordances.

Experimental results show that our framework can learn multiple grasp types and
a policy to select them according to the given objects. However, it is often necessary
to select the grasp type and location on the basis of additional factors, such as hu-
man preferences and the tasks planned to be performed after grasping. Although we
computed the return function based on the grasp stability in this study, our frame-
work can be easily extended to other grasp quality metrics. For example, learning the
return function from human relative feedback using a GP in [42,43] can also be used.
In future work, such additional factors for the selection of grasp types and locations
should be considered.

6. Conclusions

We presented an hierarchical reinforcement learning algorithm for learning multiple
grasping strategies. In our framework, the lower-level policies learn to plan grasping
motions corresponding to individual grasp types, and the upper-level policy learns
to select the grasp type and grasp location. Our system autonomously constructs
a database of grasping motions and corresponding objects and learns the grasping
policy through trial and error. The developed system was tested with both simu-
lation and a real robotic system. The experimental results show that our approach
can autonomously learn multiple grasp types and that the grasping policy learned in
simulation can be successfully transferred to a real robotic system. In addition, the
grasping policy trained for rigid objects in simulation can be refined to a deformable
object through trial and error using a real robot. In future work, we will extend our
framework by combining the approach of learning from human preference.

Acknowledgement

This work has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement #645582 (RoMaNS). T. Osa was
supported by JSPS KAKENHI 17H00757.

References

[1] Bicchi A, Kumar V. Robotic grasping and contact: a review. In: IEEE International
Conference on Robotics and Automation (ICRA); 2000. p. 348–353.

[2] Bohg J, Morales A, Asfour T, et al. Data-driven grasp synthesis- a survey. IEEE Trans-
actions on Robotics. 2014 April;30(2):289–309.

[3] Goldfeder C, Allen PK. Data-driven grasping. Autonomous Robots. 2011;31:1–20.
[4] Fischinger D, Weiss A, Vincze M. Learning grasps with topographic features. International

Journal of Robotics Research. 2015;.

16

[5] Pinto L, Gupta A. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In: IEEE International Conference on Robotics and Automation (ICRA);
2016.

[6] Levine S, Pastor P, Krizhevsky A, et al. Learning hand-eye coordination for robotic grasp-
ing with deep learning and large-scale data collection. In: Proceedings of International
Symposium on Experimental Robotics (ISER); 2016.

[7] Cutkosky MR, Howe RD. Human grasp choice and robotic grasp analysis. In: Venkatara-
man ST, Iberall T, editors. Dextrous robot hands. Springer-Verlag New York, Inc.; 1990.
p. 5–31.

[8] Osa T, Peters J, Neumann G. Experiments with hierarchical reinforcement learning of
multiple grasping policies. In: Proceedings of the International Symposium on Experi-
mental Robotics (ISER); 2016.

[9] Kopicki M, Detry R, Adjigble M, et al. One-shot learning and generation of dexterous
grasps for novel objects. International Journal of Robotics Research. 2015;35(8):959 – 976.

[10] Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps. International Journal
of Robotics Research. 2015;34(4-5):705 – 724.

[11] Ten Pas A, Platt R. Localizing handle-like grasp affordances in 3d point clouds. In: Int’l
Symposium on Experimental Robotics (ISER); 2014.

[12] Gualtieri M, Ten Pas A, Saenko K, et al. Using geometry to detect grasp poses in 3d
point clouds. In: Int’l Symposium on Robotics Research (ISRR); 2015.

[13] ten Pas A, Gualtieri M, Saenko K, et al. Grasp pose detection in point clouds. The
International Journal of Robotics Research. 2017;36(13-14):1455 – 1473.

[14] Deisenroth MP, Neumann G, Peters J. A survey on policy search for robotics. Foundations
and Trends in Robotics. 2013;2(1-2):1–142.

[15] Fabisch A, Metzen JH. Active contextual policy search. Journal of Machine Learning
Research. 2014;15:3371–3399.

[16] Bacon PL, Harb J, Precup D. The option-critic architecture. In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI); 2017.

[17] Florensa C, Duan Y, Abbeel P. Stochastic neural networks for hierarchical reinforcement
learning. In: Proceedings of the International Conference on Learning Representations
(ICLR); 2017.

[18] Vezhnevets AS, Osindero S, Schaul T, et al. FeUdal networks for hierarchical reinforce-
ment learning. In: Proceedings of the International Conference on Machine Learning
(ICML); 2017.

[19] Daniel C, Neumann G, Kroemer O, et al. Hierarchical relative entropy policy search.
Journal of Machine Learning Research. 2016;17:1–50.

[20] Peters J, Muelling K, Altun Y. Relative entropy policy search. In: AAAI Conference on
Artificial Intelligence (AAAI); 2010.

[21] Sutton R, Barto A. Reinforcement learning: An introduction. The MIT Press; 1998.
[22] Dietterich TG. Hierarchical reinforcement learning with the MAXQ value function de-

composition. Journal of Artificial Intelligence Research. 2000;13:227–303.
[23] Kroemer O, Detry R, Piater J, et al. Combining active learning and reactive control for

robot grasping. Robotics and Autonomous Systems. 2010;(9):1105–1116.
[24] Besl PJ, McKay ND. A method for registration of 3-d shapes. IEEE Transactions on

Pattern Analysis and Machine Intelligence. 1992 Feb;14(2):239–256.
[25] Spivak M. A comprehensive introduction to differential geometry, volume 1. Brandeis

University; 1970.
[26] Auer P, Cesa-Bianchi N, Fischer P. Finite-time analysis of the multiarmed bandit problem.

Machine Learning. 2002;47(2):235–256.
[27] Auer P. Using confidence bounds for exploitation-exploration trade-offs. J Mach Learn

Res. 2003 Mar;3:397–422.
[28] Rasmussen CE, Williams CKI. Gaussian processes for machine learning (adaptive com-

putation and machine learning). The MIT Press; 2005.
[29] Girard A, Rasmussen CE, Candela JQ, et al. Gaussian process priors with uncertain

17

inputs – application to multiple-step ahead time series forecasting. In: Advances in Neural
Information Processing Systems; 2002.

[30] Candela JQ, Girard A. Prediction at an uncertain input for gaussian processes and rele-
vance vector machines – application to multiple-step ahead time-series forecasting. Danish
Technical University; 2002.

[31] Deisenroth MP. Efficient reinforcement learning using gaussian processes Phd thesis; 2010.
[32] Kupcsik A, Deisenroth MP, Peters J, et al. Model-based contextual policy search for

data-efficient generalization of robot skills. Artificial Intelligence. 2014;.
[33] Kalakrishnan M, Chitta S, Theodorou E, et al. Stomp: Stochastic trajectory optimization

for motion planning. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA); May; 2011. p. 4569–4574.

[34] Zucker M, Ratliff N, Dragan A, et al. Chomp: Covariant hamiltonian optimization for
motion planning. The International Journal of Robotics Research. 2013;32:1164–1193.

[35] Murray RM, Sastry SS, Zexiang L. A mathematical introduction to robotic manipulation.
1st ed. Boca Raton, FL, USA: CRC Press, Inc.; 1994.

[36] Ferrari C, Canny J. Planning optimal grasps. In: IEEE International Conference on
Robotics and Automation (ICRA); May; 1992. p. 2290–2295 vol.3.

[37] Pokorny F, Kragic D. Classical grasp quality evaluation: New algorithms and theory.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Nov;
2013. p. 3493–3500.

[38] Peters J, Schaal S. Reinforcement learning by reward-weighted regression for operational
space control. In: International Conference on Machine Learning (ICML); 2007.

[39] Schulman J, Levine S, Moritz P, et al. Trust region policy optimization. In: the Proceed-
ings of the International Conference on Machine Learning (ICML); 2015.

[40] Akrour R, Abdolmaleki A, Abdulsamad H, et al. Model-free trajectory optimization for
reinforcement learning. In: Proceedings of the International Conference on Machine Learn-
ing (ICML); 2016.

[41] Osa T, Sugiyama M. Hierarchical policy search via return-weighted density estimation.
In: Proceedings of the AAAI conference on Artificial Intelligence (AAAI); 2018.

[42] Daniel C, Kroemer O, Viering M, et al. Active reward learning with a novel acquisition
function. Autonomous Robots. 2015;39(3):389–405.

[43] Kupcsik A, Hsu D, Lee W. Learning dynamic robot-to-human object handover from hu-
man feedback. In: Proceedings of International Symposium on Robotics Research (ISRR);
2016.

18

