138 research outputs found

    Mat\'ern Gaussian Processes on Graphs

    Full text link
    Gaussian processes are a versatile framework for learning unknown functions in a manner that permits one to utilize prior information about their properties. Although many different Gaussian process models are readily available when the input space is Euclidean, the choice is much more limited for Gaussian processes whose input space is an undirected graph. In this work, we leverage the stochastic partial differential equation characterization of Mat\'ern Gaussian processes - a widely-used model class in the Euclidean setting - to study their analog for undirected graphs. We show that the resulting Gaussian processes inherit various attractive properties of their Euclidean and Riemannian analogs and provide techniques that allow them to be trained using standard methods, such as inducing points. This enables graph Mat\'ern Gaussian processes to be employed in mini-batch and non-conjugate settings, thereby making them more accessible to practitioners and easier to deploy within larger learning frameworks

    Overcoming mean-field approximations in recurrent Gaussian process models

    Get PDF
    We identify a new variational inference scheme for dynamical systems whose transition function is modelled by a Gaussian process. Inference in this setting has either employed computationally intensive MCMC methods, or relied on factorisations of the variational posterior. As we demonstrate in our experiments, the factorisation between latent system states and transition function can lead to a miscalibrated posterior and to learning unnecessarily large noise terms. We eliminate this factorisation by explicitly modelling the dependence between state trajectories and the Gaussian process posterior. Samples of the latent states can then be tractably generated by conditioning on this representation. The method we obtain (VCDT: variationally coupled dynamics and trajectories) gives better predictive performance and more calibrated estimates of the transition function, yet maintains the same time and space complexities as mean-field methods. Code is available at: g i t h u b . c o m / i a l o n g / G P t

    Ultra-fast Deep Mixtures of Gaussian Process Experts

    Full text link
    Mixtures of experts have become an indispensable tool for flexible modelling in a supervised learning context, and sparse Gaussian processes (GP) have shown promise as a leading candidate for the experts in such models. In the present article, we propose to design the gating network for selecting the experts from such mixtures of sparse GPs using a deep neural network (DNN). This combination provides a flexible, robust, and efficient model which is able to significantly outperform competing models. We furthermore consider efficient approaches to computing maximum a posteriori (MAP) estimators of these models by iteratively maximizing the distribution of experts given allocations and allocations given experts. We also show that a recently introduced method called Cluster-Classify-Regress (CCR) is capable of providing a good approximation of the optimal solution extremely quickly. This approximation can then be further refined with the iterative algorithm

    Pathwise Conditioning of Gaussian Processes

    Get PDF
    As Gaussian processes are used to answer increasingly complex questions, analytic solutions become scarcer and scarcer. Monte Carlo methods act as a convenient bridge for connecting intractable mathematical expressions with actionable estimates via sampling. Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations. This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector. These methods are prohibitively expensive in cases where we would, ideally, like to draw high-dimensional vectors or even continuous sample paths. In this work, we investigate a different line of reasoning: rather than focusing on distributions, we articulate Gaussian conditionals at the level of random variables. We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors. Starting from first principles, we derive these methods and analyze the approximation errors they introduce. We, then, ground these results by exploring the practical implications of pathwise conditioning in various applied settings, such as global optimization and reinforcement learning

    Spatio-temporal variational Gaussian processes

    Get PDF
    We introduce a scalable approach to Gaussian process inference that combines spatio-temporal filtering with natural gradient variational inference, resulting in a non-conjugate GP method for multivariate data that scales linearly with respect to time. Our natural gradient approach enables application of parallel filtering and smoothing, further reducing the temporal span complexity to be logarithmic in the number of time steps. We derive a sparse approximation that constructs a state-space model over a reduced set of spatial inducing points, and show that for separable Markov kernels the full and sparse cases exactly recover the standard variational GP, whilst exhibiting favourable computational properties. To further improve the spatial scaling we propose a mean-field assumption of independence between spatial locations which, when coupled with sparsity and parallelisation, leads to an efficient and accurate method for large spatio-temporal problems

    Approximate inference methods in probabilistic machine learning and Bayesian statistics

    Get PDF
    This thesis develops new methods for efficient approximate inference in probabilistic models. Such models are routinely used in different fields, yet they remain computationally challenging as they involve high-dimensional integrals. We propose different approximate inference approaches addressing some challenges in probabilistic machine learning and Bayesian statistics. First, we present a Bayesian framework for genome-wide inference of DNA methylation levels and devise an efficient particle filtering and smoothing algorithm that can be used to identify differentially methylated regions between case and control groups. Second, we present a scalable inference approach for state space models by combining variational methods with sequential Monte Carlo sampling. The method is applied to self-exciting point process models that allow for flexible dynamics in the latent intensity function. Third, a new variational density motivated by copulas is developed. This new variational family can be beneficial compared with Gaussian approximations, as illustrated on examples with Bayesian neural networks. Lastly, we make some progress in a gradient-based adaptation of Hamiltonian Monte Carlo samplers by maximizing an approximation of the proposal entropy

    Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees

    Full text link
    Gaussian processes are frequently deployed as part of larger machine learning and decision-making systems, for instance in geospatial modeling, Bayesian optimization, or in latent Gaussian models. Within a system, the Gaussian process model needs to perform in a stable and reliable manner to ensure it interacts correctly with other parts of the system. In this work, we study the numerical stability of scalable sparse approximations based on inducing points. To do so, we first review numerical stability, and illustrate typical situations in which Gaussian process models can be unstable. Building on stability theory originally developed in the interpolation literature, we derive sufficient and in certain cases necessary conditions on the inducing points for the computations performed to be numerically stable. For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions. This is done via a modification of the cover tree data structure, which is of independent interest. We additionally propose an alternative sparse approximation for regression with a Gaussian likelihood which trades off a small amount of performance to further improve stability. We provide illustrative examples showing the relationship between stability of calculations and predictive performance of inducing point methods on spatial tasks
    corecore