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Abstract

This thesis develops new methods for efficient approximate inference in probabilistic

models. Such models are routinely used in different fields, yet they remain computa-

tionally challenging as they involve high-dimensional integrals. We propose different

approximate inference approaches addressing some challenges in probabilistic machine

learning and Bayesian statistics. First, we present a Bayesian framework for genome-

wide inference of DNA methylation levels and devise an efficient particle filtering and

smoothing algorithm that can be used to identify differentially methylated regions

between case and control groups. Second, we present a scalable inference approach

for state space models by combining variational methods with sequential Monte Carlo

sampling. The method is applied to self-exciting point process models that allow for

flexible dynamics in the latent intensity function. Third, a new variational density

motivated by copulas is developed. This new variational family can be beneficial

compared with Gaussian approximations, as illustrated on examples with Bayesian

neural networks. Lastly, we make some progress in a gradient-based adaptation of

Hamiltonian Monte Carlo samplers by maximizing an approximation of the proposal

entropy.



Impact Statement

The work in this thesis is to some degree methodological in nature and addresses

inferences in probabilistic models so that any potential broader impact will be derived

in fields where such methods are already employed. A significant part of this work has

focused on state space models, which are routinely used in different disciplines such

as epidemiology, genomics, finance, reinforcement learning and speech recognition.

DNA methylation is an important epigenetic mark that has been studied ex-

tensively for its regulatory role in biological processes and diseases. Whole genome

bisulfite sequencing (WGBS) allows for genome-wide measurements of methylation

up to single-base resolution, yet poses challenges to identify significantly different

methylation patterns across distinct biological conditions. Using novel inferences

approaches developed in this thesis, differentially methylated positions for different

phenotypes can be detected. The identification of differentially methylated genomic

regions can constitute a valuable contribution for life scientists that can be followed-up

with further analyses.

Research presented in this work can be seen as a bridge between various commu-

nities of statistics and machine learning. Tools from different communities have been

considered and the developed methods can be useful for practitioners depending on

their requirements in terms of accuracy and computational costs.
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Chapter 1

Introduction

1.1 Motivation

Probabilistic (or statistical) machine learning aims to infer plausible models to explain

observed data, thereby using probability theory to represent uncertainties (Ghahra-

mani, 2015). Bayesian machine learning allows for transforming prior probability

distributions into posterior distributions after observing data and is used routinely in

scientific data analysis and artificial intelligence. However, such an approach is compu-

tationally challenging as it involves a Bayesian model average, i.e. a marginalisation

or integration of all variables that are not of direct interest. Since these computations

cannot be performed exactly for most models, approximate inference methods such as

Markov Chain Monte Carlo (MCMC), Sequential Monte Carlo (SMC) or variational

inference are therefore commonly used instead. Although MCMC methods such as the

Metropolis-Hastings algorithm (Hastings, 1970) are often considered a gold standard

for Bayesian inference, the computational cost of applying such methods are generally

prohibitive for large data sets, as each iteration requires a sweep of all the data points,

but see for instance (Bardenet et al., 2017; Johndrow et al., 2020) for discussions on

subsampling-based approaches with control variates. Furthermore, MCMC methods

with a random walk proposal can be very slow to converge for models with many

parameters. In contrast, proposals that use some gradient information can be more

efficient, albeit automated tuning of such methods has been an ongoing challenge.

Variational methods (Jordan et al., 1999) can lead to a computationally cheaper

approximation for big data applications that can have frequentist constistency guaran-

tees as the number of observations goes to infinity (Wang and Blei, 2019; Knoblauch

et al., 2019), although such methods tend to exhibit some bias that is often not well
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understood for a finite number of observations. There has been much research effort

trying to combine efficiency and accuracy for Bayesian inference, particularly for

high-dimensional models that arise for instance in Bayesian neural networks.

In many domains, time series data are often modelled using state space models. SMC

(Gordon et al., 1993) is a popular method to perform inference for such probabilistic

models, because it can scale well to data sets with many observations. However,

parameter inference in such state space models can be challenging. The performance

of such methods can be very sensitive as to how such particles are being proposed

and SMC be computationally demanding in high dimensions because they require

sampling many particles.

The rest of this thesis is structured as follows. Section 1.2 contains standard

material, in the form of a brief review of different approximate inference methods.

An outline of the contributions is given in Section 1.3. The first chapter of this

thesis is a case study in Bayesian statistics that hopefully motivates some of the

developments in the subsequent chapters and illustrates challenges for approximate

inference methods. In Chapter 2, we aim to infer latent regime states in DNA

methylation data. This large epigenetic data set can be described using state space

models, which allows us to introduce particle filtering methods. We illustrate that

choosing good proposal functions are important for such methods to perform well,

for instance for learning model parameters or inferring the distribution of the latent

paths. The filtering and smoothing algorithms suggested in Chapter 2 make explicit

use of the discrete state space in a novel change point model. In Chapter 3, we want

to learn proposal functions for continuous state spaces and we do not only want

to perform point-estimation for the static parameters, but also infer the posterior

distribution of the static parameters. We achieve this using a combination of SMC and

variational inference. While Chapter 2 and 3 consider inference in state space models,

the methods developed in Chapter 4 and 5 can be applied to general probabilistic

models under some smoothness assumptions. Chapter 4 develops a new variational

family that allows for some flexibility and that is not prohibitively expensive for

high-dimensional models. Chapter 5 presents an approach to automatically adapt

some hyperparameters of Hamiltonian Monte Carlo, which belongs to the class of

MCMC algorithms. Chapter 6 concludes with some future work projects.
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1.2 Approximate Bayesian inference methods

1.2.1 Bayesian Inference and Monte Carlo Methods

This chapter introduces computational methods for Bayesian inference and probabilis-

tic machine learning. We introduce briefly different Monte Carlo methods: Sequential

Monte Carlo in section 1.2.2, variational inference in section 1.2.3 and Markov Chain

Monte Carlo in section 1.2.4.

Let x ∈ X ⊂ Rd denote the unknown parameters of a probabilistic model that

are supported on some parameter space X . The Bayesian paradigm posits a prior

distribution π0 ∈ P(X ), where P(X ) denotes the space of all probability measures

on (X ,B(X )), with B(X ) being the Borel σ-field on X . Suppose that π0 has a

positive density that we also write as π0 with respect to some σ-finite-dominating

measure denoted dx. Assume we observe a data set y ∈ Y in some space Y ⊂ Rk

and that the statistical model gives rise to a measurable function L : X × Y → R,

(x, y)→ R, 7→ L(y|x), called the likelihood function of the model. Bayes’ rule yields

the posterior distribution, i.e. the conditional distribution of the parameters given

the data, as

π(dx) =
π0(dx)L(y|x)

Z
. (1.1)

Here, the normalizing constant Z :=
∫
X π0(dx)L(y|x) <∞ represents the marginal

likelihood of the data set y. For most statistical models, the normalising constant Z

in (1.1) is intractable, so resorting to numerical approximation is generally necessary

to make inferences about

π(h) :=

∫
X
h(x)π(dx) (1.2)

for some function h : X → R of interest.

A central approach for estimating the quantity π(f) defined in (1.2) relies on

Monte Carlo methods using an estimator of the form

π̂(h) =
1

K

K∑
k=1

h(Xk) (1.3)

for some sequence of random variables (Xk)Kk=1. For example, if (Xk)Kk=1 are iid

with distribution π, then this estimator is consistent for h ∈ L(π) as K →∞ by the

strong law of large numbers; while for h ∈ L2(π), a central limit theorem argument

applies to its asymptotic error.
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1.2.2 Importance sampling and Sequential Monte Carlo

Importance sampling (Kahn and Marshall, 1953; Geweke, 1989) allows for using a

Monte Carlo estimator with samples from a proposal distribution q ∈ P(X ) different

from π, if π � q, i.e. q(A) = 0 implies π(A) for any A ∈ B(Rd). Suppose that

the proposal distribution has a density q with respect to the measure dx. Then the

Radon-Nikodym derivative can be written as dπ
dq (x) = w(x)

Z , where w(x) = γ(x)
q(x) and

γ(x) = Z ·π(x) is the unnormalised target distribution. So for Bayesian inference with

the target being the posterior, we have γ(x) = π0(x)L(y|x). Hence, using Z = q(w),

we have π(h) = q(hw)
q(w) , which motivates the Monte Carlo estimator

π̂IS(f) =

K∑
k=1

W kh(Xk)

where W k = w(Xk)/
∑K

k=1w(Xk) and (Xk)
K
k=1 are iid according to q. We call the

weighted random measure π̂IS =
∑K

k=1W
k(Xk) the particle approximation of π.

Furthermore, ẐK = 1
K

∑K
k=1w(Xk) is an unbiased estimator of Z. Moreover, it holds

that,
V ar(ẐK)

Z2
=

1

K

(
q

(
dπ

dq

)2

− 1

)
,

cf. Doucet and Johansen (2009). Observe first that for q = π, importance sampling

yields a zero variance estimator of the normalizing constant. Second, the variance of

the estimator is characterised by the χ2-divergence χ2(π||q) between the proposal q

and the target π, defined as

χ2(π||q) = q

((
dπ

dq
− 1

)2
)

that satisfies

χ2(π||q) + 1 =

(
q

(
dπ

dq

)2

− 1

)
> exp (KL(π||q)) ,

where KL(π||q) is the Kullback-Leibler divergence between absolutely continuous

measures π and q,

KL(π||q) = π

(
log

dπ

dq

)
(1.4)

that plays an important role in the forthcoming chapters. We refer to Doucet and

Johansen (2009); Owen (2013) for a more detailed introduction and to Agapiou
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et al. (2017); Chatterjee et al. (2018) for details regarding computational costs of

importance sampling.

Let us now consider a sequence of densities (πn)Mn=0, where for any n ∈ {0, . . . ,M},

πn is a density on the space (X n+1,B(X )⊗n+1) with respect to dx0:n that has the

representation πn(x0:n) = γn(x0:n)/Zn for a normalizing constant Zn and positive

integrable function γn. Here, we used the notation x0:n = (x0, . . . , xn). In sequential

importance sampling, the proposal distribution has a density function qn with an

auto-regressive structure in the form of

qn(x0:n) = qn−1(x0:n−1)Mn(xn|x0:n−1)

for n > 1 and q0(x0) = M0(x0), where M0 is a density on X and a series of transition

kernels with associated densities Mn(xn|x0:n−1) with respect to dx. This allows for

computing importance weights recursively. Indeed, let

αn(x0:n) =
γn(x0:n)

γn−1(x0:n−1)Mn(xn|x0:n−1)

be the incremental importance weight function. Then,

wn(x0:n) =
γn(x0:n)

qn(x0:n)
= w0(x0)

n∏
t=1

αt(x0:t).

One obtains a particle approximation of πn(dx0:n) given by

π̂SIS(dx0:n) =

K∑
k=1

W k
n δXk

0:n
(dx0:n) , W k

n =
wn(Xk

0:n)∑K
l=1wn(X l

0:n)

by sampling for any k ∈ {1, . . .K} =: [K], first Xk
0 ∼ M0(·) and iteratively Xk

t ∼

Mt(·|Xk
0:t−1) for any t ∈ [n]. However, for increasing n, this approximation uses

effectively a single particle with index k? say satisfying W k?
n ≈ 1. This phenomenon is

called weight degeneracy and can be mitigated by a resampling step. One possibility

to do so is to first sample an ancestor variable Akn−1 representing the parent of particle

Xk
0:n according to a categorical distribution on [K] with probabilities Wn−1. We set

W k
n−1 = 1

K and after this resampling step, one extends the path of each particle

by sampling from the transition kernel Xk
n ∼Mn(·|XAkn−1

0:n−1) and updates the latent

path via Xk
0:n = (X

Akn−1

0:n−1, X
k
n). The resulting algorithm is called particle filtering or

a Sequential Monte Carlo (SMC) algorithm and it yields an unbiased and strongly

consistent estimator of the normalization constant Zn given by

Ẑn =

n∏
m=0

K∏
k=1

wm(Xk
m), (1.5)
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cf. Del Moral (1996) and see for instance more detailed treatments given in (Doucet

and Johansen, 2009; Cappé et al., 2006; Douc et al., 2014; Naesseth et al., 2019).

1.2.3 Variational Inference

Variational methods (Jordan et al., 1999; Wainwright and Jordan, 2008; Blei

et al., 2017) aim at approximating a density π on X ⊂ Rd by first postulating

a variational family Q of densities and then commonly find a good approximation

q? belonging to Q by minimizing the KL divergence with respect to π over Q,

i.e. q? ≈ arg minq∈Q KL(q||π). Assuming that both π and q are densities with respect

to a σ-finite measure dx, recall that the KL divergence (1.4) can be written as

KL(q||π) = −
∫
X
q(x) log

π(x)

q(x)
dx = −Eq(x) [log γ(x)− log q(x)] + logZ, (1.6)

where the normalising constant Z =
∫
X γ(x)dx < ∞ does not depend on q and

γ = Z ·π. Hence, minimizing q 7→ KL(q|π) is equivalent to maximizing the variational

lower bound q 7→ logZ − KL(q|π) = L(q). If the target density π is the posterior

density given in (1.1), then

L(q) = Eq(x) [log π0(x) + logL(y|x)− log q(x)] , (1.7)

which is called Evidence Lower Bound (ELBO). Due to the non-negativity of the

KL-divergence, L(q) is a lower bound on the log evidence logZ for any q ∈ Q.

A convenient family Q is the mean-field variational family that posits that any

q ∈ Q is of the form q(x1, . . . , xd) =
∏d
i=1 qi(xi) for densities qi on R. In this case, one

can optimize the variational bound using a coordinate ascent method, by iteratively

maximizing each factor of the variational density, while holding the other factors

fixed, cf. Attias (2000); Winn and Bishop (2005). To derive the optimal factors, one

can show that

L(q) = −KL(qj ||q?j ) + const.

where constant terms do not depend on qj and the distribution q?j satisfies

log q∗j (xj) =

∫
Rd−1

log γ(x)q−j(x−j)dx−j + const. (1.8)

where x−j = (x1, . . . , xj−1, xj+1, . . . xd) and q−j(x−j) =
∏d
i=1,i 6=j qi(xi). Computing

q?j thus requires evaluating the integral in (1.8) and evaluating the normalising constant

of q?j . While this is possible for approximate Bayesian inference where the complete
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conditional is in the exponential family, computing the optimal variational factor is

infeasible for a general function γ. Furthermore, the independence assumption in the

mean-field family could be too restrictive, resulting in a loose variational bound.

An alternative is to assume that any qξ ∈ Q is indexed by a variational parameter

ξ ∈ Ξ and then find a good approximation qξ? with ξ? ≈ arg minξ∈Ξ KL(qξ||π), where

the minimization is performed using stochastic gradient descent, assuming that

ξ 7→ qξ(x) is differentiable for any x ∈ X . To be more concrete, we can write the

gradient of the variational bound as

∇ξL(ξ) = ∇ξ
∫
X
qξ(x) (log γ(x)− log qξ(x)) dx

=

∫
X
qξ(x)∇ξ log qξ(x) (log γ(x)− log qξ(x)) dx.

This can be seen by using the log-derivative trick ∇ξqξ(x) = qξ(x)∇ξ log qξ(x) and

that the score function has expectation of zero,
∫
X qξ(x)∇ξ log qξ(x)dx = 0. This

gives rise to an unbiased and consistent Monte Carlo estimator of L(ξ) given by

∇̂ξL(ξ) =
1

K

K∑
i=1

∇ξ log qξ(Xi) (log γ(Xi)− log qξ(Xi))

for iid Xi ∼ qξ. Using a sequence of step sizes (αn) > 0 satisfying
∑

n αn = ∞

and
∑

n α
2
n < ∞, cf. Robbins and Monro (1951), a stochastic gradient algorithm

ξn+1 = ξn + αn∇̂ξL(ξn) can be used to obtain ξ?. Such a score gradient estimator,

see also Ranganath et al. (2014), allows applying variational inference to general

models without requiring conjugacy assumptions, and can be applied for dx being

the Lebesgue or the counting measure, and thus allows for approximate posterior

inference over latent variables that can be discrete or continuous. However, it tends to

yield gradient estimators with a high variance. Different variance reduction techniques

such as control variates (Tucker et al., 2017; Grathwohl et al., 2017) are often used

with such estimators.

Suppose now that additionally x 7→ γ(x) and x 7→ qξ(x) are differentiable. Further,

assume that there is a density p independent of ξ and a function f : (x, ξ) 7→ fξ(x)

being differentiable so that the pushforward of p by fξ is qξ, i.e. for a random
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variable H with density p, the density of fξ(H) is qξ. Then

∇ξL(ξ) = ∇ξ
∫
X
p(h) (log γ(fξ(h))− log qξ(fξ(h))) dh

=

∫
X
p(h)∇x (log γ(x)− log qξ(x))

∣∣∣
x=fξ(h)

∇ξfξ(h)dh.

This is commonly referred to as the reparameterization trick, see Kingma and Welling

(2014); Rezende et al. (2014); Titsias and Lázaro-Gredilla (2014) and the resulting

Monte Carlo estimator tends to have lower variance compared to the score gradient

estimator.

1.2.4 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are a popular alternative approach to

sample from a target density π on X and can be used to make inferences about π(h)

in (1.2) for some function h : X → R that can have some theoretical guarantees. A

review of MCMC methods is outside the scope of this work; we refer for instance to

Tierney (1994); Roberts et al. (2004) or textbook treatments (Robert and Casella,

2013).

Recall that a Metropolis-Hastings kernel P on (X ,B(X )) can be constructed for

a given proposal kernel Q in the form

P (A|x) =

∫
A
α(x, y)Q(dy|x) + δx(A)

∫
X

(1− α(x, y))Q(dy|x) (1.9)

for any x ∈ X , A ∈ B(X ) and measurable α : X × X → [0, 1]. Assume that Q

admits a density q with respect to dx, i.e. Q(dy|x) = q(y|x)dy, and that the target

distribution π has a density still denoted by π with respect to dx. The standard

choice of the acceptance rate is

α(x, y) =


min

(
1, π(y)q(x|y)

π(x)q(y|x)

)
if π(x)q(y|x) > 0

1 otherwise.

which is optimal for minimizing the asymptotic variance of sample path averages

among alternative choices that yield π as the invariant distribution of the Markov

chain. To sample from this Markov chain at time n, one generates a candidate value

Yn ∼ Q(·|Xn−1). Then, with probability α(Xn−1, Yn), one accepts this proposal and

sets Xn = Yn. Otherwise, the proposal is rejected and one sets Xn = Xn−1. It can

be shown that the kernel P of the Markov chain (Xn)n is reversible with respect to
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π, i.e. the detailed balance condition π(dy)P (dx|y) = π(dx)P (dy|x) holds. This

implies that π is an invariant distribution for P , which means for any A ∈ B(X ), we

have
∫
X π(dx)P (A|x) = π(A).

One choice for sampling from the proposal kernel Yn ∼ Q(·|Xn−1) is

Yn = Xn +
√
hZn

for h > 0 and iid (Zn)n ∼ N (0, I), which yields a Random-Walk sampler. Another

choice for differentiable π(x) ∝ e−U(x) in the case X = Rd is to propose

Yn = Xn−1 − h∇U(Xn−1) +
√

2hZn, (1.10)

which gives rise to a MALA sampler (Roberts et al., 1996; Roberts and Stramer,

2002). Such a proposal corresponds to an Euler-Maruyama or Milstein scheme for

the overdamped Langevin diffusion (Xt)t>0 that solves the SDE

dXt = −∇U(Xt)dt+
√

2dBt

with Bt being a d-dimensional Brownian motion. Instead of proposing approximately

from Langevin dynamics, one can also be guided by Hamiltonian dynamics (Duane

et al., 1987; Neal, 2011; Betancourt, 2017), that is by (Xt, Pt)t>0 evolving on the

phase space R2d according to the differential equations

dXt =
∂H(Xt, Pt)

∂p
dt = M−1Ptdt (1.11)

and

dPt = −∂H(Xt, Pt)

∂x
dt = −∇U(Xt)dt. (1.12)

with the Hamiltonian function

H(x, p) = U(x) +
1

2
p>M−1p

for some positive definite mass matrix M ∈ Rd×d. Numerical approximations such as

the leapfrog integrator (Hairer et al., 2003) are routinely used in place of the proposing

from the exact HMC dynamics (1.11)-(1.12), in conjunction with a momentum

refreshment P0 ∼ N (0,M) and a Metropolis-Hastings acceptance step.

A π-invariant Markov chain X can be used to make inferences about π(h) in (1.2)
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using the Monte Carlo approximation (1.3), particularly if a central limit argument

applies in the sense that

n−1/2
n∑
i=1

h(Xi)
d→ N (π(h), σ2

h),

where σ2
h ∈ [0,∞) is the asymptotic variance. For h ∈ L2(π) with π(h) = 0,

let γk = E [h(X0)h(Xk)] be the lag-k autocovariance of X and suppose that

limn→∞
1
nVar(

∑n
i=1 h(Xi)) <∞. Then,

σ2
h = lim

n→∞

1

n
Var

[
n∑
i=1

h(Xi)

]
= γ0 + 2

∞∑
k=1

γk,

see Haggstrom et al. (2007). It can be argued that the Markov chain is more efficient

if σ2
h is small, and this criteria is often assessed by computing the effective sample

size Neff that satisfies Var( 1
N

∑N
i=1 h(Xi)) = N−1

eff Var(X1) and which can be expressed

for stationary Markov chain X using

Neff =
N

1 + 2
∑N−1

k=1

(
N−k
N

)
Cov(h(X1), h(Xk+1))

.

1.3 Outline and contributions

The thesis is divided into four parts according to the different topics that have been

investigated.

1.3.1 Bayesian inference of DNA methylation levels

Chapter 2 develops a novel methylation change-point model that allows for efficient

inference of latent methylation regimes. The underlying probabilistic model is a state

space model. These probabilistic models consist of two processes: A latent process

(Xn)>0 on X and an observable process (Yn)n>0 on Y that follow the transition

dynamics

Xn|(θ,Xn−1 = xn−1, Yn−1 = yn−1) ∼ fθ(·|xn−1, yn−1), (1.13)

with a Markov transition density fθ, X0 ∼ fθ sampled from an initial distribution fθ

and

Yn|(θ,X0:n = x0:n, Y0:n−1 = y0:n−1) ∼ gθ(·|xn) (1.14)

for a conditional emission density gθ. Assume that we are given M observations y0:M .

For some function h : XM+1 → R of the hidden states and fixed static parameter
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θ ∈ Θ, the evaluation of

Eθ [h(X0:M )|y0:M ] (1.15)

=pθ(y0:M )−1

∫
· · ·
∫
h(x0:M )gθ(x0)fθ(x0)dx0

M−1∏
`=0

fθ(x`+1|x`)gθ(y`)dx`+1

with

pθ(y0:M ) =

∫
· · ·
∫
gθ(x0)fθ(x0)dx0

M−1∏
`=0

fθ(x`+1|x`)gθ(y`)dx`+1 (1.16)

the observed data likelihood, is generally intractable and requires Monte Carlo ap-

proximations. Our methods will be applied to real Whole genome bisulfite sequencing

(WGBS) data, necessitating approximate inference approaches that can be applied

to millions of time steps M . The proposed inference approach can be applied in

an online fashion in the sense that the computational costs grow at most linearly

with the time steps M . For the setting with a single-group, the latent process at

the t-step, Xt = (Dt, Rt) ∈ N× {1, · · · , R}, consists of the distance Dt to the most

recent change point, while Rt denotes the current regime out of R possibilities. The

state transition density is

fθ,t+1(xt+1|xt) := ρθ,t+1(xt)δ1(dt+1)Pθ(rt+1|rt)

+ (1− ρθ,t+1(xt))δdt+1(dt+1)δrt(rt+1)

where ρθ,t+1(xt) ∈ [0, 1] is the probability of occurrence of a change point, after

having spent dt time steps in regime rt. Furthermore, Pθ(rt+1|rt) is the rt+1-th entry

in the rt-th row of an R×R matrix of transition probabilities of the regimes. The

observations yt := yt,1:S , with yt,s taking values in N0 := N ∪ {0} are the number of

methylated reads, while nt,s denotes the number of methylated and non-methylated

reads at the t-th CpG site associated with the s-th sample. The observation density

is then assumed to be

gθ,t(xt) =

S∏
s=1

BetaBinom(yt,s;nt,s, αrt , βrt),

where αr and βr are parameters of the corresponding Beta distribution that charac-

terise each regime r ∈ {1, . . . , R}. Similar change-point models have been suggested

before, see Adams and MacKay (2007); Fearnhead and Liu (2007a); Caron et al.

(2012); Yildirim et al. (2013), but have not been used in a two group multiple testing
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problem under dependence. Our interest lies in particular in estimating the marginal

posterior probabilities of the regimes P (Rt = r|y0:T , θ) given the observed counts of

methylated reads y1:T . With h(x0:T ) = ht(xt) = 1{rt = r}, we therefore approximate

(1.15) with an adaptive-lag approximation,

ψt|T,r = Eθ[ht,r(Xt)|y0:T ] ≈ Eθ[ht,r(Xt)|y1:(t+∆)∧T ] (1.17)

where we stop updating the expectation after ∆ steps, see Alenlöv and Olsson (2019).

Although we are considering a finite state space X , exact computations of the filter

distributions are not practical for large T , so that we use a particle approximation

in (1.17). However, the particle filter used here is different from those considered in

Chapter 3 for continuous state spaces that sample the proposed particles randomly

from a learned proposal kernel. Instead, the proposed algorithms rely on discrete

particles filters (Fearnhead, 1998; Fearnhead and Clifford, 2003; Fearnhead and

Liu, 2007b) that explore that state space systematically, probing any possible next

state. We consider a frequentist approach to estimate the static parameter θ by

performing recursive maximum likelihood estimation that can be implemented online.

We then extend the single-group model to a two-group model that includes a latent

variable for each site with values in {0, 1} to indicate if the methylation states of

two phenotypes are in the same regime or not. Simulation studies are performed to

asses the performance of both the single-group and two group model and we find that

using optimal resampling techniques (Fearnhead and Clifford, 2003) tend to improve

the performance compared to an unbiased resampling scheme. The proposed model

is then applied to identify differentially methylated positions (DMPs) for an adult

and a newborn donor on a chromosome-wide scale.

This chapter is based on joint ongoing work with Axel Finke, Alex Beskos,

Petros Dellaportas, Simone Ecker and Stephan Beck. Axel Finke has developed and

implemented the filtering algorithms for the single-group case and suggested the

discrete particle filter algorithm for the two-group model.

1.3.2 Combining Sequential Monte Carlo and variational inference

In Chapter 3, we develop an approximate fully Bayesian inference approach for generic

state space models with dynamics (1.13) and (1.14). The frequentist parameter

estimation approach aims to maximize the log-likelihood function θ 7→ log pθ(y0:M )

from (1.16). Using particle approximations of the score function ∇θ log pθ(y0:M ),
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different approaches have been suggested to approximately maximize the log-likelihood

using expectation-maximization (Dempster et al., 1977) or gradient-based approaches,

see for instance Kantas et al. (2015); Poyiadjis et al. (2011); Del Moral et al. (2015);

Olsson and Alenlöv (2020).

We suggest an alternative approach building up on previous work (Maddison et al.,

2017; Naesseth et al., 2018; Le et al., 2018) that consider point estimating θ only in

a variational EM setting. Denoting by qφ(·|θ) the density of all variables generated

by a particle filter, such approaches consist in maximizing a lower bound on the

log-likelihood

Eqφ(·|θ)[Ẑ
θ
M ] 6 log pθ(y0:M )

where ẐθM is an unbiased estimator of pθ(y0:M ) obtained from the particle filter

algorithm. We consider a fully Bayesian approach and assume that θ has a prior density

π0. Particle MCMC algorithms (Andrieu et al., 2010) yield ’exact approximations’ in

such models and can be seen as an MCMC sampler that operates on an extended

space - they leave invariant an extended target density π̃(θ, x1:K
0:M , a

1:K
0:M−1, l). This

extended density has the marginal density π(θ, x) = p(θ, x0:M |y0:M ), i.e. the posterior

distribution of the static parameter and the latent path given observations y0:M . The

extended target is a density of all K latent paths x1:K
0:M from running a particle

filter, as well as ancestor variables a1:K
0:M−1 and a final particle index l. We propose

a variational distribution qψ,φ of these variable from which one can sample by first

sampling θ ∼ qψ from some variational density qψ and then running a particle filter

assuming θ is the static parameter and using proposals parameterised by φ with

output (x1:K
0:M , a

1:K
0:M−1, l). We then propose to maximize the variational bound L(ψ, φ)

that satisfies

L(ψ, φ) = −KL(qψ,φ||π̃) + log p(y0:M )

and that can be evaluated using

L(ψ, φ) = Eqψ(θ)

[
Eqφ(x1:K

0:M ,a
1:K
0:M−1,l|θ)

[
log Ẑθ,φM

]
+ log

p(θ)

qψ(θ)

]
, (1.18)

where Ẑθ,φM is an unbiased estimator of the normalising constant ZθM = pθ(y0:M ), cf.

(1.5), conditional on θ being the static parameter and φ parametrising the proposal

transition kernels. If we choose qψ(θ) be a delta function and neglect the last summand

in (1.18), we recover the previously considered variational EM settings optimizing



1.3. Outline and contributions 28

pθ(y0:M ) over θ. In contrast, our approach can be seen as an approximate inference

alternative to particle MCMC approaches.

We apply the proposed inference approach to linear Gaussian state space models, a

multivariate stochastic volatility model and a point process model. The proposed

approach was motivated by the development of new inferences approaches for non-

linear Hawkes point processes with latent intensity dynamics driven by a piecewise-

deterministic continuous-time Markov process (Davis, 1984).

Chapter 3 is based on joint work with Petros Dellaportas (Hirt and Dellaportas,

2019).

1.3.3 A new variational density motivated by copulas

The marginal variational distribution of the static parameter and a single latent

path that we propose in Chapter 3 approximates the target density more closely as

measured by the KL-divergence if the number K of particles grows. For instance, we

illustrate that isotropic proposals can yield a variational approximation where there

is significant correlation in the latent states. This be seen as a version of Importance

Weighted Auto-Encoders (IWEA), see Burda et al. (2015); Cremer et al. (2017) that

is commonly used for variational EM over a static parameter. While such approaches

allow for more flexible variational families using sampling-importance-resampling,

the resulting (marginal) variational densities are implicit, lacking an explicit density

function. We introduce in Chapter 4 a new variational density that instead allows for

sampling and log-density evaluation with complexity O(d log d) in the dimension d

of the latent parameter. This new variational density is based on a new density cθ

with parameter θ on the hypercube [0, 1]d. Samples V ∼ cθ can be obtained by first

sampling Ũ from a Beta-Liouville distribution, cf. Fang (2017). To obtain a random

variable V on the hypercube from a random variable Ũ supported within the simplex

only, we then set V = Ũ/U∗, where U∗ = maxi∈{1,...,d} Ũi. The marginal laws of cθ

are non-uniform, in contrast to any copula density with uniform marginals on the

hypercube. We call cθ a copula-like density and note that any density function c on

the hypercube defines a density on Rd via

q(x) = c (F1(x1), . . . , Fd(xd))

d∏
i=1

fi(xi) , (1.19)
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for x ∈ Rd with respect to the Lebesgue measure. Here, (f1, . . . , fd) is d-dimensional

vector of density functions with parameter φ and Fi is the cumulative distribution

function associated with fi, so for any xi ∈ R, Fi(xi) =
∫ xi
−∞ fi(ti)dti. Previous

variational densities constructed using a Gaussian (Han et al., 2016) copula-density

c or a vine-copula (Tran et al., 2015) density c in (1.19) have a computational cost

of order d2. Our contribution is that the introduced copula-like density cθ has a

computational cost of order d. Furthermore, to allow for a more flexible dependence

structure, we introduce an orthonormal transformation using a product of 1
2d log d

Givens rotations arranged in a FFT-style butterfly-architecture, that has not been

considered previously among the many proposed bijective transformations, also known

as normalising flows (Rezende and Mohamed, 2015; Papamakarios et al., 2019), used

in variational inference such as orthonormal projections (Tomczak and Welling, 2016).

We illustrate our approach for a logistic regression model and for standard regression

and classification benchmarks using Bayesian Neural Networks.

Chapter 4 is based on joint work with Petros Dellaportas and Alain Durmus

(Hirt et al., 2019).

1.3.4 Gradient-based adaptive HMC

In chapter 5, we want to sample from a target distribution π(q) ∝ e−U(q) on Rd by

learning a mass matrixMθ so that HMC with a leap-frog integrator that approximates

the dynamics (1.11) - (1.12) with M = Mθ has (i) a high average log-acceptance

rate in the Metropolis-Hastings step and (ii) is based on a proposal kernel with a

high entropy. HMC with a leap-frog integrator with L steps and step-size h usually

resamples the momentum P0 ∼ N (0,Mθ) and then proposes deterministically from

the current state q the next state Tθ,q(C>θ P0) where CθC>θ = M−1
θ and

Tθ,q(v) = q − Lh2

2
M−1
θ ∇U(q) + LhCθv − h2M−1

θ Ξθ,q(v)

with Ξθ,q(v) a sum of weighted energy gradients along the trajectory. In the MALA

case L = 1, cf. also (1.10) without preconditioning and a rescaled step-size h, it

holds that Ξθ,q(v) = 0 for all v ∈ Rd and Tθ,q is a linear function, which allows

for a tractable expression for the entropy of the proposal kernel in the form of

Hθ = d log h+ log |detCθ|+ const. Titsias and Dellaportas (2019) have learned the



1.3. Outline and contributions 30

mass or preconditioning matrix Mθ in the MALA case by maximizing

L(θ) =

∫
π(q)ν(v) [logαθ(q, Tθ,q(v)) + βHθ] dvdq.

Here, ν is a standard Gaussian density, αθ(q, q′) is the acceptance rate for MALA

when proposing from state q to state q′ and β > 0 is a hyper-parameter that trades

off the desire to have high log-acceptance rates and proposing large moves in all

dimensions. We aim to optimize an analogous generalised speed measure objective

also for HMC with L > 1. The entropy of the proposal kernel for the current

position q and normalised momentum v = C>θ P0 can be estimated using Monte-Carlo

by evaluating the log determinant of the Jacobian DTθ,q(v), and so requires O(d3)

operations. We suggest an approximation thereof that seems to work reasonably well

if the Hessian function ∇2U(q) does not vary too much across the state space with

complexity O(d2) for a general mass matrix and O(d) for a diagonal mass matrix.

The suggested approach to adapt the Markov chain differs from some previous work

that are motivated by maximizing some form of expected squared jumping distance

(Pasarica and Gelman, 2010)∫
π(q)ν(v)

[
αθ(q, Tθ,q(v)) ‖q − Tθ,q(v)‖22

]
dvdq.

A popular example is the “no-U-turn sampler” (NUTS) in Hoffman and Gelman

(2014) that increases L until the leap-frog integrator would decrease the distance

between the initial and the proposed state by making a U-turn.

Numerical experiments to sample from high-dimensional or ill-conditioned Gaus-

sian targets suggest that the new adaptation approach can yield better effective

sample sizes per computation time compared to a NUTS implementation and that

choosing L > 1 can be beneficial. Simulations using a logistic regression model with

different data sets show better effective sample sizes per computation time compared

to NUTS or MALA for some data sets only. The gradient-based adaptation approach

can also be used to learn a mass matrix for a log-Gaussian Cox point process that

performs similar to Riemann-Manifold MALA and HMC (Girolami and Calderhead,

2011).

Chapter 5 is based on joint work with Michalis K. Titsias and Petros Dellaportas

(Hirt et al., 2021).



Chapter 2

Motivating case study in Bayesian

statistics: Genome-Wide Inference of

DNA Methylation Levels

2.1 Introduction

DNA methylation in mammals is an epigenetic modification of DNA that adds a

methyl group at position C5 in the context of cytosine-guanine dinucleotides (CpGs)

(Bird, 2002) which is associated with organismal development, aging and progression

of human diseases such as cancer (Robertson, 2005). High-throughput sequencing

techniques provide high-resolution methylation profiles on a genome-wide scale, with

WGBS becoming a gold-standard technique for methylation studies (Bock, 2012),

due to its single-base coverage and high accuracy. The diploid human epigenome has

more than 107 CpG sites within its (more than 108) cytosines, making a statistical

analysis of such data sets extremely challenging undertaking, particularly in the

context of epigenome-wide association studies (EWAS) that aim to link epigenetic

variations to particular phenotypes for example in cases and controls studies (Rakyan

et al., 2011). For illustration, DNA hypomethylation, i.e. relative undermethylation

within promoter regions, has been shown to inactivate certain tumor-suppressor

genes, while global DNA overmethylation or hypermethylation can induce genomic

instability, thus contributing to cell transformation (Kulis and Esteller, 2010).

A large number of approaches have been suggested to detect differentially methy-

lated positions or regions (DMPs, DMRs) between case and control groups – see the
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review in Shafi et al. (2018) – but they often fail to: (i) allow for flexible methylation

patterns that are characterised not just by the mean methylation level; (ii) take into

account the spatial correlation that can change abruptly; (iii) work with a single

replicate and missing reads; or (iv) allow for scalable inference on a genome-wide scale.

A commonly used approach suggested in Hansen et al. (2012) smooths the methylation

values and then tests for group differences using t-tests for each site, but cannot for

instance (amongst other shortcomings) handle missing reads. Different Beta-Binomial

models have been suggested (Feng et al., 2014; Park et al., 2014; Sun et al., 2014), but

they tend to allow for only limited spatial dependence, as do most approaches relying

on logistic regression (Akalin et al., 2012) or established statistical tests (Stockwell

et al., 2014). More realistic models of DNA methylation have been suggested based

on an one-dimensional Ising model (Jenkinson et al., 2017, 2018) or a latent Gaussian

field model (Rackham et al., 2017), however, due to high computational complexity,

estimating such models requires partitioning of the genome in small sub-regions or

approximate inference techniques. Our approach relies on a hidden Markov model

that – unlike previous approaches in such a direction (Yu and Sun, 2016; Sun and

Yu, 2016; Shokoohi et al., 2019) – can distinguish regimes that differ also in the

variability of the methylation levels. We combine an online maximum likelihood

estimation approach with an online Bayesian approach for retrieval of information

about methylation patterns. Our framework can carry out full Bayesian inference

on a chromosome-wide scale, an attribute regarded as a great challenge for previous

approaches.

2.2 Single-Group Methylome Change Point Model

2.2.1 Data and Likelihood Conditional on Change Points

Consider S ≥ 1 available epigenetic samples and let t = 1, . . . , T be the numbering of

the CpG sites in some chromosome. Typically, T = O(106). Observations are denoted

(yt)t>1, where yt := yt,1:S . Here, yt,s takes values in N0 := N ∪ {0} and denotes the

number of methylated reads at the t-th CpG site associated with the s-th sample.

We assume that the corresponding total number of reads, nt,s ∈ N0, is known; we

write nt := nt,1:S . We will make use of the notation [n] := {k ∈ N | k 6 n}. Taking
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into account the variability in the reads, we can assume that

p(y1:T |π1:T , x1:T , θ) =
T∏
t=1

S∏
s=1

p(yt,s|πt,s, θ),

where

p(yt,s|πt,s, θ) := Binom(yt,s;nt,s, πt,s).

Here, Binom(x, n, π) denotes the probability mass function of a Binomial distribution

with size parameter n and probability π evaluated at x. Furthermore, πt,s denotes

the proportion of methylated alleles over all cells at CpG site t for sample s and, as

usual, we write πt := πt,1:S . A-priori, we model these probabilities as

p(π1:T |x1:T , θ) =

T∏
t=1

S∏
s=1

p(πt,s|xt, θ),

where

p(πt,s|xt, θ) := Beta(πt,s;αrt , βrt)

where Beta(x;α, β) denotes the probability mass function of a Beta distribution

with parameters α, β > 0, evaluated at x. Furthermore, the random variable rt

is a component of xt (more details on this below) and takes values in [R], where

R ∈ N denotes the number of different regimes. Based on empirical evidence and

expert-knowledge elicitation1, we envisage six different model regimes for the complete

genome. These are summarised in Table 2.1. To facilitate interpretation, we present

these regime-specific parameters not in the standard parametrisation (αr, βr) for a

Beta law but in the form of its mean µr and standard deviation σr. The standard

parameters can then be recovered via the relationship

αr = µrνr, βr = (1− µr)νr, where νr :=
µr(1− µr)

σ2
r

− 1,

for σr <
√
µr(1− µr).

1The number of regimes and the regime-specific parameters can be changed and adjusted to

accommodate particular biological research questions, different technical aspects and sequencing

techniques. By varying the mean and standard deviation parameter, different methylation patterns

can be described using a Beta-Binomial density - for instance also bistable regimes with bimodal

densities as considered in Jenkinson et al. (2017, 2018) - while being relatively parsimonious.
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Table 2.1: The R = 6 regimes in the single-group scenario.

Regime r Description Mean µr Std dev. σr

1 very large mean, small std dev. 0.95 0.05

2 very small mean, small std dev. 0.05 0.05

3 large mean, moderate std dev. 0.8 0.10

4 small mean, moderate std dev. 0.2 0.10

5 mean around 0.5, moderate std dev. 0.50 0.10

6 ‘chaotic’ (i.e. uniform on [0, 1]) 0.50 1/
√

12
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Figure 2.1: Densities of the Beta distribution for regimes 1–6, under the hyper-

parameter choices shown in Table 2.1.

Assume that x1:T determines a sequence of change points over the specified

regimes, such that given xt it is known that the model is in regime rt at CpG site

t ∈ [T ] – the regime rt at site t is taken to be the same over all samples s ∈ [S] in the

single group setting we have adopted for the moment. We can analytically integrate

out all the probabilities πt to obtain the product of Beta-Binomial likelihoods

p(y1:T |x1:T , θ) =

∫
p(y1:T |π1:T , x1:T , θ)p(π1:T |x1:T , θ) dπ1:T =

T∏
t=1

gθ,t(xt),

where, on the right-hand-side we have dropped the observations from the expression
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for the quantities gθ,t(xt), the latter determined analytically as

gθ,t(xt) :=

S∏
s=1

∫
[0,1]

Binom(yt,s;nt,s, π) Beta(π;αrt , βrt) dπ

=

S∏
s=1

BetaBinom(yt,s;nt,s, αrt , βrt).

Here, BetaBinom(y;n, α, β) denotes the density of a Beta-Binomial distribution, i.e.

BetaBinom(y;n, α, β)

:=

(
n

y

)
B(y + α, n− y + β)

B(α, β)

=
Γ(n+ 1)

Γ(y + 1)Γ(n− y + 1)

Γ(y + α)Γ(n− y + β)

Γ(n+ α+ β)

Γ(α+ β)

Γ(α)Γ(β)
,

where B( · , · ) and Γ( · ) denote the Beta and Gamma functions, respectively.

The likelihood function is properly defined in the case nt,s = 0 for all s ∈ [S],

that is when no reads at site t are available for all samples. The change point model

thereby naturally allows for imputing the latent methylation state, although we leave

an empirical comparison against alternative imputation methods (such as Ernst and

Kellis 2015; Angermueller et al. 2017) for future work.

2.2.2 Change Point Model

We follow the setup of Fearnhead and Liu (2007a); Caron et al. (2012); Yildirim

et al. (2013) and adopt a Markov model structure for the latent sequence x1:T – this

will later facilitate the use of computationally effective particle filtering algorithms

for the model fitting; for a similar modelling approach allowing message passing

computations at the point of calibration, see Adams and MacKay (2007). Let (xt)t∈N

be a latent Markov chain taking values in

X := N× [R].

If we write xt = (dt, rt) then, at CpG site t over the chromosome, dt denotes the

distance to the most recent change point, whereas rt ∈ [R] indicates the regime.

A-priori, Markov chain (xt)t∈N is assigned an initial distribution fθ,1(x1) :=

δ1(d1)νθ(r1) – for some distribution νθ on [R] – and transition kernels

fθ,t+1(xt+1|xt) := ρθ,t+1(xt)δ1(dt+1)Pθ(rt+1|rt)

+ (1− ρθ,t+1(xt))δdt+1(dt+1)δrt(rt+1).

Here, given a current state xt = (dt, rt):
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(i) ρθ,t+1(xt) ∈ [0, 1] is the probability of occurrence of a change point, after having

spent dt time steps in regime rt. Following Caron et al. (2012), we select

probability mass function hθ,rt with support on N (or on some subset thereof)

such that hθ,rt(dt) constitutes the prior probability over the sojourn time, dt,

in the rt-th regime. Thus,

ρθ,t+1(xt) :=
hθ,rt(dt)

1−Hθ,rt(dt − 1)
,

where Hθ,rt(l) :=
∑l

k=1 hθ,rt(k) denotes the cumulative distribution function

associated with hθ,rt .

(ii) Pθ(rt+1|rt) is the rt+1-th entry in the rt-th row of an R×R matrix of transition

probabilities determining the new generative model at the occurrence of a

change point. To rule out trivial change points, we assume that this matrix has

zeros on its diagonal.

Conditional on the model parameters θ, the posterior distribution of interest is

then given by

p(x1:T |y1:T , θ) ∝
T∏
t=1

γθ,t(xt−1, xt),

where γθ,t(xt−1, xt) := fθ,t(xt|xt−1)gθ,t(xt).

2.2.3 Model Parameters

To ensure that the matrix Pθ is stochastic, we parametrise it as a function of model

parameters θ1:((R−1)R) (which are to be estimated from the data) in the following

way which also avoids optimisation on the (R− 2)-simplex, for r ∈ [R],

Pθ(r
′|r) :=



exp(θ(R−1)(r−1)+r′)∑R−1
i=1 exp(θ(R−1)(r−1)+i)

, if r′ < r,

0, if r′ = r,

exp(θ(R−1)(r−1)+r′−1)∑R−1
i=1 exp(θ(R−1)(r−1)+i)

, if r′ > r.

For any regime r ∈ [R], we specify the prior distribution over the number and

location of the change points as follows. Following Caron et al. (2012), we take

hθ,r(d) := Neg-Bin(d− ur;κr, ωr)1{d > ur} to be the probability mass function of a

shifted Negative-Binomial distribution, where ur > 1 is the shift, and

Neg-Bin(z;κ, ω) :=
Γ(z + κ)

Γ(κ)Γ(z + 1)
ωz(1− ω)κ,
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for z ∈ N ∪ {0}. For any r ∈ [R], we assume that the shifts ur > 1 are known

and parametrise the Negative-Binomial distributions as follows. The regime-specific

‘success probability’ parameter is given by

ωr := logit−1(θR(R−1)+r) ∈ (0, 1).

We follow Caron et al. (2012) and set κr = 2 for this regime-specific parameter, for

all r ∈ [R] in our experiments. Thus , the unknown parameter vector becomes

θ := θ1:R2 ∈ RR
2
.

We note in passing that κr can alternatively also be estimated from the data.

2.2.4 Sequential Monte Carlo Algorithm

2.2.4.1 Filtering Algorithm

The filtering algorithm is outlined in Algorithm 1, where we use the notation xnt =

(dnt , r
n
t ) for the n-th particle at time t. Furthermore, let qθ,1 represent some joint

proposal distribution (on XN ) for the particles drawn at the initial step; its n-th

marginal distribution is denoted qnθ,1. We recall here the expression γθ,t(xt−1, xt) =

fθ,t(xt|xt−1)gθ,t(xt). We also write Wn
t−1 := wnt−1/

∑N
m=1w

m
t−1, for any n ∈ [N ]. We

remark that our presentation differs from that in Yildirim et al. (2013) where the

algorithm targets the one-step-ahead predictive distributions, whereas the algorithm

here targets the filtering distributions. In the following, we write

M := N −R.
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Algorithm 1 (Particle Filter for Change-Point Models).

1. At time t = 1:

(a) Sample x1:N
1 ∼ qθ,1.

(b) For for n ∈ [N ], set wn1 :=
γθ,1(xn1 )∑N
m=1 q

m
θ,1(xn1 )

.

2. At time t, t > 1:

(a) Option I (Standard Resampling). Sample a1:M
t−1 ∈ [N ]M according to the

weights W 1:N
t−1 via systematic, stratified, residual or multinomial resampling.

Option II (Optimal Finite-State Resampling). Without loss of gen-

erality, assume here that the particles and weights are ordered so that

W 1
t−1 > . . . >WN

t−1. Use Fearnhead (1998, Algorithm 5.2) to find Ct−1 > 0

such that

N∑
n=1

[1 ∧ Ct−1W
n
t−1] = M,

and set K := max{n ∈ [N ] | Ct−1W
n
t−1 > 1}, L := M−K and I := N−K.

Set akt−1 := k, for k ∈ [K].

Generate ancestor indices b1:L ∈ [I]L via systematic or stratified resampling

based on the weights V i
t−1 := Ct−1W

K+i
t−1 /L, for i ∈ [I]; set aK+l

t−1 := K + bl,

for l ∈ [L].

(b) For n ∈ [N ], set

xnt :=


(d
ant−1

t−1 + 1, r
ant−1

t−1 ), for n 6M ,

(1, n−M), for n > M .

(c) For n ∈ [M ], set

wnt :=



[
1

M

N∑
m=1

wmt−1

]
γθ,t(x

ant−1

t−1 , x
n
t ), for Option I,

γθ,t(x
ant−1

t−1 , x
n
t )

1 ∧ Ct−1W
ant−1

t−1

w
ant−1

t−1 , for Option II.

For n ∈ {M + 1, . . . , N}, set

wnt :=
N∑
m=1

γθ,t(x
m
t−1, x

n
t )wmt−1.
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2.2.4.2 Parameter Estimation

We now describe the additional steps needed to update the parameters θ via online

stochastic gradient-ascent steps. Write

φθ,t(xt−1, xt) := ∇θ log γθ,t(xt−1, xt)

= ∇θ log fθ,t(xt|xt−1) +∇θ log gθ,t(xt),

with the usual convention that any quantity with site-subscript 0 is to be ignored

from the notation. The required gradient expressions can be found in Appendix 2.7.5.

With (ηt)t∈N denoting some suitable step-size sequence for gradient-ascent algorithms,

the parameters can be estimated online using Algorithm 2, which can be extended

using adaptive preconditioning such as Adam (Kingma and Ba, 2014); also, it is

possible to apply the gradient update step 2c only every `-th step with ` ∈ N.

Algorithm 2 (parameter updates). Choose some initial value θ at the start of

Algorithm 1.

1. At the end of Step 1 of Algorithm 1:

(a) Set Φn1 := φθ,1(xn1 ), for n ∈ [N ].

(b) Set ∇1 :=
∑N

n=1W
n
1 Φ

n
1 .

2. At the end of Step 2 of Algorithm 1:

(a) For n ∈ [M ], set

Φnt := Φ
ant−1

t−1 + φt,θ(x
ant−1

t−1 , x
n
t ).

For n ∈ {M + 1, . . . , N}, set

Φnt :=

N∑
m=1

wmt−1fθ,t(x
n
t |xmt−1)∑N

l=1w
l
t−1fθ,t(x

n
t |xlt−1)

[Φmt−1 + φt,θ(x
m
t−1, x

n
t )].

(b) Set ∇t :=
∑N

n=1W
n
t Φ

n
t .

(c) Set θ ← θ + ηt(∇t −∇t−1).
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2.2.4.3 Adaptive-Lag Smoothing for the Regime Indicators

Recall that xt = (dt, rt). Our main interest is in computing the marginal posterior

probabilities of the regimes, p(rt = r|y1:T , θ), for t ∈ [T ], i.e. we want to compute

expectations with respect to the marginal smoothing distributions p(xt|y1:T , θ), of

the following form

ψt|T,r := Ext∼p(xt|y1:T ,θ) [ψt,r(xt)] ,

for functionals ψt,r(xt) := 1{rt = r}, for all r ∈ [R] and all t ∈ [T ]. Assuming that the

model has sufficient forgetting properties, i.e. the model is such that p(xt|y1:T , θ) ≈

p(xt|y1:(t+∆)∧T , θ) for some sufficiently large lag ∆ > 0, these expectations can be

approximated by

ψt|(t+∆)∧T,r := Ext∼p(xt|y1:t+∆∧T ,θ) [ψt,r(xt)] ,

without introducing too much bias. However, while the bias decreases with ∆, the

computational cost of computing (or, at least approximating) these expectations

increases with ∆. Thus, a sensible choice of the lag ∆ is crucial. However, manually

tuning ∆ is typically difficult.

Here, we propose to tune ∆ automatically (and separately for each expectation

of interest) via the adaptive-lag smoother from Alenlöv and Olsson (2019). Loosely

speaking, this approach exploits that varxt∼p(xt|y1:t+∆,θ)[ψt,r(xt)] ↓ 0 as ∆ ↑ ∞. This

motivates approximating ψt|T,r by ψt|(t+∆t,r(ε))∧T,r, where

∆t,r(ε) := min
{
k > 0

∣∣ varxt∼p(xt|y1:t+k∧T ,θ)[ψt,r(xt)] < ε
}
,

for some threshold ε > 0 chosen by the user. Below we summarise the particle-filter

approximation based of this idea.

It should be clear that we can use this algorithm to estimate smoothed functionals

other than the posterior probabilities of the regimes. Therefore, in the algorithm given

below, we assume that we are interested in a family of Q such test functions at each

position, denoted {ψt,q}q∈[Q]. In other words, the marginal posterior probabilities of

the R regimes can be approximated by taking Q := R and ψt,q(xt) := 1{rt = q} in

Algorithm 3.
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Algorithm 3 (Smoothing the Regime Indicators).

1. At the end of Step 1 of Algorithm 1:

(a) Set S ← {(1, q) | q ∈ [Q]}.

(b) Set Ψn1|1,q := ψ1,q(x
n
1 ), for n ∈ [N ] and q ∈ [Q].

2. At the end of Step 2 of Algorithm 1:

(a) Set S ← S ∪ {(t, q) | q ∈ [Q]}.

(b) For any (s, q) ∈ S and n ∈ [N ], set

Ψns|t,q :=



ψt,q(x
n
t ), if s = t,

Ψ
ant−1

s|t−1,q, if s < t and n 6M ,
N∑
m=1

wmt−1fθ,t(x
n
t |xmt−1)∑N

l=1w
l
t−1fθ,t(x

n
t |xlt−1)

Ψms|t−1,q, if s < t and n > M .

(c) For any (s, q) ∈ S: If

N∑
n=1

Wn
t

(
Ψns|t,q −

N∑
m=1

Wm
t Ψ

m
s|t,q

)2

< ε,

set S ← S \ {(s, q)} and return
∑N

n=1W
n
t Ψ

n
s|t,q as an estimate of ψs|T,q.

2.3 Case-Control Methylome Change Point Model

2.3.1 Notation and Setup

In this section, we describe an extended change-point model for the case/control

scenario. That is, we now have observations for two groups: controls and cases. The

observations in each group will be modelled as a change-point model, i.e. we now

have two change-point models: one for the control group and one for the case group.

However, these two models are not independent. While the marginal dynamics of the

control group are described by the above single group model, the methylation states

for the case group become dependent on the methylation signal of the control group.

We shall use the convention that the ‘bar’-accented quantities are associated

with the ‘control’ group whereas ‘tilde’-accented quantities are associated with the

‘case’ group. That is, for the respective groups,
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(i) ȳt := ȳt,1:S̄ and ỹt := ỹt,1:S̃ are the observed numbers of methylated reads,

(ii) n̄t := n̄t,1:S̄ and ñt := ñt,1:S̃ are the total number of reads,

(iii) π̄t := π̄t,1:S̄ and π̃t := π̃t,1:S̃ are the ‘methylation probabilities’,

(iv) x̄t := (d̄t, r̄t) and x̃t := (d̃t, r̃t) are the change-point-model states.

To keep the notation concise, we also write

yt := (ȳt, ỹt),

nt := (n̄t, ñt),

πt := (π̄t, π̃t),

xt := (zt, x̄t, x̃t) = (zt, d̄t, r̄t, d̃t, r̃t),

where zt denotes an additional binary latent variable which governs the dependence

between the two groups.

2.3.2 Data and Likelihood Conditional on Change Points

As before, we use a Beta-Binomial model, i.e. we assume that

p(y1:T |π1:T , x1:T , θ)

=

T∏
t=1

[ S̄∏
s=1

Binom(ȳt,s; n̄t,s, π̄t,s)

][ S̃∏
s=1

Binom(ỹt,s; ñt,s, π̃t,s)

]
.

The main difference with the single-group scenario is that probabilities π̄t,s and π̃t,s are

now not necessarily identically distributed conditionally on the latent regimes/change

points. That is, we model

p(π1:T |x1:T , θ) :=
T∏
t=1

[ S̄∏
s=1

Beta(π̄t,s;αr̄t , βr̄t)

][ S̃∏
s=1

Beta(π̃t,s;αr̃t , βr̃t)

]
,

As in the single-group scenario, we can analytically integrate out all the probabilities

π1:T to obtain the product of Beta-Binomial likelihoods

p(y1:T |x1:T , θ) =

∫
p(y1:T |π1:T , x1:T , θ)p(π1:T |x1:T , θ) dπ1:T =

T∏
t=1

gθ,t(xt),

where, writing

ḡθ,t(x̄t) :=
S̄∏
s=1

BetaBinom(ȳt,s; n̄t,s, αr̄t , βr̄t),

g̃θ,t(x̃t) :=

S̃∏
s=1

BetaBinom(ỹt,s; ñt,s, αr̃t , βr̃t).
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we have set

gθ,t(xt) := ḡθ,t(x̄t)g̃θ,t(x̃t).

2.3.3 Change Point Model

Recall that each state of the latent Markov chain (xt)t∈N now takes the form

xt = (zt, x̄t, x̃t) = (zt, d̄t, r̄t, d̃t, r̃t) ∈ X := {0, 1} × (N× [R])2,

where the interpretation of x̄t = (d̄t, r̄t) and x̃t = (d̃t, r̃t) is exactly as in a standard

change-point model. In particular, at each site t, the regime indicators r̄t and r̃t take

values in [R]. The binary latent variable zt governs the dependence structure between

the two groups, i.e. zt = 1 indicates that the two groups are merged, whereas zt = 0

indicates that they are split. More precisely, a-priori, the Markov chain (xt)t∈N has

some initial distribution

fθ,1(x1) = Qθ,1(z1)f̄θ,1(x̄1)
[
1{z1 = 1}δx̄1(x̃1) + 1{z1 = 0}f̃θ,1(x̃1|r̄1)

]
,

on X and transition kernels motivated in more detail below in the form of

fθ,t+1(xt+1|xt) := f̄θ,t+1(x̄t+1|x̄t)Qθ,t+1(zt+1|xt)

×
[
1{zt+1 = 1}δx̄t(x̃t)

+ 1{(zt, zt+1) = (0, 0) and r̄t+1 6= r̃t}f̃θ,t+1(x̃t+1|x̃t; r̄t+1)

+ 1{(zt, zt+1) = (0, 0) and r̄t+1 = r̃t}f̃ ′θ,t+1(x̃t+1|x̃t; r̄t+1)

+ 1{(zt, zt+1) = (1, 0) and d̄t+1 6= 1}f̃θ,1(x̃t+1|r̄t+1)

+ 1{(zt, zt+1) = (1, 0) and d̄t+1 = 1}f̃θ,t+1(x̃t+1|x̃t; r̄t+1)
]
.

Here, we have defined some of the quantities used above as follows.

(i) The distribution Qθ,1(z1) and the transition kernel Qθ,t+1(zt+1|xt) have support

{0, 1} and govern the distribution of the latent binary variable.

(ii) The initial distributions for the two groups, f̄θ,1(x̄1) := δ1(d̄1)ν̄θ(r̄1) and

f̃θ,1(x̃1|r̄1) := δ1(d̃1)ν̃θ(r̃1|r̄1) are similarly specified as with the single-group

scenario. The only non-standard aspect here is that for the case group we

enforce that its regime avoids the regime of the control group, i.e. ν̃θ(r̃1|r̄1) = 0

for r̃1 = r̄1.
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(iii) The transition kernels

f̄θ,t+1(x̄t+1|x̄t) :=
[
ρ̄θ,t+1(x̄t)δ1(d̄t+1)P̄ θ(r̄t+1|r̄t)

+ (1− ρ̄θ,t+1(x̄t))δd̄t+1(d̄t+1)δr̄t(r̄t+1)
]
,

f̃θ,t+1(x̃t+1|x̃t; r̄t+1) :=
[
ρ̃θ,t+1(x̃t)δ1(d̃t+1)P̃ θ(r̃t+1|r̃t; r̄t+1)

+ (1− ρ̃θ,t+1(x̃t))δd̃t+1(d̃t+1)δr̃t(r̃t+1)
]
,

f̃ ′θ,t+1(x̃t+1|x̃t; r̄t+1) := δ1(d̄t+1)P̃ θ(r̃t+1|r̃t; r̄t+1),

are again similar to the single-group scenario. The only non-standard aspect

is that for the case group, we enforce that its regime avoids the regime of the

control group, i.e. P̃ θ(r̃t+1|r̃t; r̄t+1) = 0 for r̃t+1 = r̄t+1.

The dynamics of the full state transition described by the kernel fθ,t+1(xt+1|xt)

can be clarified by noting first that the marginal dynamics of the control group

f̄θ,t+1(x̄t+1|x̄t) coincide with the single-group model. Second, the transition dynamics

of the split indicator Qθ,t+1(zt+1|xt) depend potentially on the previous states of the

case and control group. Third, conditional on the next state of the control group and

the next latent indicator variable, the dynamics of the case group can be motivated

by looking at the following different configurations.

(a) The two groups are merged at the next site: The case states then coincide with

the control states.

(b) The two groups have been split, remain split and the control group regime

does not jump into the previous regime of the case group: The case states then

evolve according to the change-point transition kernel f̃θ,t+1(x̃t+1|x̃t; r̄t+1) with

change-point probability function ρ̃θ,t+1 and a regime transition matrix P̃ θ that

avoids the regime of next control group.

(c) The two group have been split, remain split, but the control group regime

jumps onto the the previous regime of the case group: The case stats then

automatically changes the regime according to the regime transition matrix P̃ θ.

(d) The groups have previously been merged and become split next with no change

point occurring in the control group: The case group then has a change point

sampled from the initial distribution f̃θ,1.
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(e) The groups have previously been merged and become split next with a change

point occurring in the control group: The case state then evolves according to

the change-point transition kernel f̃θ,t+1(x̃t+1|x̃t; r̄t+1) as in configuration (a).

Conditionally on the model parameters θ, the posterior distribution of interest is

then given by

p(x1:T |y1:T , θ) ∝
T∏
t=1

γθ,t(xt−1, xt),

where γθ,t(xt−1, xt) := fθ,t(xt|xt−1)gθ,t(xt).

2.3.4 Model Parameters

The transition kernel of the control group is modelled as in the single-group case

described in Subsection 2.2.2, i.e. f̄θ,t corresponds to fθ,t therein with the model

parameters as in Subsection 2.2.3.

Different choices for the transition kernel of the latent variable zt are possible.

As a first example, we consider a shifted Geometric distribution for the duration

between change points of zt. Suppose that

Qθ,t+1(zt+1|xt) :=


qzt+1,zt+1+1, if d̃t ∧ d̄t > u,

δzt(zt+1), otherwise,

where qi,j denotes the (i, j) -element of a 2-by-2 row-stochastic matrix1− qmerge qmerge

qsplit 1− qsplit

 ,
and u > 0 is the minimum distance between jumps of the chain (zt)t>1. Although

a more flexible model parametrisation for the latent dynamics of the case group

is possible in principle that could also be estimated online, we just fix the regime

transition probability for the case group via

P̃ θ(r̃t+1|r̃t; r̄t+1) :=
1

R− 2
1{r̃t+1 ∈ [R] \ {r̃t, r̄t+1}},

and similarly assume for the regime transition density of the split moves that

ν̃θ(r̃t+1|r̄t+1) :=
1

R− 1
1{r̃t+1 ∈ [R] \ {r̄t+1}}.

The probability ρ̃θ,t+1(x̃t) of a change point in the case group occurring under the

scenario (zt, zt+1) = (0, 0) and r̄t+1 6= r̃t is modelled analogously to Subsection 2.2.2,
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i.e. as the hazard function of a probability mass function h̃θ,r̃t , with h̃θ,r̃ a shifted

Negative-Binomial function h̃θ,r(d̃) = Neg-Bin(d̃− ũr; κ̃r, ω̃r) as in Subsection 2.2.3.

Since splits are in practice likely to occur only very infrequently, it would be

difficult to estimate any of the parameters mentioned in this section from the data.

Therefore, we fix κ̃r = κ̃ = 2 and assume that ω̃r = ω̃ ∈ (0, 1) and ũr = ũ > 0, where

ũ > 0 and ω̃ > 0, along with the probabilities qsplit, qmerge ∈ (0, 1), are specified by

the user.

2.3.5 Sequential Monte Carlo Algorithm

2.3.5.1 Filtering Algorithm

A particle filtering algorithm that makes use of the discrete latent state space is

described in detail in Appendix 2.7.3 and outlined in Algorithm 5. Similarly to the

filtering algorithm for the single-group model, such a discrete particle filter (Fearnhead,

1998; Fearnhead and Clifford, 2003; Whiteley et al., 2010) does not rely on random

proposals but explores the state space systematically for any possibility. In the

two-group model, there are at most I = 2R + R2 possibilities how each state can

evolve with each possibility probed in the particle filter. To remain computationally

feasible also for many CpG sites, the particle system is pruned down by resampling

M particle lineages before the next systematic exploration step. Both unbiased or

optimal resampling schemes can be used as before. For large T , the total number of

particles becomes N = MI and the filter has a linear complexity O(N).

2.3.5.2 Inferences on the methylation signal at CpG sites or genomic regions

We are often interested in making inferences on the latent states in entire genomic

regions, say from site s to t, or just at a single CpG site with s = t. For a given test

function ψs:t,q on X t−s, we therefore aim to compute the expectation with respect to

the joint distribution of all latent states in the region given the observations at sites 1

to T of the whole chromosome, that is Exs:t∼p(xs:t|y1:T ,θ)[ψs:t,q(xs:t)]. For some distri-

bution ν on X , consider the backward kernel Bν
t,θ(dxt|xt+1) ∝ ν(∇xt)fθ,t+1(xt+1|xt)

that allows to express expectations over regions recursively using the decomposition

Exs:t∼p(xs:t|y1:T ,θ) [ψs:t,q(xs:t)] =

∫
π̃T (dxT )

T−1∏
`=s

∫
Bπ̃`
`,θ(dx`|x`+1)ψs:t,q(xs:t),

where π̃`(x`) = p(x`|y1:T , θ) is the (marginal) filter distribution. This expectation is

generally intractable. The Forward Filter Backward Simulation algorithm (Godsill
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et al., 2004) uses an approximation π̂(x`) of the marginal filter distributions π̃`(x`)

as obtained by a particle filter. After running the particle filter, one first samples

x̂T ∼ π̂T (xT ) and then recursively generates a backward trajectory x̂` ∼ Bπ̂`
`,θ(x̂`|x̂`+1)

for ` from T−1 to s, as shown in Algorithm 4 where K such trajectories are simulated,

potentially in parallel. The complexity of the backward simulation algorithm is

O(NK). While K can be chosen arbitrarily, a rule-of-thumb (Lindsten and Schön,

2013) can be K < N .

In the case/control scenario, it is of particular interest to approximate expectations

for test functions ψt,q(xt) = 1{zt = 1} under the posterior. Indeed, this expectation

is the probability ψt|T,q := E[ψt,q(xt)|y1:T , θ] = p(zt = 1|y1:T , θ), i.e. the probability

of the two groups being in the same regime at CpG position t. Other test functions

such as ψt,q(xt) = 1{r̄t = r} may also be of interest (as in the single-group scenario).

Algorithm 4 (Estimation of test functions using backward simulation).

1. For k ∈ [K]:

(a) Sample bkT ∼ Cat(wT ) and set x̂T = x
bkT
T .

(b) For t = T − 1 to s:

i. Compute ŵit,k =
witfθ,t+1(x̂kt+1|xit)∑Nt
j=1 w

j
t fθ,t+1(x̂kt+1|x

j
t )

for all i ∈ [Nt].

ii. Sample bkt ∼ Cat(ŵt,k).

iii. Set x̂kt = x
bkt
t .

2. Return 1
K

∑K
k=1 ψs:t,q(x̂

k
s:t).

2.3.6 Identification of DMPs or DMRs and FDR control

Identification of differentially methylated positions (DMPs) is a multiple testing

problem. The observed methylation signals are spatially correlated and accounting

for such spatial dependencies can allow for more efficient multiple testing procedures.

While multiple testing approaches designed for the independent setting can be valid

to control the false discovery rate (FDR) also under dependence (Benjamini and

Yekutieli, 2001), such procedures can be overly conservative. In this article, the

dependence structure is described by a parametric hidden Markov model. Such an

approach can allow for optimal procedures under very idealised assumptions that
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minimize the false non-discovery rate, i.e. maximize some form of multiple testing

power, subject to a constraint on the FDR (Sun and Tony Cai, 2009). Such idealised

procedures require knowledge of the model parameters and can be approximated by

a data-driven procedure using consistent estimates of the generative parameters and

the latent states. Although such guarantees do not necessarily hold for the approach

suggested here - some model parameters in the two-group model are not estimated

for instance - it can still perform competitively compared to different methods for

detecting DMPs.

Our approach is to classify CpG site t to be a DMP if zt = 0, i.e. the latent

methylation state is in different regimes for the case and control group by testing the

null hypotheses H0
t,c : zt = 1 against the alternatives H1

t,c : zt = 0 for all sites t ∈ Tc

and chromosomes c ∈ [C] simultaneously. A CpG-site at position t that is classified

as differentially methylated is considered a true positive if zt = 0 and a false positive

if zt = 1. DMPs can then be identified in a compound decision theoretic framework

subject to a control on the posterior expected False Discovery Rate (FDR), see for

instance Müller et al. (2004); Müller et al. (2007); Cui et al. (2015).

Suppose that p̂t,c is an estimate of p(zt = 1|y1:T , θ) at position t of chromosome

c, which is also known as the local index of significance (Sun and Tony Cai, 2009),

assuming θ is the true parameter vector of chromosome c. Denote the ordered

estimates of {p̂t,c}t∈[Tc],c∈[C] by p̂(1) 6 . . . 6 p̂(T ′) with T ′ =
∑C

c=1 Tc and write

the corresponding null hypotheses as H0
(1), . . . ,H

0
(T ′). We consider a decision rule of

the form δ(y) = {1{p̂t,c 6 λ}}t∈[T ],c∈[C] for some threshold λ which has optimality

guarantees in an oracle setting. The threshold λ depends on observations y from all

chromosomes and is chosen to control the FDR genome-wide at some level α > 0, see

also Wei et al. (2009), as follows. Let

Q̂s =
1

s

s∑
t=1

p̂(t)

be an approximation of the marginal FDR EVλ
ERλ where Rλ =

∑T ′

t=1 1{p̂(t) < λ} and

Vλ =
∑T ′

t=1 1{p̂(t) < λ}1{zt = 1} is the number of rejections and false positive results,

respectively. We then compute

k = max{s ∈ [T ′] : Q̂s 6 α}
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and reject all H0
(s) for s ∈ [k]. The test statistic p̂(s) can be computed using trajectories

from the backward sampling algorithm with the test function ψt(xt) = 1{zt = 1}.

Instead of testing individual locations, and possibly reporting them in terms of

clusters if the locations are next to each other, it is also possible to test hypotheses

over regions or clusters. We assume that such regions of interest are known a-

priori, say particular genes or obtained after some preliminary CpG-wise analysis.

Testing for a global null hypothesis, i.e. against the alternative that at least one

CpG site in a region is differentially methylated, may not support strong scientific

conclusions. Conversely, tests against the alternative that all CpG sites of a region

are differentially methylated can be difficult to reject. A compromise can be to test

the partial conjunction hypotheses (Benjamini and Heller, 2008) that the proportion

of differentially methylated sites is below some tolerance level γ, H0
k : πk 6 γ

versus H1
k : πk > γ simultaneously for any region Rk from the regions of interest

{R1, . . . , RK} and

πk =

∑T
t=1 1{t ∈ Rk}1{zt = 0}∑T

t=1 1{t ∈ Rk}
.

We follow the procedure from Sun et al. (2015) that aims to minimize the missed cluster

rate (MCR) while controlling the false cluster rate (FCR). Let ϑk = 1{πk > γ} and

associate a weight ωk to each region Rk. Assume that p̂k is an approximation to the

test statistics p(ϑk = 0|y, θ) with their ordered statistics written as p̂(1) 6 . . . 6 p̂(K)

with the corresponding hypotheses H0
(k) and weights ω(k). We compute

r = max

{
j ∈ [k] :

∑j
k=1 ω(k)p̂(k)∑j
k=1 ω(k)

6 α

}

and reject all H0
(k) for k ∈ [r]. Approximating the test statistics requires an approxi-

mation to the joint law of the latent states in a region. Indeed, for region Rk with

start sk1 and end location skTk , we can approximate p(ϑk = 0|y, θ) = E [1{πk 6 γ}|y, θ]

by taking expectations with respect to the law of the latent states in the region of

the function

ψsk1 :skTk
(xst1:skTk

) = 1

 1

Tk

skTk∑
s=sk1

1{zs = 0} 6 γ


using the backward simulation algorithm.
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2.4 Simulation studies

2.4.1 Regime & Parameter Inference for Single Group Model

We make use of a simulation study to evaluate the performance of the single-group

model, analysing the parameter estimation as well as the inference of the latent

regimes in the case of both low and high read depths. We start by simulating two

types of data sets, with the first one using an average read depth of 10, whereas the

second one uses an average read depth of 100. To generate the model parameters

used for simulating the data, we draw ωr from a uniform distribution on the interval

[0.1, 0.9] and Pij from a Dirichlet distribution with concentration parameter 2
3 for

i 6= j. For each setting, one million CpG sites are simulated and we repeat the

simulation to create 20 replicates. We consider varying the number of particles

N from N ∈ {10, 100} and compare the systematic resampling with the optimal

resampling scheme. We use Adam (Kingma and Ba, 2014) as an adaptive stochastic

gradient algorithm for the parameter estimation with the default parameters β1 = 0.9

and β2 = 0.999 and consider learning rate values in {0.05, 0.01, 0.002}. The evolution

of the average error of the estimated parameters relative to the simulated ones is

shown in Figure 2.2 for a single data set with a read depth of either 10 or 100. It

illustrates the superior performance of the optimal resampling scheme when only

a small number of particles such as N = 10 is used, whereas the performance of

both schemes is similar for N = 100 particles. Figure 2.2 also shows the posterior

probability of the true regimes, indicating that a higher read depth yields a higher

estimated probability of the true regimes and that the optimal resampling scheme

performs better for N = 10 particles, see also Table 2.2 for average values across all

data sets. Averages over all data sets of the L1-errors for both the regime transition

and the parameter ω governing the sojourn times are given in Tables 2.6 and 2.7 for

an average read depth of 10. Table 2.5 shows the estimated probability of the true

regime state across all data sets for an average read depth of 100.

2.4.2 Particle Algorithms in Two-Group Models

We assess the performance of the particle algorithm in the case-control model by

generate 10 data sets of 10, 000 CpG sites with average read depth of 100 using

the regimes from Figure 2.1. For each data set, we perform the filtering algorithms

with either the unbiased or optimal resampling schemes while varying the number
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(a) Average read depth of 10. (b) Average read depth of 100.

Figure 2.2: Average L1-error during optimization (top) and the cumulative mean of

the probability of the true regime state (bottom) using ADAM with a step size of

0.01 applied after every 200 iterations using one simulated data set with average read

depth of 10 in 2.2a and average read depth of 100 in 2.2b.

N ∈ {1200, 2400, 4800, 9600, 19200} of particles and using the true static parameters.

Estimates of the log-likelihood from the filtering algorithm for the first two data sets

is shown in Figure 2.3 for 10 different replications. The optimal resampling scheme

with N > 9600 yields large and low-variance estimates of the log-likelihood. To assess

the classification of DMPs, we have estimates the posterior probabilities of the latent

split states using K = 100 backward trajectories. The resulting area under the curve

(AUC) averaged over the 10 data sets in Table is shown in 2.3, which indicates better

performance for the optimal resampling scheme with N > 9600.

2.5 DNA Methylation and aging

We analyse two methylomes from blood samples (CD14-positive, CD16-negative

classical monocytes) for a female adult donor (age 60-65) and a female newborn donor

as studied in Libertini et al. (2016a,b) with accession code EGAD00001001261 2 from

the European Genome-Archive (EGA) . Counts of unmethylated and methylated

cytosine in CpG context for chromosomes 1 to 22 are obtained using GemBS (Merkel

et al., 2019). The adult samples contain 23.740 million sites with a median coverage of

2http://dcc.blueprint-epigenome.eu/#/datasets/EGAD00001001261

http://dcc.blueprint-epigenome.eu/#/datasets/EGAD00001001261
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Table 2.2: Average estimated posterior probability of the true regimes for 20 replicates

with average read depth of 10.

frequency of gradient update 1 200

learning rate 0.05 0.01 0.002 0.05 0.01 0.002

systematic resampling with N=10 0.575 0.661 0.690 0.702 0.696 0.664

optimal resampling with N=10 0.768 0.798 0.801 0.803 0.797 0.766

systematic resampling with N=100 0.835 0.842 0.843 0.843 0.838 0.811

optimal resampling with N=100 0.840 0.844 0.844 0.844 0.838 0.811

Figure 2.3: Log-likelihood estimates from the particle filter with different resampling

scheme on two simulated data sets.

91 reads, while the newborn samples have 23.957 million sites and a median coverage

of 101 reads. 23.264 million sites have reads for both the adult and newborn samples.

We use the GRCh38 reference genome to get the positions of 27.853 million CpG

sites so that missing values in at least one group need to be imputed for 16.5% of all

CpG sites. The empirical distribution of the beta-values {ȳt,s/n̄t,s} and {ỹt,s/ñt,s}

for all sites t and samples s = 1 where reads are available, that is if nt,s > 0, are

shown in Figure 2.4.

Table 2.3: Area under the curve for different resampling schemes on simulated data.

Algorithm
unbiased optimal

N=2400 N=4800 N=9600 N=19200 N=2400 N=4800 N=9600 N=19200

AUC 0.894 0.937 0.961 0.973 0.916 0.947 0.966 0.974
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(a) Distribution of beta-values for the adult

and newborn samples.

(b) Distribution of beta-values for the adult

and newborn samples on a log-scale.

Figure 2.4: Distribution of beta-values for the aging data set.

2.5.1 Estimating model parameters

We perform online maximum likelihood estimation of the static parameters of the

single-group model for both the adult and newborn samples, separately for each

chromosome. The Beta distribution for each regime are chosen according to Figure 2.1.

We use N = 100 particles as well as the optimal resampling scheme. In order to reduce

the variability due to random initialisation of the parameters, it was beneficial to run

the maximum likelihood estimation twice over each chromosome using a learning rate

of 0.01 for ADAM with parameters updated every 200 steps that decays geometrically

with exponent 0.1. To illustrate the robustness of the estimated parameters, we

repeat the estimation over 10 replications. Figure 2.5a shows estimates for the regime

transition matrix in chromosome 6 for the adult sample using N = 100 particles

with the estimated duration parameters shown in Figure 2.6a. There is only a small

variability in the parameter estimates for different replications. The corresponding

estimates in the single-group model applied to the newborn samples are shown in

Figures 2.5b and 2.6b, which appear similar and thus seem to support the modeling

assumption of both groups evolving jointly with the same parameters as long as

they are not in different methylation regimes. The distribution of each estimated

parameter across different chromosomes for a single replication is shown in Figures

2.7-2.8.

2.5.2 Differentially methylated positions and regions

We apply the suggested algorithms for the ELOV2 gene, which has been found in

previous work (Garagnani et al., 2012; Florath et al., 2014; Park et al., 2016; Goel

et al., 2017) to contain differentially methylated CpG sites. The hyper-parameters
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(a) Regime transition parameters for the adult samples in chromosome 6.

(b) Regime transition parameters for the newborn samples in chromosome 6.

Figure 2.5: Boxplot of the regime transition parameters of the single-group model for

chromosome 6 for the aging data set using 10 replications.

for the two-group model are set to ūr = ũr = 5, ω̃r = 0.8, qmerge = 0.1 and

qsplit ∈ {0.002, 0.01, 0.05}. The optimal filtering algorithm is run with M = 200 and

K = 25 trajectories have been sampled using backward sampling. This procedure

was repeated 100 times and yields estimates of the split and regime probabilities

at each CpG site as shown in Figures 2.9, 2.10 and 2.11 for a small genomic region
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(a) Regime duration parameter for the adult

samples.

(b) Regime duration parameter for the case

samples.

Figure 2.6: Boxplot of the regime duration parameters ωr of the single-group model

for chromosome 6 of the aging data set.

for the different a-priori split probabilities. We observe that for all three choices of

qsplit, the algorithm detects a high probability of the groups being split around the

same region, although the choice of qsplit impacts the local index of significance and

consequently the results from testing for differential methylation.

The proposed algorithm for detecting DMPs scales linear in the number of CpG

sites and the number of particles. One possibility can be to run the filtering and

backward sampling algorithm for the entire chromosome, but the computation time

can then be in days. An alternative that can be favourable in a High-Performance

Computing environment is to split the chromosomes in overlapping regions and

apply the filter and smoothing algorithm independently on each region. This can

yield an embarrassingly parallel approach and we expect that any bias due to such

a subsampling strategy can be made negligible by including an additional buffer

of CpG sites at the start and end of each region. We have chosen here the latter

approach using M = 200 ancestors and K = 25 trajectories on regions of 10000 CpG

sites and a buffer of 500 at the start and end of the region. The algorithms were

repeated 20 times to arrive at the Monte-Carlo estimates p̂t,c of the probability of

site t in chromosome c being in the same regime for both the adult and the newborn
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(a) Regime transition parameters for the adult samples across different chromosomes.

(b) Regime transition parameters for the newborn samples across different chromosomes.

Figure 2.7: Boxplot of the regime transition parameters of the single-group model

across different chromosomes.

sample. Depending on the choice of the false discovery threshold, the number of

detected differentially methylated positions using (2.3.6) are shown in Table 2.4. Our

analysis differs from Libertini et al. (2016a). First, their approach to segment blocks

of comethylation (COMETs) does not recover DMPs. Second, their analysis using

MethylSeekR (Burger et al., 2013) allows for less flexible regimes (i.e. unmethylated,
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(a) Regime duration parameter for the adult

samples.

(b) Regime duration parameter for the new-

born samples.

Figure 2.8: Boxplot of the regime duration parameters ωr of the single-group model

across different chromosomes of the aging data set.

low-methylated, partially-methylated) that tend to stretch over very long regions.

However, it is still ongoing work whether these differences are biologically meaningful.

Table 2.4: Number of differentially methylated positions for the aging data set.

False discovery threshold 0.1% 0.5% 1%

Number of DMPs 13728 16882 18456

2.6 Discussion

The proposed change point model for DNA methylation as introduced in this article

can be adapted in different ways. For instance, the regime transition does not depend

on the CpG-density as the distance is measured only in CpG sites. The minimum

duration requirement between change points can be easily modified to also include

non-CpG positions. Furthermore, different transition kernels can be assumed in

CpG-islands and in regions of low CpG-density, respectively.

The introduced two-group model can be applied for general case control studies.

It is however possible to adapt it specifically for twin-pairs data by assuming that

the probability parameters π̃t,s and π̄t,s coincide whenever r̃t = r̄t in order to reduce
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Figure 2.9: Results from the filter and backward sampling algorithm for a region

in chromosome 6 with qsplit = 1%. The first two plots show the proportion of

methylated reads relative to total reads for each sample s with n̄t,s > 0 or ñt,s > 0,

that is ȳt,s/n̄t,s or ỹt,s/ñt,s. The third plot shows the estimated posterior probability

of the two groups being split, i.e. p(zt = 0|y1:T , θ). The remaining plots show

estimates of the posterior regime probabilities for each group, that is p(r̄t = r|y1:T , θ)

for the control group and p(r̃t = r|y1:T , θ) for the case group with r ∈ [6].

the observation variance within each twin pair. The same algorithm can be applied

for such a choice using a potential function gθ.

The suggested standard Bayesian approach is most efficient if the model coincides

with the true data generating mechanism. However, it might not be robust under
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model misspecification, for instance in the presence of outliers. Alternative belief

updates have been suggested using for instance a Tsallis-score (Jewson et al., 2018;

Knoblauch et al., 2018; Boustati et al., 2020) that downweights observations with

a small likelihood which decreases the influence of observations in the tails. The

same algorithms can also be used in such a generalised Bayesian setting (Bissiri et al.,

2016), but with an adjusted potential function that can be evaluated exactly with

not too much additional computational costs if the number of read depths are not

too high.

2.7 Appendix

2.7.1 Sequential Monte Carlo methods a.k.a. particle filters

In this section, we describe marginal PF which typically require O(N2) operations

except in the special case of simple change-point models whose structure permits a

O(N) implementation. However, some of the notation (e.g. related to the target

distribution) and concepts (e.g. the resampling schemes) introduced in this section

are also used by standard PF.

2.7.1.1 Generic target distribution (i.e. the model)

To simplify the presentation, we will drop θ from the notation and use the convention

that any variable with subscript 0 is to be ignored from the notation. We assume

that the latent variable at time t takes values in some space Xt. For some T ∈ N and

t ∈ [T ], assume that we are interested in approximating target distributions of the

form

πt(x1:t) :=
1

Zt

t∏
s=1

γs(xs−1:s),

with (typically intractable) normalising constants

Zt :=

∫ [ t∏
s=1

γs(xs−1:s)

]
dx1:s.

We refer to πt(x1:t) as the filter at time t. We also sometimes refer to π̃t(xt) =∫∏t−1
s=1 Xs

πt(x1:t) dx1:t−1 as the marginal filter at time t.

Example 1. In the context of state space models with transitions p(xt|x1:t−1) =

p(xt|xt−1) =: ft(xt|xt−1) and observation densities p(yt|x1:t, y1:t−1) = p(yt|xt) =:
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gt(xt), we have

γt(xt−1:t) := ft(xt|xt−1)gt(xt).

In this case, the filter at time t is πt(x1:t) = p(x1:t|y1:t) and the marginal filter at time

t is π̃t(xt) = p(xt|y1:t).

2.7.1.2 Resampling schemes

Resampling can be used both by marginal and standard PF. Therefore, before

turning to these algorithms, we now briefly describe two kinds of resampling schemes.

Assume that we are given a weighted sample with N components: (xn, wn)n∈[N ],

which we wish to resample to yield another weighted sample with M components:

(ym, um)m∈[M ]. Throughout, the weights wn and um are not necessarily normalised

(i.e. they may not sum to 1) and we introduce the notation Wn := wn/
∑

l∈[N ]w
l.

Resampling draws indices a1:M from some distribution ρ(a1:M ) on [N ]M and sets

ym := xa
m
, and um :=

wm∑M
l=1 ρ

l(m)
,

where ρm denotes the marginal distribution of the mth component under the joint

law ρ.

• Option I: Standard Resampling Schemes. We recall that the resampling

scheme associated with the joint law ρ(a1:M ) was termed unbiased3 in Andrieu

et al. (2010) if, for a ∈ [N ],

M∑
m=1

ρm(a) = MW a,

where ρm denotes the marginal distribution of the mth component under

the joint law ρ. Commonly used resampling schemes which are unbiased are

multinomial, stratified, and systematic resampling. For such schemes,

um =
1

M

N∑
n=1

wn.

3We stress that not having an unbiased resampling scheme does not induce bias, e.g. in the

estimate of the normalising constant, as long as the post-resampling weights are suitably modified to

take the resampling step into account. That is, if we use resampling schemes that are not unbiased

in this sense, then the particles are not evenly weighted after resampling. To avoid confusion, we

call these standard resampling schemes here.
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• Option II: Optimal Finite-State Resampling Scheme. Standard resam-

pling schemes are not optimal for discrete state-space applications because

variance reductions can be achieved by taking greater care to avoid duplicate

particles post-resampling (at the cost of not having evenly-weighted particles

post resampling) in such scenarios. Instead, we may use the optimal finite-

state resampling scheme proposed by Fearnhead (1998); Fearnhead and Clifford

(2003).

Without loss of generality, also assume that the particles and weights are

ordered such that W 1 > . . . >WN . The optimal finite-state resampling scheme

proceeds as follows. First, we use Fearnhead (1998, Algorithm 5.2) to solve

N∑
n=1

[1 ∧ CWn] = M,

for C > 0. Write K := max{n ∈ [N ] | CWn > 1}, L := M−K and I := N−K.

The joint distribution of the indices under the resampling scheme is then given

by

ρ(a1:M ) :=

[ K∏
n=1

δn(ant−1)

] ∑
b1:L∈[I]L

%(b1:L)
L∏
l=1

δK+bl(
K+l).

Here, %t−1(b1:L) denotes some standard resampling scheme (see Option I) which

draws L ancestor indices, each of which takes values in [I], based on the

(self-normalised) weights V 1:I ,

V i :=
WK+i∑I
j=1W

K+j
=
CWK+i

L
,

for i ∈ [I]. Here, the identity on the r.h.s. follows from the definition of C and

L. Hence, by definition of standard resampling schemes (i.e. the unbiasedness

of the resampling associated with the law %(a1:L)):

M∑
m=1

ρm(a) =


1, if a ∈ [K],

LV a−K , if a ∈ [N ] \ [K],

= 1 ∧ CW a.

In summary, we thus obtain the post-resampling weights

um =
wm

1 ∧ CWm
.
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2.7.2 Generic Marginal Particle Filter

In this section, we describe a generic ‘marginal’ PF. Such particle filters were intro-

duced in Klass et al. (2005); Lin et al. (2005) but, as shown in Finke et al. (2016),

they are based on ideas which go back at least as far as Neal (2003); Neal et al. (2004).

In contrast to conventional PF, these algorithms can be justified as working on an

extended space which does not include ancestor indices ant−1, i.e. these algorithms

do not maintain a collection of particle lineages at any time steps (although particle

lineages can be constructed via backward-sampling type recursions). Marginal PF

are used much less frequently than standard PF because the former usually have a

computational complexity which is quadratic in the number of particles whereas it is

only linear for the latter.

2.7.2.1 Extended Proposal Distribution

We hereafter write xt := x1:Nt
t , where Nt is the total number of particles used at

time t. The following is the law over all random variables generated by the PF (plus

a collection of particle indices k1:T ∈
∏T
t=1[Nt] which index a single particle path):

q̄T (x1:T , k1:T ) :=

[ T∏
t=1

qt(xt|x1:t−1)

]∏T
t=1 v

kt−1,kt
t (x1:t)

ẐT (x1:T )
,

where

ẐT (x1:T ) :=
∑

kT∈[NT ]

wkTT (x1:T ) =
∑

k1∈[N1]

· · ·
∑

kT∈[NT ]

T∏
t=1

v
kt−1,kt
t (xt−1:t),

and where for any t ∈ [T ] and any (kt−1, kt) ∈ [Nt−1]× [Nt]:

wktt (x1:t) :=
∑

kt−1∈[Nt−1]

w
kt−1

t−1 (x1:t−1)v
kt−1,kt
t (x1:t),

v
kt−1,kt
t (x1:t) :=

γt(x
kt−1:t

t−1:t )λt(kt|xktt ,x1:t−1)

qktt (xktt |x1:t−1)
,

λt(kt|xt,x1:t−1) :=
qktt (xt|x1:t−1)∑Nt
n=1 q

n
t (xt|x1:t−1)

,

qt(xt|x1:t−1) := qktt (xktt |x1:t−1)q−ktt (x−ktt |x
kt
t ,x1:t−1).

Here, qnt (xt|x1:t−1) denotes the nth marginal under the joint proposal for all

the Nt particles generated at time t, qt(xt|x1:t−1); and q−nt (x−nt |xt,x1:t−1) de-

notes the associated full conditional distribution for all the remaining particles

x−nt := (x1
t , . . . , x

n−1
t , xn+1

t , . . . , xNtt ). Furthermore, λt(kt|xt,x1:t−1) is a distribution
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over kt which will be used in the extended target distribution below. Such laws were

first introduced in the as yet unpublished work Lee et al. nd in order to justify the use

of non-exchangeable resampling schemes in standard PF. Here, this distribution allows

us to use a proposal for the Nt particles drawn at time t which is non-exchangeable in

the sense that qnt (xt|x1:t−1) 6= qmt (xt|x1:t−1), for some m 6= n, without jeopardising

unbiasedness.

2.7.2.2 Extended Target Distribution

The extended target distribution is given by π̄T (x1:T , k1:T ) := γ̄T (x1:T , k1:T )/ZT with

γ̄T (x1:T , k1:T ) :=
T∏
t=1

γt(x
kt−1:t

t−1:t )λt(kt|xktt ,x1:t−1)q−ktt (x−ktt |x
kt
t ,x1:t−1).

It can be seen that π̄T (x1:T , k1:T ) admits πT (x1:T ) as a marginal. That is, if

(x1:T , k1:T ) ∼ π̄T then xk1:T
1:T ∼ πT .

2.7.2.3 Radon-Nikodym Derivative

If the proposal kernels qt(xt|x1:t−1) are chosen such that γ̄T � q̄T , the following Radon-

Nikodym derivative is well defined and constitutes the usual (and by construction

unbiased) marginal-particle filter estimate of the normalising constant of the target

distribution:

γ̄T (x1:T , k1:T )

q̄T (x1:T , k1:T )
= ẐT (x1:T ).

2.7.3 Special case of an O(N) (standard) particle filter for the

case/control-group scenario

2.7.3.1 Model-specific quantities

Recall that in the change-point model for the case/control scenario, the state space is

given by X := {0, 1}×(N× [R])2, i.e. each state takes the form xt = (zt, d̄t, r̄t, d̃t, r̃t) ∈

X , where zt = 1 indicates that the two groups are merged whereas zt = 0 indicates

that they are split. At time 1, the model requires that d̄t = d̃t = 1. This implies the

following.

• At time 1, the state x1 can only take one out of (at most) R2 distinct values with

positive probability under the model. These values are labelled χ̃1, . . . , χ̃R2 ,

where

χ̃i := (1{r = s}, 1, r, 1, s), for i = (r − 1)R+ s and r, s ∈ [R].
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• At time t > 1, conditional on the ancestor particle xt−1, the particle xt can only

take one out of (at most) I := 2R+R2 distinct values with positive probability

under the model. These values are labelled χ1(xt−1), . . . , χ2R+R2(xt−1), where

χi(xt−1) :=



(zt−1, d̄t−1 + 1, r̄t−1, d̃t−1 + 1, r̃t−1), for i = 1,

(1, d̄t−1 + 1, r̄t−1, d̄t−1 + 1, r̄t−1), for i = 2,

(0, 1, i− 1, d̃t−1 + 1, r̃t−1), for 2 < i 6 r̃t−1 + 1,

(0, 1, i, d̃t−1 + 1, r̃t−1), for r̃t−1 + 1 < i 6 R+ 1,

(0, d̄t−1 + 1, r̄t−1, 1, i−R), for R+ 1 < i 6 R+ r̄t−1,

(0, d̄t−1 + 1, r̄t−1, 1, i−R+ 1), for R+ r̄t−1 < i 6 2R,

χ̃i−2R, for 2R < i 6 I.

In summary, any state sequence up to time t, x1:t, can only take one out of (at most)

R2It−1 distinct values with positive probability under the model. Hence, in principle,

filtering and marginal-likelihood computation could be performed analytically in this

model by averaging over all O(R2It−1) possible state sequences that have positive

probability under the model. Unfortunately, the cost of such exact calculations grows

quadratically in t and so is only feasible if t is very small.

2.7.3.2 Algorithm-specific quantities

We set an upper bound for the number of particles at time t to be

Nt :=


R2, if t = 1,

(M ∧Nt−1)I, for t > 1,

where we recall that I := 2R+R2 and where M ∈ N which denotes the maximum

number of ‘resampled’ particles and is a tuning parameter which allows us to control

the computational cost: We have at most Nt 6MI particles which means that the

algorithm can be implemented in O(MI) operations per time step (or O(MI log(MI))

operations if we use optimal finite-state resampling which requires additional sorting

of the weights).

It is possible that some of the proposed particles have a weight of zero. Let N ′t−1

be the number of particles with non-zero weights at step t. The motivation for this
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specification is that, depending on the value of M , we can perform filtering exactly

over the first few time steps before we need to start pruning the particle system from

Nt−1 particle lineages down to M particle lineages.

More precisely, if N ′t−1 6M , we simply extend each of the N ′t−1 existing particle

lineages in all I possible directions. If N ′t−1 > M , we need to prune the number of

particle lineages from N ′t−1 down to M before again extending each existing particle

lineages in all I possible directions. If t > 1 is such that N ′t−1 6 M , then the

normalising-constant ‘estimate’ produced by the algorithm below, Ẑt :=
∑N ′t

n=1w
n
t ,

constitutes an exact evaluation of the normalising constant and the same is true for

the ‘approximations’ of expectations under the time-t filter. Approximations are only

induced once N ′t−1 > M because then the total number of possible distinct state

sequences up to time t is so large that can no longer keep track of all of them and

need to start pruning the number of particle trajectories from N ′t−1 down to M .
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Algorithm 5 (standard particle filter for case/control scenario).

1. At time t = 1, set N1 := R2 and

(a) for n ∈ [N1], set xn1 := χ̃n,

(b) for n ∈ [N1], set wn1 := γ1(xn1 ).

2. At time t, t > 1,

• set N ′t−1 := #{n ∈ [Nt−1] | wnt−1 > 0},

• set Nt := (N ′t−1 ∧M)I,

• if N ′t−1 6M ,

(a) set b1:N ′t−1 := (ρt−1(1), . . . , ρt−1(N ′t−1)), where ρt−1 : [N ′t−1]→ [Nt−1]

maps each index of the particles after removing zero weights to the

index of the original particle.

(b) for n ∈ [Nt], set

ant−1 := bdn/Ie,

xnt := χ((n−1) mod I)+1(x
ant−1

t−1 ),

wnt := w
ant−1

t−1 γt(x
ant−1

t−1 , x
n
t );

• else, if N ′t−1 > M ,

(a) sample b1:M ∈ [N ′t−1]M via a standard resampling scheme (Option I)

or optimal finite-state resampling (Option II) according to the weights

W
1:N ′t−1

t−1 , where

Wn
t−1 :=

wnt−1∑N ′t−1

l=1 wlt−1

,

(b) for n ∈ [Nt], set

ant−1 := bdn/Ie,

xnt := χ((n−1) mod I)+1(x
ant−1

t−1 ),

wnt :=



[
1

M

N ′t−1∑
k=1

wkt−1

]
γt(x

ant−1

t−1 , x
n
t ), for Option I,

w
ant−1

t−1 γt(x
ant−1

t−1 , x
n
t )

1 ∧ Ct−1W
ant−1

t−1

, for Option II.



2.7. Appendix 67

2.7.4 Special case of a marginal particle filter: Simple Change-

Point model (e.g. Single-Group Scenario)

In this section, we derive the PF for simple change-point models (Caron et al., 2012;

Yildirim et al., 2013) as a special case of the generic marginal PF stated above. This

is useful because it provides a simple way of deriving the weight updates for this

particular PF. It also immediately proves that the PF for change-point models yields

unbiased estimates of the marginal likelihood.

The change-point model in this section is assumed to belong to the class described

in Section 2.2. We thus assume that there is only one sequence of change points. In

this model, the marginal filters are supported on a finite subset of X so that the

marginal filters and the marginal likelihood up to time T can be calculated analytically

via standard recursions for finite-state hidden Markov models. However, since the

support of the marginal filters grows linearly with T , the implementation of these

exact recursions requires O(T 2) operations which can quickly become prohibitive.

In contrast, the PF for change-point models is able to approximate the filters and

marginal likelihood in O(T ) operations.

Recall that we mentioned above that marginal PF typically have a computational

complexity which is quadratic in the number of particles. We stress that due to the

particular structure of the state space in the context of simple change-point models,

the algorithm described here has a computational complexity which is only linear in

the number of particles.

2.7.4.1 Change-Point Model-Specific Quantities

Hereafter, we use a constant number of particles, i.e. we set Nt := N . Write xt := x1:N
t

as well as

χ1(d, r) := (d+ 1, r),

χ(r) := (1, r),
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for d ∈ N and for r ∈ [R]. With this notation, we choose some initial proposal

distribution q1(x1) on XN and, for t > 1, we specify the proposal kernels as

qt(xt|x1:t−1) :=

[ ∑
a1:M
t−1∈[N ]M

ρt−1(a1:M
t−1 |x1:t−1)

M∏
m=1

δ
χ1(x

amt−1
t−1 )

(xmt )

]

×
R∏
r=1

δχ(r)(x
M+r
t ),

where ρt−1(a1:M
t−1 |x1:t−1) is the joint distribution of the ancestor indices a1:M

t−1 ∈ [N ]M

which are used for ‘resampling’ (although, being a ‘marginal’ PF, the algorithm does

not actually subsample particle lineages; instead, we work directly with mixture

proposals, i.e. the ancestor indices are integrated out). Further below, we will specify

this distribution for the two potential choices of resampling scheme which were termed

Options I and II in Algorithm 1. This implies that the marginal proposal kernel for

the nth particle is given by

qnt (xt|x1:t−1) =


∑

at−1∈[N ]

ρnt−1(at−1|x1:t−1)δ
χ1(x

at−1
t−1 )

(xt), if n ∈ [M ],

δχ(n−M)(xt), if n ∈ [N ] \ [M ],

where ρmt−1(at−1|x1:t−1) denotes the m-th marginal of ρt−1(a1:M
t−1 |x1:t−1). In particular,

we thus have λ1(n|xn1 ) = Unif [N ](n) and, for t > 1,

λt(n|xt,x1:t−1)

=


∑

at−1∈[N ] ρ
n
t−1(at−1|x1:t−1)1{χ1(x

at−1

t−1 ) = xt}∑M
l=1

∑
at−1∈[N ] ρ

l
t−1(at−1|x1:t−1)1{χ1(x

at−1

t−1 ) = xt}
, if n ∈ [M ],

δχ−1(xt)+M (n), if n ∈ [N ] \ [M ].

Putting all of these definitions together then gives vn1 (x1) = γ1(xn1 )/
∑N

m=1 q
m
1 (xn1 )

and

vm,nt (x1:t)

=


γt(x

m
t−1, x

n
t )∑M

l=1

∑
at−1∈[N ] ρ

l
t−1(at−1|x1:t−1)1{χ1(x

at−1

t−1 ) = xnt }
, if n ∈ [M ],

γt(x
m
t−1, x

n
t ), if n ∈ [N ] \ [M ].

2.7.4.2 Resampling Schemes and Associated Weight Updates.

We now derive the importance weights implied the two different families of resampling

schemes which were referred to as Options I and II in Algorithm 1.



2.7. Appendix 69

• Option I: Standard Resampling Schemes. For such schemes, we have

vm,nt (x1:t)

=


γt(x

m
t−1, x

n
t )

M
∑N

at−1=1W
at−1

t−1 (x1:t−1)1{χ1(x
at−1

t−1 ) = xnt }
, if n ∈ [M ],

γt(x
m
t−1, x

n
t ), if n ∈ [N ] \ [M ].

Hence, wn1 (x1) = vn1 (x1) and, for t > 1,

wnt (x1:t) =



[
1

M

N∑
m=1

wmt−1(x1:t−1)

]
γt(χ

−1
1 (xnt ), xnt ), if n ∈ [M ],

N∑
m=1

wmt−1(x1:t−1)γt(x
m
t−1, x

n
t ), if n ∈ [N ] \ [M ].

Note that within Algorithm 1, χ−1
1 (xnt ) = x

ant−1

t−1 .

• Option II: Optimal Finite-State Resampling Scheme. For such schemes,

we obtain the incremental weight

vm,nt (x1:t)

=


γt(x

m
t−1, x

n
t )∑N

at−1=1[1 ∧ Ct−1W
at−1

t−1 (x1:t−1)]1{χ1(x
at−1

t−1 ) = xnt }
, if n ∈ [M ],

γt(x
m
t−1, x

n
t ), if n ∈ [N ] \ [M ].

Hence, wn1 (x1) = vn1 (x1) and, for t > 1,

wnt (x1:t) =


γt(x

a(n)
t−1 , x

n
t )w

a(n)
t−1 (x1:t)

1 ∧ Ct−1W
a(n)
t−1 (x1:t−1)

, if n ∈ [M ],

N∑
m=1

wmt−1(x1:t−1)γt(x
m
t−1, x

n
t ), if n ∈ [N ] \ [M ],

where a(n) ∈ [N ] is a particle index which satisfies χ1(x
a(n)
t−1 ) = xnt . Within

Algorithm 1, this index is again readily available since we can always take

a(n) = ant−1.4

2.7.5 Gradient Calculations for the single-group model

Parameters governing the transition matrix. For any (r, r′) ∈ [R]2 and j ∈ [R],

the gradient for the parameters governing the j-th row of the transition matrix Pθ is
4Index a(n) is not necessarily unique. Yet, this is inconsequential as for any (i, j) ∈ [N ]2, if

χ1(x
i
t−1) = χ1(x

j
t−1) = xnt then (a) xit−1 = xjt−1, (b) w

i
t−1(x1:t−1) = wjt−1(x1:t−1).
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given by

∇θ(R−1)(j−1):(R−1)j
logPθ(r

′|r)

=


[ιRr′ − (Pθ(1|r), . . . , Pθ(R|r))>]−r, if j = r,

0 ∈ RR−1, if j 6= r,

where ιRr ∈ RR denotes a vector filled with 0’s except for the r-th element that is

equal to 1; furthermore, operation [ · ]−r removes the r-th element from a vector, i.e.

[x1:R]−r = (x1:(r−1), x(r+1):R)

Parameters governing the sojourn time. For the conditional change-point prob-

abilities, we have

∇θ log(1− ρθ,t+1(xt)) = −
ρθ,t+1(xt)

1− ρθ,t+1(xt)
∇θ log ρθ,t+1(xt),

where

∇θ log ρθ,t+1(xt) = ∇θ log
hθ,rt(dt)

1−Hθ,rt(dt − 1)

= ∇θ log hθ,rt(dt) +
∇θHθ,rt(dt − 1)

1−Hθ,rt(dt − 1)

= ∇θ log hθ,rt(dt) +

∑dt−1
i=1 hθ,rt(i)∇θ log hθ,rt(i)

1−Hθ,rt(dt − 1)
.

Thus, one only needs to calculate gradients of the form ∇θ log hθ,rt(i). For the

regime-specific ‘success probability’ parameters, for any r′ ∈ [R], we have

∂

∂θR(R−1)+r′
log hθ,r(i)

∣∣∣∣
ωr′=logit−1(θR(R−1)+r′ )

=


i− ur − ωr(i− ur + κr), r′ = r and i > ur,

0, otherwise.

2.7.6 Supplementary material for the single-group simulation stud-

ies

2.7.7 Supplementary material for the aging data set
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Table 2.5: Average estimated posterior probability of the true regimes for 20 replicates

with average read depth of 100.

frequency of gradient update 1 200

learning rate 0.05 0.01 0.002 0.05 0.01 0.002

systematic resampling with N=10 0.764 0.822 0.834 0.842 0.842 0.824

optimal resampling with N=10 0.917 0.924 0.926 0.927 0.926 0.916

systematic resampling with N=100 0.932 0.937 0.938 0.939 0.938 0.930

optimal resampling with N=100 0.939 0.940 0.940 0.940 0.939 0.931

Table 2.6: Average L1 error of the regime transition matrix for simulated data with

average read depth of 10.

frequency of gradient update 1 200

learning rate 0.05 0.01 0.002 0.05 0.01 0.002

systematic resampling with N=10 0.181 0.109 0.089 0.075 0.069 0.081

optimal resampling with N=10 0.085 0.055 0.051 0.048 0.044 0.051

systematic resampling with N=100 0.062 0.044 0.039 0.038 0.035 0.039

optimal resampling with N=100 0.059 0.042 0.038 0.038 0.035 0.039

Table 2.7: Average L1 error of the regime duration parameter ω for simulated data

with average read depth of 10.

frequency of gradient update 1 200

learning rate 0.05 0.01 0.002 0.05 0.01 0.002

systematic resampling with N=10 0.123 0.065 0.051 0.047 0.046 0.060

optimal resampling with N=10 0.071 0.033 0.023 0.030 0.024 0.034

systematic resampling with N=100 0.047 0.019 0.008 0.014 0.007 0.009

optimal resampling with N=100 0.042 0.019 0.008 0.014 0.006 0.008
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Figure 2.10: Results from the filter and backward sampling algorithm for a region

in chromosome 6 with qsplit = 5%. The first two plots show the proportion of

methylated reads relative to total reads for each sample s with n̄t,s > 0 or ñt,s > 0,

that is ȳt,s/n̄t,s or ỹt,s/ñt,s. The third plot shows the estimated posterior probability

of the two groups being split, i.e. p(zt = 0|y1:T , θ). The remaining plots show

estimates of the posterior regime probabilities for each group, that is p(r̄t = r|y1:T , θ)

for the control group and p(r̃t = r|y1:T , θ) for the case group with r ∈ [6].
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Figure 2.11: Results from the filter and backward sampling algorithm for a region

in chromosome 6 with qsplit = 0.2%. The first two plots show the proportion of

methylated reads relative to total reads for each sample s with n̄t,s > 0 or ñt,s > 0,

that is ȳt,s/n̄t,s or ỹt,s/ñt,s. The third plot shows the estimated posterior probability

of the two groups being split, i.e. p(zt = 0|y1:T , θ). The remaining plots show

estimates of the posterior regime probabilities for each group, that is p(r̄t = r|y1:T , θ)

for the control group and p(r̃t = r|y1:T , θ) for the case group with r ∈ [6].



Chapter 3

Scalable Bayesian Learning for State

Space Models using Variational Inference

with SMC Samplers

3.1 Introduction

We deal with generic state-space models (SSM) which may be nonlinear and non-

Gaussian. Inference for this important and popular family of statistical models

presents tremendous challenges that has prohibited their widespread applicability.

The key difficulty is that inference on the latent process of the model depends crucially

on unknown static parameters that need to be also estimated. While MCMC samplers

are unsatisfactory because they both fail to produce high dimensional, efficiently-

mixing Markov chains and because they are inappropriate for on-line inference,

sequential Monte Carlo (SMC) methods (Kantas et al., 2015) provide the tools to

construct successful viable implementation strategies. In particular, particle MCMC

(Andrieu et al., 2010) utilises SMC to build generic efficient MCMC algorithms that

provide inferences for both static parameters and latent paths. We provide a scalable

alternative to these methods via an approximation that combines SMC and variational

inference.

We introduce a new variational distribution that unlike recent strand of literature

(Maddison et al., 2017; Naesseth et al., 2018; Le et al., 2018) performs variational

inference also on the static parameters of the SSM. This is essential for various

reasons. First, when there is dependency between static and dynamic parameters

posterior inference may be inaccurate if the joint posterior density is approximated
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by conditioning on fixed values of static parameters. Second, inferring the static

parameter is often the primary problem of interest: for example, for biochemical

networks and models involving Lotka Voltera equations, we are not interested in the

population of the species per se, but we want to infer some chemical rate constants

(such as reaction rates or predation/growth rates), which are parameters of the

transition density; in neuroscience, Bayesian decoding of neural spike trains is often

made via a state-space representation of point processes in which inference for static

parameters is of great importance. Finally, for complex dynamic systems it is often

advisable to improve model compression or interpretability by encouraging sparsity

and such operations may require inference for the posterior densities of the static

parameters.

Our approach differs from Maddison et al. (2017); Naesseth et al. (2018); Le et al.

(2018) that do not include the static parameters in a joint variational density. While

we introduce a variational density of both the static parameters and the latent path

as marginals on an extended space by resorting to sequential Monte Carlo sampling,

joint variational densities for the static parameters and one latent path have been

considered before for instance in Tan and Nott (2018); Quiroz et al. (2018) using

Gaussian variational families that rely on different restrictions for the covariance

matrix such as a factor structure or a sparse Cholesky decomposition of the precision

matrix.

Sampling from the new variational distribution involves running a SMC algorithm

which yields an unbiased estimate of the likelihood for a fixed static parameter value.

Importantly, we show that the SMC algorithm constructs a computational graph that

allows for optimisation of the variational bound using stochastic gradient descent.

We provide some empirical evidence that variational inference on static parameters

can give better predictive performance, either out-of sample in the linear Gaussian

state space model or in-sample for predictive distributions in a multivariate stochastic

volatility model. We also illustrate our method by modelling fairly general intensity

functions in a multivariate Hawkes process model.

3.2 Background

Let us begin by introducing the standard inference problem in a generic SSM, followed

by a review of the SMC approach to sample from a sequence of distributions arising in
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such probabilistic structures. SSMs are characterized by a latent Markov state process

{Xn}n>0 on Rdx and an observable process {Yn}n>0 on Rdy . We follow the standard

convention of using capital letters for random variables and the corresponding lower

case letter to denote their values. The dynamics of the latent states is determined,

conditional on a static parameter vector θ ∈ Θ, by a transition probability density

Xn|(θ,Xn−1 = xn−1, Yn−1 = yn−1) ∼ fθ(·|xn−1, yn−1),

along with an initial density X0 ∼ fθ(·). The observations are assumed to be

conditionally iid given the states with density given by

Yn|(θ,X0:n = x0:n, Y0:n−1 = y0:n−1) ∼ gθ(·|xn),

for any n > 0 with the generic notation x0:n = (x0, ..., xn).

We consider a Bayesian framework and assume θ has a prior density p(θ).

Consequently, for observed data y0:M , we perform inference using the posterior

density

π(θ, x0:M ) := p(θ, x0:M |y0:M ) ∝ p(θ)pθ(x0:M , y0:M ), (3.1)

where the joint density of the latent states and observations given a fixed static

parameter value θ writes as

pθ(x0:M , y0:M ) = γθ(x0:M )

:=fθ(x0)
M∏
n=1

fθ(xn|xn−1, yn−1)
M∏
n=0

gθ(yn|xn). (3.2)

The posterior density p(θ, x0:M |y0:M ) is in general intractable, as is

pθ(x0:M |y0:M ) =
γθ(x0:M )

pθ(y0:M )
, (3.3)

where pθ(y0:M ) =
∫
pθ(x0:M , y0:M )dx0:M . However, an SMC algorithm can be used

to approximate (3.3). A brief review of how this sampling algorithm proceeds is as

follows and further details can be found in Doucet et al. (2000); Doucet and Johansen

(2009).

SMC methods approximate pθ(x0:n|y0:n) using a set of K weighted random samples

X1:K
0:n = (X1

0:n, ..., X
K
0:n), also called particles, having positive weights Wn = W 1:K

n , so

that pθ(x0:n|y0:n) ≈ p̂θ(x0:n|y0:n) =
∑K

k=1W
k
n δXk

0:n
(x0:n). Here, δ denotes the Dirac

delta function. To do so, one starts at n = 0 by sampling Xk
0 from an importance
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density Mφ
0 (·|y0), parametrized with φ, where φ can depend on the static parameters

θ. For any n > 1, we first resample an ancestor variable Akn−1 that represents the

’parent’ of particle Xk
0:n according to Akn−1 ∼ r(·|Wn−1), where r is a categorical

distribution on {1, ...,K} with probabilities Wn−1. We then set Wn−1 = 1
K and

proceed by extending the path of each particle by sampling from a transition kernel

Xk
n ∼M

φ
n (·|yn, X

Akn−1

0:n−1). This yields an updated latent path Xk
0:n = (X

Akn−1

0:n−1, X
k
n) for

which we compute the incremental importance weight

αn(Xk
0:n) =

γθ(X
k
0:n)

γθ(X
k
0:n−1)Mφ

n (Xk
n|yn, X

Akn−1

0:n−1)
.

We set wn(Xk
0:n) = W k

n−1αn(Xk
0:n) as well as W k

n =
wn(Xk

0:n)∑
l wn(Xl

0:n)
and define

Ẑθ,φn :=

n∏
m=0

K∑
k=1

wm(Xk
0:m),

which is an unbiased and strongly consistent estimator of pθ(y0:n), see Del Moral

(1996). A pseudo-code (Algorithm 1) for this standard SMC sampler can be found in

Appendix 3.8.1. It is possible to perform the resampling step only if some condition

on Wn−1 is satisfied, see Algorithm 1. For simplicity, we assume that the particles are

resampled at every step. The density of all variables generated by this SMC sampler

for a fixed static parameter value θ is given by

qφ(x1:K
0:M , a

1:K
0:M−1, l|θ) = wlM

K∏
k=1

Mφ
0 (xk0|y0)

·
M∏
n=1

K∏
k=1

r(akn−1|wn−1)Mφ
n (xkn|yn, x

akn−1

0:n−1),

where l is a final particle index drawn from a categorical distribution with weights

WM . Since Ẑθ,φn is unbiased, we have

Eqφ(x1:K
0:M ,a

1:K
0:M−1,l|θ)

[
Ẑθ,φM

]
= pθ(y0:M ). (3.4)

3.3 Variational bounds for state space models using SMC

samplers

Variational inference (Jordan et al., 1999; Wainwright and Jordan, 2008; Blei et al.,

2017) allows Bayesian inference to scale to large data sets (Hoffman et al., 2013)
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and is applicable to a wide range of models (Ranganath et al., 2014; Kucukelbir

et al., 2017). It generally postulates a family of approximating distributions with

variational parameters that minimize some divergence, most commonly the KL

divergence, between the approximating distribution and the posterior. The quality of

the approximation hinges on the expressiveness of the variational family.

Let qψ(θ) be a distribution on Θ with variational parameters ψ. We aim to

approximate the posterior density p(θ, x0:M |y0:M ) in (3.1) as an appropriate marginal

density of a variational distribution on an extended space. This extended variational

distribution describes auxiliary variables from an SMC sampler and is of the form

qψ,φ(θ, x1:K
0:M , a

1:K
0:M−1, l) := qψ(θ)qφ(x1:K

0:M , a
1:K
0:M−1, l|θ), (3.5)

defined precisely below. Note that sampling from the extended variational distribution

(3.5) just means sampling θ ∼ qψ(θ) and then generate all auxiliary random variables

by running a particle filter using the sampled value θ as the static parameter.

We introduce the proposed variational bound first as a lower bound on

log p(y0:M ) − KL(qψ(θ)||p(θ|y0:M )). We then show that optimizing the proposed

bound means minimizing the KL-divergence between the extended variational dis-

tribution (3.5) and an extended target density that resembles closely the density

targeted in particle MCMC methods.

We can write p(θ|y0:M ) = p(θ)pθ(y0:M )/p(y0:M ). Hence, using the fact that the

likelihood estimator is unbiased (3.4) and due to Jensen’s inequality,

−KL(qψ(θ)||p(θ|y0:M )) + log p(y0:M )

=Eqψ(θ) [log pθ(y0:M ) + log p(θ)− log qψ(θ)]

=Eqψ(θ)

[
logEqφ(x1:K

0:M ,a
1:K
0:M−1,l|θ)

[
Ẑθ,φM

]
+ log

p(θ)

qψ(θ)

]
>Eqψ(θ)

[
Eqφ(x1:K

0:M ,a
1:K
0:M−1,l|θ)

[
log Ẑθ,φM

]
+ log

p(θ)

qψ(θ)

]
=:L(ψ, φ).

In particular, L(ψ, φ) is a lower bound on p(y0:M ) − KL(qψ(θ)||p(θ|y0:M )). This

motivates maximizing L(ψ, φ) with respect to ψ in order to learn an approximation

of the posterior distribution of the static parameter.

Remark 6 (Inference for multiple independent time series). Instead of con-

sidering one latent process {X} and observable process {Y }, we can also consider
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S independent latent processes {Xs}s=1,...,S with corresponding observable processes

{Y s}s=1,...,S described by the same static parameter θ. We obtain a lower bound on

p(y0:M )−KL(qψ(θ)||p(θ|y1
0:M , ..., y

S
0:M )) given by

Eqψ(θ)

[
E∏

s qφ(xs,1:K
0:M ,as,1:K

0:M−1,l
s|θ)

[
S∑
s=1

log Ẑθ,φM,s

]
+ log

p(θ)

qψ(θ)

]
,

where Ẑθ,φM,s is the estimator of pθ(ys0:M ). Note that we can obtain an unbiased

estimate of this bound by sampling an element s ∈ {1, ..., S} and using S · log Ẑθ,φM,s

as an estimate of
∑S

s′=1 log Ẑθ,φM,s′, thereby allowing our method to scale to a large

number of independent time series. For ease of exposition, we formulate our results

for a single time series only.

Next, we show that the variational bound can be represented as the difference

between the log-evidence and the KL divergence between the variational distribution

and an extended target density. More concretely, following Andrieu et al. (2010),

we consider a target density on the extended space Θ × X , X := (Rdx)(M+1)K ×

{1, ...,K}MK+1,

π̃(θ, x1:K
0:M , a

1:K
0:M−1, l) :=

π(θ, xl0:M )

KM+1

qφ(x1:K
0:M , a

1:K
0:M−1, l|θ)

Mφ
0 (x

bl0
0 |y0)

∏M
n=1 r(b

l
n−1|wn−1)Mφ

n (x
bln
n |yn, x

bln−1

0:n−1)
.

Here, we have defined blM = l and bln = a
bln+1
n for n = M − 1, ..., 1, i.e. bln is the

index that the ancestor of particle X l
0:M at generation n had. It follows, using

r(bln|wn−1) = w
bln−1

n−1 , that the ratio between the extended target density and the

variational distribution is given by

π̃(θ, x1:K
0:M , a

1:K
0:M−1, l)

qφ,ψ(θ, x1:K
0:M , a

1:K
0:M−1, l)

=
K−(M+1)p(θ)pθ(x

l
0:M , y0:M )/p(y0:M )

qψ(θ)W l
MM

φ
0 (x

bl0
0 |y0)

∏M
n=1W

bln−1

n−1 M
φ
n (x

bln
n |yn, x

bln−1

0:n−1)
. (3.6)

Proposition 7 (KL divergence in extended space). It holds that

L(ψ, φ) = −KL(qψ,φ||π̃) + log p(y0:M ).

The proof can be found in Appendix 3.8.2. Recall that we have introduced

L(ψ, φ) so that its maximisation pushes the variational approximation of the static

parameter θ closer to its true posterior as measured by the KL divergence. The above
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proposition shows that this objective also minimizes the KL divergence between

densities on an extended space that includes multiple latent paths. To elucidate

further the relation between the variational distribution of a single latent path and

its posterior, we need to introduce a further distribution. Consider the density under

π̃ of the variables generated by a SMC algorithm conditional on a fixed latent path

(xl0:M , b
l
0:M−1). This is known as a conditional SMC algorithm (Andrieu et al., 2010),

with distribution given by

π̃CSMC(x
¬bl0:M
0:M , a

¬bl0:M−1

0:M−1 |θ, x
l
0:M , b

l
0:M )

=
qφ(x1:K

0:M , a
1:K
0:M−1, l|θ)

W l
MM

φ
0 (X

bl0
0 |y0)

M∏
n=1

r(bln−1|Wn−1)Mφ
n (x

bln
n |yn, x

bln−1

0:n−1)

,

where ¬bl0:M are the indices of all particles that are not equal to bl0:M . We obtain

the following corollary proved in Appendix 3.8.3.

Corollary 8 (Marginal KL divergence and marginal ELBO). The KL diver-

gence in the extended space is an upper bound on the KL divergence between the

marginal variational approximation and the posterior, with the gap between bounds

being

KL
(
qψ,φ(θ, x1:K

0:M , a
1:K
0:M−1, l)||π̃(θ, x1:K

0:M , a
1:K
0:M−1, l)

)
−KL

(
qψ,φ(θ, x0:M )||π(θ, xl0:M )

)
=Eqψ,φ(θ,xl0:M ,b

l
0:M )

[
KL(qφ(x

¬bl0:M
0:M , a

¬bl0:M−1

0:M−1 )|θ, xl0:M , b
l
0:M )||π̃CSMC(x

¬bl0:M
0:M , a

¬bl0:M−1

0:M−1 |θ, x
l
0:M , b

l
0:M ))

]
.

Particularly, L is a lower bound compared to the standard ELBO using the marginal

qψ,φ(θ, x0:M ) with xl0:M = x0:M as the variational distribution:

L(ψ, φ) 6 −KL (qψ,φ(θ, x0:M )||π(θ, x0:M )) + log p(y0:M ).

The proposed surrogate objective resembles variational bounds with auxiliary

variables (Salimans et al., 2015; Maaløe et al., 2016; Ranganath et al., 2016) where

the gap between the two bounds is expressed by the KL-divergence between the

variational approximation of the auxiliary variable given the latent variable of interest

and a so-called reverse model. Here, this reverse model is specified by the conditional
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SMC algorithm. The above corollary implies that the variational bound is looser

than the standard ELBO with the auxiliary variables integrated out. This marginal

variational distribution cannot in general be evaluated analytically. However, we can

obtain unbiased estimates of it by computing the log-likelihood estimate under a

conditional SMC algorithm, resembling a particle Gibbs update. This constitutes an

extension of Proposition 1 in Naesseth et al. (2018). We present a proof in Appendix

3.8.4.

Proposition 9 (Marginal variational distribution). We have

qψ,φ(θ, xl0:M , b
l
0:M ) = qψ(θ)γθ(x

l
0:M ) · E

π̃CSMC(x
¬bl

0:M
0:M ,a

¬bl
0:M−1

0:M−1 |θ,xl0:M )

[(
Ẑθ,φM

)−1
]

and there exists c(θ, φ) <∞ so that

KL(qψ,φ(θ, x0:M )||p(θ, x0:M |y0:M ) 6 Eqψ(θ)

[
c(θ, φ)

K

]
+ KL(qψ(θ)||p(θ|y0:M )).

The last inequality in Proposition 9 is a straightforward extension of an analogous

result in the EM setting (Naesseth et al., 2018). It implies that, for fixed variational

parameters ψ and φ, the approximation becomes more accurate for increasing the

number of particles K. The constant c(θ, φ) is of order M and we refer to the

experiments in Naesseth et al. (2018) that illustrate that one can achieve a good

approximation of pθ(x0:M |y0:M ) in a simple model even for M → ∞ by setting

K ∝M . The dependence of the constant c(θ, φ) on the dimension dx of the latent

state or of the static parameter appears more involved. We refer to Huggins et al.

(2019) for details on bounding the divergence between SMC approximations and the

posterior distribution that might yield more explicit bounds for specific models.

Sampling from the variational distribution can be seen as an extension of visu-

alizing the expected importance weighted approximation in Importance Weighted

Auto-Encoders (Cremer et al., 2017). Since this distribution can be high-dimensional,

the preceding proposition gives an alternative to kernel-density estimation.

Lastly, from a different angle, the variational objective can be seen as a sequential

variational-autoencoding (VAE) bound. Indeed, as a consequence of Proposition 7

and equation (3.6), we obtain immediately the following result. We elaborate on it

further in the next section.
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Corollary 10 (Sequential VAE representation). The variational bound can be

written as

L(ψ, φ)

=Eqψ(θ)

[
Eqφ(x1:K

0:M ,a
1:K
0:M−1,l|θ)

[ M∑
n=0

log gθ(yn|xb
l
n
n )− logW bln

n + log
fθ(x

bln
n |x

bln−1

n−1 , yn−1)

Mφ(x
bln
n |yn, x

bln−1

0:n )

]]

− (M + 1) logK −KL(qψ(θ)||p(θ)).

3.4 Related Work

The representation in Corollary 10 allows us to contrast the variational bound

to previously considered sequential VAE frameworks (Chung et al., 2015; Archer

et al., 2015; Fraccaro et al., 2016; Krishnan et al., 2017; Goyal et al., 2017). The

introduced bound contains the cross-entropy between the proposal distribution and

the likelihood common to sequential VAE bounds. However, this reconstruction error

is only evaluated for surviving particles. Similarly, while a sequential VAE framework

includes a KL-divergence between the proposal distribution and the prior transition

probability, the log-ratio of these two densities is only evaluated for a surviving path.

Most work using sequential VAEs have considered observation and state transition

models parametrised by neural networks, and given the high-dimensionality of the

static parameters, have confined their analysis to variational EM inferences. This is

also the case for the approaches in Maddison et al. (2017); Naesseth et al. (2018); Le

et al. (2018), to which this work is most closely related. They have demonstrated

that resampling increases the variational bound compared to a sequential IWAE

(Burda et al., 2015) approach. Rainforth et al. (2018) demonstrated that increasing

the number of particles leads to a worse signal to noise ratio of the gradient estimate

of the proposal parameters in an IWAE setting. Le et al. (2018) suggested to use

fewer particles without resampling for calculating the proposal gradient. A possible

approach left for future work would be to consider a different resampling threshold

for the proposal gradients. Finally, the objective in this work differs from adaptive

SMC approaches optimizing the reverse KL-divergence (or χ2-divergence) between

the posterior and the proposal, cf. Cornebise et al. (2008); Gu et al. (2015).
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3.5 Optimization of the variational bound

The gradient of the variational bound is given by

∇ψ,φL(ψ, φ) = ∇ψ,φEqψ(θ)

[
Eqφ(x1:K

0:M ,a
1:K
0:M−1,l|θ)

[
log Ẑθ,φM

]]
+∇ψEqψ(θ)

[
log

p(θ)

qψ(θ)

]
.

(3.7)

We focus on the gradient of the first expectation and note that the gradient

of the second expectation can be estimated by standard (black-box) approaches in

variational inference, depending of course on the chosen variational approximation.

If for instance the variational distribution over the static parameters is continu-

ously reparametrisable, one can use standard low-variance reparametrised gradients

(Kingma and Welling, 2014; Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2014).

This is the gradient estimator that we use in our experiments in combination with

mean-field variational families. We assume that the proposals Xk
n ∼M

φ
n (·|yn, x

akn−1

0:n−1)

are reparametrisable, i.e. there exists a differentiable deterministic function hφ such

that Xk
n = hφ(X

Akn−1

0:n−1, ε
k
n), with εkn ∼ p(·) continuous and independent of φ. Similarly,

we assume that the variational distribution of the static parameters is reparametris-

able, i.e. there exists a differentiable deterministic function hψ such that θ = hψ(η),

with η ∼ p(·) continuous and independent of ψ. We abbreviate ε = ε1:K
0:M , x = x1:K

0:M

and a = a1:K
0:M−1. Using the product rule, observe that the first gradient in (3.7) is

∇ψ,φ
∫
p(η)p(ε)qφ(a|θ,x) · log Ẑθ,φM d(η,a, ε)

∣∣∣∣
θ=hψ(η),x=hφ(ε)

=

∫
p(η)p(ε)∇ψ,φqφ(a|θ,x) · log Ẑθ,φM d(η,a, ε)

∣∣∣∣
θ=hψ(η),x=hφ(ε)

= Ep(η)p(ε)qφ(a|hψ(η),hφ(ε))

[
∇ψ,φ log Ẑ

hψ(η),φ
M +∇ψ,φ log qφ(a|hψ(η), hφ(ε)) log Ẑ

hψ(η),φ
M

]
.

Analogously to Maddison et al. (2017); Le et al. (2018); Naesseth et al. (2018) in a

variational EM framework, we have also ignored the second summand in the gradient

due to its high variance in our experiments.1 We take Monte Carlo samples of the

expectation above and optimize the bound using Adam (Kingma and Ba, 2014). It is

also possible to use natural gradients (Amari, 1998), see Appendix 3.8.5.

1A differentiable particle filtering algorithm has been suggested recently in Corenflos et al. (2021)

using optimal transport ideas which allows for consistent gradient estimates.
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3.6 Experiments

3.6.1 Linear Gaussian state space models

Regularisation in a high-dimensional model.We illustrate potential benefits of

a fully Bayesian approach in a standard linear Gaussian state space model

fθ(xn|xn−1) = N (Axn−1,Σx), (3.8)

gθ(yn|xn) = N (Bxn,Σy), (3.9)

with initial state distribution X0 ∼ N (A0,Σ0
x) and parameters A,Σx,Σ

0
x ∈ Rdx×dx ,

A0 ∈ Rdx , B ∈ Rdx×dy , and C,Σy ∈ Rdx×dy . Naesseth et al. (2018) have shown in a

linear Gaussian model that learning the proposal yields a higher variational lower

bound compared to proposing from the prior, and the variational bound is close to the

true log-marginal likelihood for both sparse and dense emission matrices B. However,

an EM approach might easily over-fit, unless one employs some regularisation, such

as stopping early if the variational bound decreases on some test set. We demonstrate

this effect by re-examining one of the experiments in Naesseth et al. (2018), setting

(dx, dy) = (10, 3), M = 10 and assume that Σx, Σ0
x and Σy are all identity matrices.

Furthermore, A0 = 0 and (Aij) = α|i−j|+1 with α = 0.42, and B has randomly

generated elements with Bij ∼ N (0, 1). We assume that the proposal density is

Mφ
n+1(xn+1|xn, yn+1) = N (xn+1|Aφxn +Bφyn+1,Σφ),

and Mφ
0 (x0|y0) = N (x0|A0

φ + Bφy0,Σ
0
φ), with Σφ and Σ0

φ diagonal matrices. We

perform both a variational EM approach and a fully approximate Bayesian approach

over the static parameters using K = 4 particles. In the latter case, we place Normal

priors Bij ∼ N (0, 10) and Aij ∼ N (0, 1). Furthermore, we suppose that a priori Σy

is diagonal with variances drawn independently from an Inverse Gamma distribution

with shape and scale parameters of 0.01 each. A mean-field approximation for the

static parameters is assumed. We suppose that the variational distribution over each

element of A and B is a normal distribution and the approximation over the diagonal

elements of Σy is log-normal. For identifiability reasons, we assume that Σx, Σ0
x and

A0 are known. We compare the EM and VB approach in terms of log-likelihoods

on out-of-sample data assuming training and testing on 10 iid sequences. Figure

3.1 shows that in contrast to the VB approach, the EM approach attains a higher
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log-likelihood on the training data with a lower log-likelihood on the test set as the

training progresses.

(a) Log-likelihood on training data. (b) Log-likelihood on testing data.

Figure 3.1: Log-likelihood for linear Gaussian state space models. Log-likelihood

values are computed using Kalman filtering. The static parameters used in the VB

case are the mean of the variational distribution (VB mean) or the samples from the

variational distribution (VB samples) as they are drawn during training.

Approximation bias in a low-dimensional model.Variational approximations

for the latent path can yield biased estimates of the static parameters, see Turner

and Sahani (2011). We illustrate that this bias decreases for increasing K in a two-

dimensional linear Gaussian model, both in an EM and VB setting. We therefore con-

sider inference in a linear Gaussian state space model (3.8-3.9) with two-dimensional

latent states and one-dimensional observations. The state transition matrix is as-

sumed to be determined by the autoregressive parameter λ with A =

λ 0

0 λ

 . We

consider inference over λ as the static parameter and fix B = (1, 1) with Σx and Σy

being identity matrices. We simulate 30 realisations of length M = 100 each using

λ = 0.9. Inference is performed with different initialisations and learning rates over

the simulated datasets. It has been documented in such a linear Gaussian model, see

Turner and Sahani (2011), that Gaussian variational approximations of the latent

path that factorise over the state components underestimate λ. We observe the same
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effect in Figure 3.2a when using just K = 1 particle. However, increasing the number

of particles used during inference reduces this bias. Furthermore, we find that point

estimates of the static parameters show some variation over different simulations,

while an approximate Bayesian approach can be argued to better account for this

uncertainty. The variational distributions for θ for each of the simulations using

K = 100 particles is shown in Figure 3.2b, confirming that they all put significant

mass on the ground truth. Let us remark that these experiments also complement

those in Le et al. (2018), where it is illustrated that increasing K improves learning

point estimates of the static parameters in a Gaussian model with a one-dimensional

latent state. Indeed, as shown next, the marginal variational distribution, cf. Propo-

sition 9, allows not just for dependencies in the latent states across time, but also

across different state dimensions, even if they are independent under the proposal.

(a) Point estimate of the autoregressive pa-

rameter λ in the EM case or the variational

mean in the VB case over 30 simulations for

K ∈ {1, 10, 100} particles.

(b) Variational distribution of the autore-

gressive parameter λ using K = 100

particles for each of the 30 simulations.

Figure 3.2: Inference on the autoregressive parameter λ over 30 simulations of length

M = 100. Ground truth values are λ = 0.9.

Marginal variational distribution in a low-dimensional model. In an addi-

tional experiment, we evaluate if the variational approximation from Proposition 9 of

the latent path matches the distribution of its true posterior. We consider the above

state space model over 2 time steps as in Turner and Sahani (2011). Note that for given

static parameters, the posterior is Gaussian. Indeed, for x = (x
(0)
0 , x

(1)
0 , x

(0)
1 , x

(1)
1 ),



3.6. Experiments 87

where x(i)
n denotes dimension i of xn, we have p(x|y0:1, λ) = N (µx|y,Σx|y) with

Σ−1
x|y =


2 1 −λ 0

1 2 0 −λ

−λ 0 2 1

0 −λ 1 2

 , µx|y = Σx|y


y0

y0

y1

y1

 ,

assuming X0 ∼ N (0, 1
1−λ2 I) is drawn from its stationary distribution. We visualise

the posterior distribution along with the marginal variational distribution

qφ(xl0:M |θ) = γθ(x
l
0:M )E

π̃CSMC(x
¬bl

0:M
0:M ,a

¬bl
0:M−1

0:M−1 |θ,xl0:M )

[(
Ẑθ,φM

)−1
]

in Figure 3.3 using K = 100 particles and 50 samples for the expectation. We find

that the approximation mirrors the true posterior. In particular, it accounts for

explaining-away between different dimensions of the latent state, although we have

used isotropic proposals.

3.6.2 Stochastic volatility models

To show that our method allows inference of latent states and static parameters of

higher dimensions, we consider a multivariate stochastic volatility model,

fθ(xn|xn−1) = N (µ+ diag(a)(xn−1 − µ),Σx),

gθ(yn|xn) = N (0, exp(diag(xn)),

where X0 ∼ N (µ,Σ0
x) with xn, yn, µ, a ∈ RD, and covariance matrix Σx ∈ RD×D,

θ = (µ, a,Σx,Σ
0
x). This model has been considered in Guarniero et al. (2017) using

particle MCMC methods under the restriction that Σx is band-diagonal to reduce

the number of parameters. It is also more general than that entertained in Naesseth

et al. (2018) with Σx assumed diagonal, see also Chib et al. (2009) for a review on

stochastic volatility models. We consider a fully Bayesian treatment as in Guarniero

et al. (2017), applied to the same data set of 90 monthly returns (9/2008 to 2/2016)

of 20 exchange rates with respect to the US dollar as reported by the Federal Reserve

System. The specification of the prior and variational forms of the static parameters

are explained in Appendix 3.8.6. We consider proposals of the form

Mφ(xn+1|yn+1, xn) = N (µ+ diag(a)(xn − µ),Σφ),
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(a) Joint distribution of the latent states at

the second time step.

Top: variational approximation, bottom:

true posterior.

(b) Joint distribution of the first state com-

ponent at the first and second time step.

Top: variational approximation, bottom:

true posterior.

Figure 3.3: Two-dimensional contour plots of the distribution of the latent path over

two time steps and two state components. Function arguments are set to the ground

truth state values as simulated if they are not shown.

where Σφ is diagonal and using K = 50 particles. Densities of the variational

approximation that correspond to the GBP exchange rate can be found in Appendix

3.8.6, Figure 3.4, which are largely similar to those obtained in (Guarniero et al.,

2017). Furthermore, we approximate the one- and two-step predictive distributions

p(ym+p|y0:m) ≈ 1

S

S∑
s=1

K∑
k=1

W k,s
m δ

Xk,s
m+p

pθs(ym+p|Xk,s
m+p)

for p ∈ {1, 2},where θ1, ..., θS ∼ qψ(θ),
∑K

k=1W
k,s
m δXk

m
is the approximation of

pθs(xm|y0:m) by the particle filter and Xs
n ∼ pθs(x

k,s
n |Xs

n−1, Y
k,s
n−1) with Y s

n ∼

pθs(y
k,s
n |Xk,s

n ) for n = m + 1, ...,m + p simulated from the generative model. The

predictive distributions are evaluated using a log scoring rule (Gneiting and Raftery,

2007; Geweke and Amisano, 2010) to arrive at the predictive log-likelihoods in Table

3.1. The full variational approach attains higher predictive log-likelihoods.
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Table 3.1: Average p-step predictive log-likelihoods per observation for the stochastic

volatility model with different number of particles K and number of samples S from

the variational distribution. In the EM case, we run S particle filters with the same

optimal static values, whereas we use S particle filters using a sample of the static

parameters from the variational distribution in the VB case. Mean estimates with

standard deviation in parentheses based on 100 replicates.

(S,K) = (4, 50)

Method p = 1 p = 2

EM 9.697 (0.008) 9.716 (0.008)

VB 9.707 (0.011) 9.728 (0.015)

(S,K) = (20, 100)

Method p = 1 p = 2

EM 9.690 (0.003) 9.713 (0.003)

VB 9.701 (0.004) 9.727 (0.005)

3.6.3 Non-linear stochastic Hawkes processes

There has been an increasing interest in modelling asynchronous sequential data

using point processes in various domains, including social networks (Linderman and

Adams, 2014; Wang et al., 2017), finance (Bacry et al., 2015), and electronic health

(Lian et al., 2015). Recent work (Du et al., 2016; Mei and Eisner, 2017; Xiao et al.,

2017b,a) have advocated the use of neural networks in a black-box treatment of point

process dynamics.

We illustrate that our approach allows scalable probabilistic inference for

continuous-time event data {Tn, Cn}n>0, Tn < Tn+1, where Tn is the time when

the n-th event occurs and Cn ∈ {1, ..., D} is an additional discrete mark associated

with the event. We consider describing such a realisation as a D-variate point process

with intensities λt = hθ(µ+
∑B

b=1 Ξbt), driven by B continuous time processes

Ξbt =
∑
n>1

βbA
b
ne
−βb(t−Tn)1[0,t)(Tn), t > 0,

and a non-negative monotone function hθ. Moreover, µ,An ∈ RD and βb > 0. Impor-

tantly, we allow Abn to depend on Cn, and the i-th component of Abn describes by how
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much the n-th event excites, if (Abn)i > 0, or inhibits, if (Abn)i < 0, subsequent events

of type i. It is possible to view the dynamics as a discrete-time SSM; the essential idea

being that Ξb is piecewise-deterministic between events, see Appendix 3.8.7 for details

along with related work on Hawkes point processes (Hawkes, 1971a). Let us define the

discrete-time latent process Xn+1 = (Zn, An) with Zn = ΞTn , An = vec(A1
n, ..., A

B
n ).

Standard theory about point processes, see Daley and Vere-Jones (2003), implies that

the observation density is given by gθ(tn, cn|zn−1) = λcntn exp
(
−
∑D

i=1

∫ tn
tn−1

λisds
)
,

where our model specification yields λs as a deterministic function between Tn−1 and

Tn given Zn−1. Similar to Mei and Eisner (2017), we set hθ(y) = ν softplus(y/ν) =

ν log(1 + exp(y/ν)) as a scaled softplus function with ν a static parameter. Next,

we specify the dynamics of An. We take the arguable most simple model, assum-

ing fθ(an|an−1, zn−1, cn) = N (
∑

d αdδcnd,
∑

d σ
2
dδcnd) with α1, ..., αD ∈ RBD and

σ2
1, ..., σ

2
D positive diagonal matrices, while remarking in passing that our approach

allows readily for extensions that could include temporal dynamics between succes-

sive intensity jumps or intensity jumps instantaneously correlated across different

marks and time scales. Due to the piecewise deterministic decay of Ξ, note that

Zbn|Zbn−1, A
b
n = e−β

b(Tn−Tn−1)Zbn−1 + βbAbn, so the state transition of the process X

is fully specified.

We apply our model to 20 days of high-frequency financial data for the BUND futures

contract. The data is available as part of the tick library (Bacry et al., 2017) with 4

event types: (i) mid-price up moves, (ii) mid-price down moves, (iii) buyer-initiated

trades leaving the mid-price unchanged and (iv) seller-initiated trades not changing

the mid. We train our model on 15 days and evaluate how well it predicts the type

of the next event on out of sample data from the remaining 5 days.

Table 3.2 reports better predictive performance of the proposed model in comparison

with two benchmark models. First, a linear Hawkes process model estimated using

maximum likelihood. Second, to illustrate that improved predictions might not be

just explained due to inhibitory effects, we also compare against a non-linear Hawkes

model. The latter can be seen, and has been implemented, as a limiting case of

our generative model letting σ2
d → 0, with inference thus performed using stochastic

gradient descent of the negative log-likelihood. Predictions are Monte Carlo samples

of the next event realisation from the generative model. Further details including
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Table 3.2: Prediction metric for different Hawkes process models on the test set of

around 206k events. The stochastic Hawkes model is trained with 20 particles and

uses K ∈ {20, 80} particles during testing.

Method Error rate

next mark

Linear Hawkes 43.3 %

Non-linear Hawkes 40.9 %

Non-linear stochastic Hawkes (K = 20) 40.0%

Non-linear stochastic Hawkes (K = 80) 39.3%

assumptions on the variational distributions and the predictive performance using a

smaller training set are given in Appendix 3.8.8.

3.7 Conclusion

This paper has explored an inference approach that merges the scalability of variational

methods with SMC sampling. We would like to emphasize that our approach is

completely complementary to many recent advances in variational inference that

can be used to parametrize qψ(θ). For instance, one can consider more expressive

variational families (Rezende and Mohamed, 2015; Kingma et al., 2016; Salimans

et al., 2015; Maaløe et al., 2016; Ranganath et al., 2016). Similarly, our Bayesian

approach naturally allows us to incorporate prior knowledge. For instance, one could

place sparsity-inducing priors and impose corresponding variational approximations

(Ingraham and Marks, 2017; Ghosh and Doshi-Velez, 2017; Louizos et al., 2017).

Applying such variational approximations to more expressive autoregressive models

would be an interesting avenue to explore in future work.
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3.8 Appendix

3.8.1 SMC algorithm

3.8.2 Proof of Proposition 7

Consider an SMC algorithm with K particles targeting

πθ(x0:M ) := γ(θ, x0:M )/γM (θ),

where γ(θ, x0:M ) = p(θ, x0:M , y0:M ) is related to the posterior via π(θ, x0:M ) =

γ(θ, x0:M )/ZM . ZM is a normalising constant independent of θ that represents the

marginal likelihood ZM = p(y0:M ). Furthermore, γM (θ) =
∫
γ(θ, x0:M )dx0:M =

p(θ)pθ(y0:M ). We denote the likelihood estimator of this SMC algorithm as Z̃θ,φM .

Following analogous arguments as in Andrieu et al. (2010), we have from the definition

of the importance weights

π̃(θ, x1:K
0:M , a

1:K
0:M−1, l)

qφ,ψ(θ, x1:K
0:M , a

1:K
0:M−1, l)

=
π(θ, xl0:M )K−(M+1)

qψW
l
MM

φ
0 (x

bl0
0 |y0)

∏M
n=1W

bln−1

n−1 M
φ
n (x

bln
n |yn, x

bln−1

0:n−1)

=
π(θ, xl0:M )K−(M+1)

qψ(θ)Mφ
0 (x

bl0
0 |y0)

∏M
n=1M

φ
n (x

bln
n |yn, x

bln−1

0:n−1)

·

∏M
n=0

(∑K
k=1wk(x

k
0:M )

)
∏M
n=0wn(X

bln
0:M )

=
π(θ, xl0:M )Z̃θ,φM
qψ(θ)γ(θ, xl0:M )

=
Z̃θ,φM

qψ(θ)p(y0:M )
.

Note that Z̃θ,φ = p(θ)Ẑθ,φ, where Ẑφ,θ is the SMC likelihood estimator in the main

paper targeting a density proportional to pθ(x0:M , y0:M ), whilst Z̃θ,φ targets a density

proportional to p(θ)pθ(x0:M , y0:M ). Consequently,

KL(qψ,φ||π̃) = −Eqψ,φ

[
log

Z̃θ,φM
qψ(θ)

]
+ log p(y0:M )

=− L(ψ, φ) + log p(y0:M ),

which concludes the proof.
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Algorithm 1 Sampling from qφ(x1:K
0:M , a

1:K
0:M−1, l|θ) via an SMC sampler

1: Input: observations y0:M , prior density pθ, initial density fθ(x0), state transi-

tion density fθ(xn+1|xn, yn), observation density gθ(yn|xn), proposal densities

Mφ
n (xn|yn, x0:n−1), resampling criteria and static parameter value θ.

2: Output: (X1:K
0:M , A

1:K
0:M−1, L) ∼ qφ(·|θ).

3: for k = 1...K do

4: Sample Xk
0 ∼M

φ
0 (·|y0).

5: Set α0(Xk
0 ) =

gθ(y0|Xk
0 )fθ(Xk

0 |y0)

Mφ
0 (Xk

0 )
.

6: Set w0(Xk
0:n) = α0(Xk

0:n)/K.

7: Set W k
0 ∝ w0(Xk

0 ).

8: end for

9: for n = 2...M do

10: if resampling criteria satisfied then

11: for k = 1...K do

12: Sample Akn−1 ∼ r(·|Wn−1).

13: end for

14: Set Wn−1 = ( 1
K , ...,

1
K ).

15: else

16: Set An−1 = (1, ...,K).

17: end if

18: for k = 1...K do

19: Sample Xk
n ∼M

φ
n (·|yn, X

Akn−1

0:n−1).

20: Set Xk
0:n = (Xk

0:n−1, X
k
n).

21: Set αn(Xk
0:n) =

gθ(yn|Xk
n)fθ(Xk

n|X
Akn−1
n−1 ,yn−1)

Mφ
n (Xk

n|yn,X
Akn−1
0:n−1 )

.

22: Set wn(Xk
0:n) = W k

n−1αn(Xk
0:n).

23: Set W k
n ∝ wn(Xk

0:n).

24: end for

25: Sample L = l with probability W l
M

26: end for
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3.8.3 Proof of Corollary 8

Observe that we can write

KL
(
qψ,φ(θ, x1:K

0:M , a
1:K
0:M−1, l)||π̃(θ, x1:K

0:M , a
1:K
0:M−1, l)

)
= Eqψ,φ(θ,xl0:M ,b

l
0:M )

[
E
qφ(x

¬bl
0:M

0:M ,a
¬bl

0:M−1
0:M−1 )|θ,xl0:M ,b

l
0:M )

[
log qψ,φ(θ, xl0:M , b

l
0:M )

+ log qφ(x
¬bl0:M
0:M , a

¬bl0:M−1

0:M−1 |θ, x
l
0:M , b

l
0:M )

]
− log π̃(θ, xl0:M , b

l
0:M )

− log π̃CSMC(x
¬bl0:M
0:M , a

¬bl0:M−1

0:M−1 |θ, x
l
0:M , b

l
0:M )

]
= KL(qψ,φ(θ, xl0:M )||π(θ, xl0:M ))

+ Eqψ,φ(θ,xl0:M ,b
l
0:M )

[
KL(qφ(x

¬bl0:M
0:M , a

¬bl0:M−1

0:M−1 )|θ, xl0:M , b
l
0:M )

∣∣∣∣∣∣
π̃CSMC(x

¬bl0:M
0:M , a

¬bl0:M−1

0:M−1 |θ, x
l
0:M , b

l
0:M ))

]
.

3.8.4 Proof of Proposition 9

We can write the extended target distribution as

π̃(x1:K
0:M , a

1:K
0:M−1, l) =

π(θ, xl0:M )

KM+1
π̃CSMC(x

¬bl0:M
0:M , a

¬bl0:M−1

0:M−1 |θ, x
l
0:M , b

l
0:M ).

This follows from the fact that xl0:M = (x
bl0
0 , ..., x

blM
M ) and that b0:M |xl0:M , θ is uniformly

distributed on {1, ...,K}M+1. Hence, π(θ,xl0:M )

K−(M+1) is the marginal density π̃(θ, xl0:M , b
l
0:M ).

Moreover, the variational approximation of the static parameter θ and latent states

xl0:M , obtained as the marginal of the extended variational distribution, is given by,



3.8. Appendix 95

following similar arguments as in Naesseth et al. (2018),

qψ,φ(θ, xl0:M ) =
qψ,φ(θ, xl0:M , b

l
0:M )

qψ,φ(bl0:M |θ, xl0:M )

=
1

K−(M+1)

∫
qψ,φ(θ, xl0:M , a

l
0:M−1, x

¬bl
0:M , a

¬bl
0:M−1)

d(x¬b
l

0:M , a
¬bl
0:M−1)

= KM+1

∫
qψ(θ)

wlM (xb
l

0:M )∑
l′ w

l′
M (xl

′
0:M )

K∏
k=1

Mφ
0 (xk0|y0)

·
M∏
n=1

wkn−1(x
bkn−1

0:n )∑
l′ w

l′
n−1(x

bl
′
n−1

0:n−1)

Mφ
n (xkn|yn, x

b
akn−1
n−1

0:n−1)

d(x¬b
l

0:M , a
¬bl
0:M−1)

=

∫
qψ(θ)

(
M∏
n=1

γθ(x
l
0:n)

γθ(x
l
0:n−1)

∑
l′ w

l′
n((xl

′
0:n))

)

·
∏

k:k 6=bl0

Mφ
0 (xk0|y0)

·
M∏
n=1

∏
k:k 6=bln

W k
n−1M

φ
n (xkn|yn, x

akn−1

n−1 )d(x¬b
l

0:M , a
¬bl
0:M−1)

= qψ(θ)γθ(x
l
0:M )

· E
π̃CSMC(x

¬bl
0:M

0:M ,a
¬bl

0:M−1
0:M−1 |θ,xl0:M )

[(
Ẑθ,φM

)−1
]

3.8.5 Natural gradients

We have also experimented with optimizing the variational distribution over the static

parameters using natural gradients (Amari, 1998; Martens, 2014) to take into account

the Riemannian geometry of the approximating distributions, as explored previously

for variational approximations, see for instance Honkela et al. (2010); Hoffman et al.

(2013). Recall that we are optimizing over the space of probability distributions qψ(·)

with parameter ψ, for which we can consider a possible metric given by the Fisher

information

I(ψ) = Eqψ(θ)

[
∇ψ log qψ(θ) (∇ψ log qψ(θ))T

]
= −Eqψ(θ)

[
Hlog qψ(θ)

]
,

The last equation assumes that qψ is twice differentiable and Hlog qψ(θ) =(
∂2 log qψ(θ)
∂ψi∂ψj

)
ij

denotes the Hessian. This induces an inner product 〈ψ1, ψ2〉ψ0 =



3.8. Appendix 96

ψT1 F (ψ0)ψ2 locally around ψ0, hence gives rise to a norm || · ||ψ0 . The Fisher infor-

mation matrix is connected to the KL divergence, since the distance in the induced

metric is given approximately by the square root of twice the KL-divergence:

KL(qψ1 ||qψ2) =
1

2
(ψ2 − ψ1)I(ψ1)(ψ2 − ψ1)T +O((ψ2 − ψ1)3),

This follows from a second order Taylor expansion and from using the fact that

Eqψ [∇ψ log qψ] = 0. Recall that the natural gradient of a function L(ψ) is defined by

∇̃ψL(ψ) = I(ψ)−1∇ψL(ψ)

and one can show that under mild assumptions (Martens, 2014),

√
2
∇̃ψL(ψ)

||∇̃ψL(ψ)||ψ
= lim

ε→0

1

ε
argmaxd:KL(qψ+d||qψ)6ε2L(ψ + d).

Thus the natural gradient is the steepest ascent direction with the distance measured

by the KL-divergence. The natural gradient ascent does not depend on the parametri-

sation of qψ as a consequence of the invariance of the KL-divergence with respect to

reparametrisations.

For mean-field approximations, computing the inverse of the Fisher information

matrix simplifies, as the Fisher information has a block-diagonal structure in this

case. We consider both normal and log-normal factors. For a univariate Gaussian

distribution qµ,v with mean µ and variance exp(v)2 parametrized by the logarithm of

the standard deviation v, we obtain ∇µ,v log qµ,v(θ) = (e−2v(θ−µ), e−2v(θ−µ)2−1)T .

Consequently,

I(µ, v) =

e−2v 0

0 2

 .

For a log-normal distribution qa,b(θ), parametrized so that log θ ∼ N (a, exp(b)2), we

have ∇a,b log qa,b(θ) = (e−2b(log(θ)− a), e−2b(log(θ)− a)2 − 1)T and we arrive at the

same form for the Fisher information

I(a, b) =

e−2b 0

0 2

 .

3.8.6 Priors and variational approximations for the stochastic

volatility model

Compared to Guarniero et al. (2017), we choose a different structure of Σx to

guarantee its positive-definiteness, along with slightly different priors. We model
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Σx with its unique Cholesky factorisation (Dellaportas and Pourahmadi, 2012), i.e.

Σx = LLT with L a lower triangular matrix having positive values on its diagonal.

We set Σ0
x as the stationary covariance of the latent state. Independent priors are

placed for ai ∼ U(0, 1) and µi ∼ N (0, 10) as well as Lij ∼ N (0, 10), for i < j

and logLii ∼ N (0, 10). We assume a mean-field variational approximation with

normal factors for µ and for the entries of L below the diagonal and log-normal

factors for its diagonal. Furthermore, ai is assumed to be the sigmoid transform sigm:

x 7→ 1/(1 + e−x) of normally distributed variational factors. We initialized the mean

of L with a diagonal matrix having entries 0.2 and the mean of µi with the logarithm

of the standard deviation of the ith component of the time series. Densities of the

variational approximation for parameters corresponding to the GBP exchange rate

are given in Figure 3.4.

(a) Mean reversion

level µ of the log

volatility related to

the Pound Sterling.

(b) Autoregressive co-

efficient a of the log

volatility related to

the Pound Sterling.

(c) Variance part of

Σx for the error term

of the log volatility

related to the Pound

Sterling.

(d) Covariance part of

Σx for the error term

of the log volatilities

related to the Pound

Sterling and Euro.

Figure 3.4: Density estimates for the parameters related to the Pound Sterling in the

multivariate stochastic volatility model.

3.8.7 Hawkes point processes and state space models

In contrast to linear Hawkes processes (Hawkes, 1971a,b), we also allow for negative

excitations, as explored previously for instance in Brémaud and Massoulié (1996);

Bowsher et al. (2007); Duarte et al. (2016). The values of Ab and βb are commonly

assumed to be fixed through time, while time-varying µ have been considered in various

settings. Stochastic time-varying excitations have been analysed in a probabilistic

setting in Brémaud and Massoulié (2002); Dassios and Zhao (2011). Moreover, Ricci

(2014) considered frequentist inference of the excitation model parameters from a

matrix-valued categorical distribution, while Lee et al. (2016) performed MCMC
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with excitations evolving according to an Ito process in the one-dimensional case.

However, scalable Bayesian inference for non-linear stochastic Hawkes processes has

been missing, with previous variational inference schemes (Linderman and Adams,

2015) having been restricted to linear Hawkes processes due to their resilience on the

branching structure of linear Hawkes processes. SMC methods for shot-noise Cox

processes has been considered in Whiteley et al. (2011); Martin et al. (2013) for on-line

filtering and Finke et al. (2014) for static-parameter inference. While we expect such

methods to scale poorly to models with many parameters and observations, we borrow

their idea of describing the dynamics of the point process using piecewise-deterministic

processes (Davis, 1984), which enables us to employ the proposed inference approach

for discrete-time state space models.

More concretely, since Ξbt follows deterministic dynamics between two events, we

can write Ξbt = Fb(t, Tn,Ξ
b
Tn

) for t ∈ [Tn, Tn+1) with the deterministic function

Fb(t, s, z
b) = e−βb(t−s)zb. Whenever an event of type Cn occurs at time Tn, the

process Ξb jumps with size ∆ΞbTn = βbA
b
n. The process Zbn = ΞbTn , n > 0, satisfies

Ξbt = Fb(t, Tn, Z
b
n) for t ∈ [Tn, Tn+1). Note that we scale each Abn with the diagonal

matrix βb. This ensures that the triggering kernel functions s 7→ βbe−β
bs have L0

norm of one for any b.

3.8.8 Inference and predictions details for Hawkes process models

We place the following priors for the dynamics of A: For any d ∈ {1, ..., D}, αd ∼

⊗DBi=1N (0, 10) and consider mean-field variational approximations having the same

forms. Furthermore, a priori, suppose that µ ∼ ⊗Di=1Ga(0.01, 0.01), diag(σ2
d) ∼

⊗DBi=1Ga(0.01, 0.01) and βb − βb−1 ∼ LN (0, 1), b ∈ {1, ..., B}, β0 = 0, all with a

log-normal variational approximation. Eventually, for the softmax scale parameter,

a priori ν ∼ U(0, 1) with a variational approximation as the sigmoid transform of a

normal factor. The proposal function used is

Mφ(an, zn|an−1, zn−1, tn+1, cn+1, tn, cn) = hφ(an|cn)fθ(zn|zn−1, an−1, tn, cn), (3.10)

with hφ(an|cn) = N (
∑

d α̃dδcnd,
∑

d σ̃
2
dδcnd), α̃d ∈ RBD, σ̃d positive diagonal matrices

and wherefθ describes the determinsitic decay of Zn according to the prior transition

density.

Let us also mention that the observation density contains a one-dimenisonal intractable

integral. We apply Gaussian quadrature to evaluate the integral after transforming
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the quadrature points to better cover the interval immediately after an event where

the intensity function is varying more quickly, see Appendix 3.8.9 for details. We

initialised the variational parameters so that the variational distribution of α is largely

concentrated around the maximum likelihood estimates in a linear Hawkes model

and the variational distribution of ν concentrated around 0. The values of βb are

commonly fixed in a maximum likelihood estimation setting to guarantee concavity of

the log-likelihood. We have chosen B = 5 with (log β1, log(β2−β1), ..., log(β5−β4)) =

(−1, 1, 3, 5, 7) fixed. This allows event interactions across various time scales, ranging

from β1 ≈ 0.36 to β5 ≈ 1268.

We have also split the events in subsamples of length M = 100 each and used the

particles from the previous event-batch as the initial particles for the subsequent

event-batch. We used K = 20 particles and performed optimisation with Adam

(Kingma and Ba, 2014) and step size 0.0001. Similar performance was observed either

using standard or natural gradients for the considered hyperparameters and reported

results correspond to optimisation with standard gradients only.

Regarding inference for the benchmark models, maximum likelihood estimation for

the linear Hawkes model was performed using the tick library (Bacry et al., 2017),

with the fixed time scales β1, ..., β5 given above. Parameters for the non-linear Hawkes

model were estimated using a limiting case of the generative model with very small

σd, K = 1, and proposing the single particle according to the generative model, hence

particularly with small variances σd. Concretely, we consider

fθ(an|an−1, zn−1, cn) = hφ(an|cn) = N

(∑
d

αdδcnd,
∑
d

σdδcnd

)
,

recalling hφ from the definition (3.10) of the proposal function and where for all

d ∈ {1, ..., D},

σd = ε



β−1
1

. . .

β−1
1

. . .

β−1
B

. . .

β−1
B


,
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ε = 0.0001. Stochastic gradient descent then yields point estimates over α1, ..., αD,

decay parameters β1, ..., βB , softmax scale parameter ν and the background intensity

parameter µ. Initial parameters have similary been set to the maximum likelihood

estimates from the linear Hawkes model. We used Adam (Kingma and Ba, 2014)

with step sizes 0.0001 and 0.0005, with the reported result corresponding to the best

performing step size for the considered metric in Table 3.2.

For the prediction of the next mark cm+1 given the observations t1:m, c1:m, we

can sample θ1, ..., θS ∼ qψ(θ) and run a particle filter that yields

K∑
k=1

W k,s
m δ

(Zk,s0:m−1,A
k,s
0:m−1)

(zs0:m−1, a
s
0:m−1)

as an approximation of pθs(zs0:m−1, α
s
0:m−1|t1:m, c1:m). Set

Ẑb,k,sm = e−βb(tm−tm−1)Zb,k,sm−1 +Ab,k,sm ,

with Ak,sm ∼ fθs(·|cm) sampled from the prior transition density. We then sample 10

realisations

tk,s,jm+1, c
k,s,j
m+1 ∼ gθs(tm+1, cm+1|Ẑk,sm ), j = 1, ..., 10,

using the standard thinning algorithm for point processes, see for instance Ogata

(1981); Daley and Vere-Jones (2003); Bowsher et al. (2007). In the stochastic Hawkes

process model, we have chosen S = 4 and K = 20. To account for a similar

computational budget for the benchmark models, we sample 10·4·20 event realisations

in these cases instead. For predicting the next mark cm+1, we use the sampled mark

that occurred most often within {ck,s,jm+1}k,s,j , where the count associated with ck,s,jm+1 is

weighted byW k,s
m . Notice that we do not condition on the observed tm+1 for predicting

cm+1 and the dependence of ck,s,jm+1 on tk,s,jm+1 is accounted for via the thinning procedure.

In the stochastic Hawkes process model, we have also run predictions using K = 80

particles, using the same model trained with K = 20 particles.

In order to show how the different models generalize if less data is available, we

have trained the different models on either the first 100 or 1000 events of one day

and evaluated how well the model performs on predicting the first 10000 events on

another day. We have repeated this procedure for 10 days and found that a fully

Bayesian treatment is beneficial when trained on 100 events. The fully variational
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approach has an error rate of 65%, whilst the same stochastic Hawkes process model

using a point estimate of the static parameters has an error rate of 70%. The two

approaches yield similar results when trained on 1000 events with an error rate of

below 50%, whereas a benchmark non-linear Hawkes model without latent intensity

dynamics has an error rate of 65%. Although a fully Bayesian treatment might not

be necessary if one imposes a parsimonious model for the evolution of the latent

intensity, we hope that this example encourages further point process models that

allow for online Bayesian updating as we feel that intensity excitations with latent

dynamics have been underexplored for Hawkes process models.

3.8.9 Gaussian quadrature of the intensity function

We approximate the integral of the intensity function with Gaussian quadrature,

see for instance Süli and Mayers (2003) for details. Let p1, ..., pn be orthogonal

polynomials in L2[a, b] equipped with the scalar product 〈f, g〉 =
∫ b
a f(t)g(t)dt,

f, g ∈ L2[a, b] with pk having degree k. Note that pk can be constructed recursively

by Gram-Schmidt-orthogonalization. Furthermore, let t1, ..., tn be the roots of pn and

consider the Lagrange polynomials for i = 1, ..., n,

Li(t) =
n∏

j=1,j 6=i

t− tj
ti − tj

,

which satisfy Li(tk) = δik, k = 1, ..., n. Define

wi =

∫ b

a
Li(t)dt

as well as the Gaussian quadrature

In(f) =
n∑
i=1

wif(ti).

Then In(p) =
∫ b
a p(t)dt for polynomials p of degree up to 2n− 1. We are interested in

evaluating
∫ Tmax
Tmin

λi(t)dt for fixed Tmin and Tmax. Here, Tmax is the time of the next

event and we have fixed Tmin to the previous event plus one microsecond. The lowest

resolution of the event timestamps for the considered dataset is one microsecond.

Assume there is a function g such that λ(t) = g(et) . We can write∫ Tmax

Tmin

λ(t)dt =

∫ log Tmax

log Tmin

g(et̃)et̃dt̃.

This motivates the following change of variables that has also been considered in

Bacry et al. (2016) for solving an integral equation involving the kernel function of a



3.8. Appendix 102

Hawkes process. Suppose that t1...tn are the quadrature point with weights w1, ...wn

on [log Tmin, log Tmax]. The transformed quadrature scheme is then

(t̃n, w̃n) = (etn , wne
tn).

We used 50 quadrature points in our experiments.



Chapter 4

Copula-like Variational Inference

4.1 Introduction

Variational inference (Jordan et al., 1999; Wainwright and Jordan, 2008; Blei et al.,

2017) aims at performing Bayesian inference by approximating an intractable

posterior density π with respect to the Lebesgue measure on Rd, based on a

family of distributions which can be easily sampled from. More precisely, this

kind of inference posits some variational family Q of densities (qξ)ξ∈Ξ with re-

spect to the Lebesgue measure and intends to find a good approximation qξ?

belonging to Q by minimizing the Kullback-Leibler (KL) with respect to π over

Q, i.e. ξ? ≈ arg minξ∈Ξ KL(qξ|π). Further, suppose that π(x) = e−U(x)/Z with

U : Rd → R measurable and Z =
∫
Rd e−U(x)dx < ∞ is an unknown normalising

constant. Then, for any ξ ∈ Ξ,

KL(qξ|π) = −
∫
Rd
qξ(x) log

π(x)

qξ(x)
dx = −Eqξ(x) [−U(x)− log qξ(x)] + log Z . (4.1)

Since Z does not depend on qξ, minimizing ξ 7→ KL(qξ|π) is equivalent to maximizing

ξ 7→ log Z−KL(qξ|π). A standard example is Bayesian inference over latent variables x

having a prior density π0 for a given likelihood function L(y1:n|x) and n observations

y1:n = (y1, . . . , yn). The target density is the posterior p(x|y1:n) with U(x) =

− log π0(x)− logL(y1:n|x) and the objective that is commonly maximized,

L(ξ) = Eqξ(x)

[
log π0(x) + logL(y1:n|x)− log qξ(x)

]
(4.2)

is called a variational lower bound or ELBO. One of the main features of variational

inference methods is their ability to be scaled to large datasets using stochastic

approximation methods (Hoffman et al., 2013) and applied to non-conjugate models
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by using Monte Carlo estimators of the gradient (Ranganath et al., 2014; Kingma and

Welling, 2014; Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2014; Kucukelbir

et al., 2017). However, the approximation quality hinges on the expressiveness of the

distributions in Q and restrictive assumptions on the variational family that allow for

efficient computations such as mean-field families, tend to be too restrictive to recover

the target distribution. Constructing an approximation family Q that is both flexible

to closely approximate the density of interest and at the same time computationally

efficient has been an ongoing challenge. Much effort has been dedicated to find flexible

and rich enough variational approximations, for instance by assuming a Gaussian

approximation with different types of covariance matrices. For example, full-rank

covariance matrices have been considered in Barber and Bishop (1998); Jaakkola

and Jordan (1997); Titsias and Lázaro-Gredilla (2014) and low-rank perturbations

of diagonal matrices in Barber and Bishop (1998); Miller et al. (2017); Ong et al.

(2018); Mishkin et al. (2018). Furthermore, covariance matrices with a Kronecker

structure have been proposed in Louizos and Welling (2016); Zhang et al. (2018).

Besides, more complex variational families have been suggested: such as mixture

models (Gershman et al., 2012; Guo et al., 2016; Miller et al., 2017; Locatello et al.,

2018b,a), implicit models (Mescheder et al., 2017; Huszár, 2017; Tran et al., 2017;

Yin and Zhou, 2018; Titsias and Ruiz, 2019), where the density of the variational

distribution is intractable. Finally, variational inference based on normalizing flows

has been developed in Rezende and Mohamed (2015); Kingma et al. (2016); Tomczak

and Welling (2016); Louizos and Welling (2017); Berg et al. (2018). As a special

case and motivated by Sklar’s theorem (Sklar, 1959), variational inference based on

families of copula densities and one-dimensional marginal distributions have been

considered by Tran et al. (2015) where it is assumed that the copula is a vine copula

(Bedford and Cooke, 2001) and by Han et al. (2016) where the copula is assumed

to be a Gaussian copula together with non-parametric marginals using Bernstein

polynomials. Recall that c : [0, 1]d → R+ is a copula density if and only if its marginals

are uniform on [0, 1], i.e.
∫

[0,1]d−1 c(u1, . . . , ud)du1 · · ·dui−1dui+1 · · ·dud = 1[0,1](ui)

for any i ∈ {1, . . . , d} and ui ∈ R. In the present work, we pursue these ideas but

propose instead of using a family of copula densities, simply a family of densities

{cθ : [0, 1]d → R+}θ∈Θ on the hypercube [0, 1]d. This idea is motivated from the fact
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that we are able to provide such a family which is both flexible and allow efficient

computations.

The paper is organised as follow. In Section 4.2, we recall how one can sample more

expressive distributions and compute their densities using a sequence of bijective

and continuously differentiable transformations. In particular, we illustrate how to

apply this idea in order to sample from a target density by first sampling a random

variable U from its copula density c and then applying the marginal quantile function

to each component of U . A new family of copula-like densities on the hypercube is

constructed in Section 4.3 that allow for some flexibility in their dependence structure,

while enjoying linear complexity in the dimension of the state space for generating

samples and evaluating log-densities. A flexible variational distribution on Rd is

introduced in Section 4.4 by sampling from such a copula-like density and then

applying a sequence of transformations that include 1
2d log d rotations over pairs of

coordinates. We illustrate in Section 4.6 that for some target densities arising for

instance as the posterior in a logistic regression model, the proposed density allows for

a better approximation as measured by the KL-divergence compared to a Gaussian

density. We conclude with applying the proposed methodology on Bayesian Neural

Network models.

4.2 Variational Inference and Copulas

In order to obtain expressive variational distributions, the variational densities can

be transformed through a sequence of invertible mappings, termed normalizing flows

(Rezende et al., 2014). To be more specific, assume a series {Tt : Rd → Rd}Tt=1 of

C1-diffeomorphisms1 and a sample X0 ∼ q0, where q0 is a density function on Rd.

Then the random variable XT = TT ◦ TT−1 ◦ · · · ◦ T1(X0) has a density qT that

satisfies

log qT (xT ) = log q0(x)−
T∑
t=1

log det

∣∣∣∣∂Tt(xt)

∂xt

∣∣∣∣ , (4.3)

with xt = Tt ◦Tt−1 ◦ · · · ◦T1(x). To allow for scalable inferences with such densities,

the transformations Tt must be chosen so that the determinant of their Jacobians

can be computed efficiently. One possibility that satisfies this requirement is to

choose volume-preserving flows that have a Jacobian-determinant of one. This can
1Recall that f : Rd → Rd is a C1-diffeomorphisms if f is a bijection and f and f−1 are continuously

differentiable.
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be achieved by considering transformations Tt : x 7→ Htx where Ht is an orthogonal

matrix as proposed in Tomczak and Welling (2016) using a Householder-projection

matrix Ht.

An alternative construction of the same form can be used to construct a density

using Sklar’s theorem (Sklar, 1959; Moore and Spruill, 1975). It establishes that given

a target density π on (Rd,B(Rd)), there exists a continuous function C : [0, 1]d → [0, 1]

and a probability space supporting a random variable U = (U1, . . . , Ud) valued in

[0, 1]d, such that for any x ∈ Rd, and u ∈ [0, 1]d,

P (U1 6 u1, · · · , Ud 6 ud) = C(u1, · · · , ud) (4.4)

and
∫ x1

−∞
. . .

∫ xd

−∞
π(t)dt = C(F1(x1), . . . , Fd(xd))

where for any i ∈ {1, . . . , d}, Fi is the cumulative distribution function associated

with πi, so for any xi ∈ R, Fi(xi) =
∫ xi
−∞ πi(ti)dti and πi is the i

th marginal of π, so

for any xi ∈ R, πi(xi) =
∫
Rd−1 π(x)dx1 · · ·dxi−1dxi+1 · · ·dxd. To illustrate how one

can obtain such a continuous function C and random variable U , recall that πi is

assumed to be absolutely continuous with respect to the Lebesgue measure. Then for

(X1, . . . , Xd) ∼ π, the random variable U = G−1(X) = (F1(X1), . . . , Fd(Xd)), where

G : [0, 1]d → Rd, with

G : u 7→ (F−1
1 (u1), . . . , F−1

d (ud)), (4.5)

follows a law on the hypercube with uniform marginals. It can be readily shown that

the cumulative distribution function C of U is continuous and satisfies (4.4). Note

that taking the derivative of (4.4) yields

π(x) = c(F1(x1), . . . , Fd(xd))

d∏
i=1

πi(xi) ,

where c(u1, . . . , ud) = ∂
∂u1
· · · ∂

∂ud
C(u1, . . . , ud) is a copula density function by defini-

tion of C. One possibility to approximate a target density π is then to consider a

parametric family of copula density functions (cθ)θ∈Θ for Θ ∈ Rpc and one parametric

family of a d-dimensional vector of density functions (f1, . . . , fd)φ∈Φ : Rd → Rd for

Φ ⊂ Rpf , and try to estimate θ ∈ Θ and φ ∈ Φ to get a good approximation of π via

variational Bayesian methods. This idea was proposed by Han et al. (2016) and Tran
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et al. (2015), where Gaussian and vine copulas were used, respectively. The main

hurdle for using such family is their computational cost which can be prohibitive since

the dimension of Θ is of order d2. We remark that for latent Gaussian models with

certain likelihood functions, a Gaussian variational approximation can scale linearly

in the number of observations by using dual variables, see Opper and Archambeau

(2009); Khan et al. (2013).

4.3 Copula-like Density

In this paper, we consider another approach which relies on a copula-like density

function on [0, 1]d. Indeed, instead of an exact copula density function on [0, 1]d with

uniform marginals, we consider simply a density function on [0, 1]d which allows to

have a certain degree of freedom in the number of parameters we want to use.

We would like to remark that we have introduced a copula function C in

probabilistic terms as a joint cumulative distribution function on the hypercube

with uniform marginals. An equivalent definition can be given in analytical terms if

C : [0, 1]d → [0, 1] satisfies the following three conditions:

(i) C is grounded, i.e. C(u1, . . . , ud) = 0 whenever ui = 0 for at least one

component i ∈ {1, . . . , d}.

(ii) C is d-increasing, i.e. for all u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ [0, 1]d with

ui < vi for all i ∈ {1, . . . , d}, it holds that∑
(w1,...wd)∈×di=1{ui,vi}

(−1)|{i : wi=ui}|C(w1, . . . , wd) > 0.

(iii) C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , d} and ui ∈ [0, 1].

It is clear that for any density c on the hypercube, the function

C(u1, . . . , ud) =

∫ u1

0
· · ·
∫ ud

0
c(t1, . . . , td)dt1 . . . dtd

is grounded and maps the hypercube onto [0, 1]. It is also possible to show that

for the random variable (U1, . . . , Ud) with cumulative distribution C, one has the

d-increasing property

0 6P

(
d⋂
i=1

{ui < Ui < vi}

)
=

∑
(w1,...wd)∈×di=1{ui,vi}

(−1)|{i : wi=ui}|C(w1, . . . , wd),
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see Mai and Scherer (2017) for details. However, property (iii) does not hold necessarily.

The family of copula-like densities that we consider is given by

cθ(v1, . . . , vd) =
Γ(α∗)

B(a, b)

[
d∏
`=1

{
vα`−1
`

Γ(α`)

}]
(v∗)−α

∗
·
(

max
i∈{1,...,d}

vi

)a [(
1− max

i∈{1,...,d}
vi

)b−1
]
,

(4.6)

with the notation v∗ =
∑d

i=1 vi and α∗ =
∑d

i=1 αi. Therefore θ =

(a, b, (αi)i∈{1,...,d}) ∈ (R∗+ × R∗+ × (R∗+)d) = Θ. The following probabilistic con-

struction is proven in Appendix 4.8.1 to allow for efficient sampling from the proposed

copula-like density.

Proposition 11. Let θ ∈ Θ and suppose that

1. (W1, . . . ,Wd) ∼ Dirichlet(α1, . . . , αd);

2. G ∼ Beta(a, b);

3. (V1, . . . , Vd) = (GW1/W
∗, . . . , GWd/W

∗), where W ∗ = maxi∈{1,...,d}Wi.

Then the distribution of (V1, . . . , Vd) has density with respect to the Lebesgue measure

given by (4.6).

The proposed distribution builds up on Beta distributions, as they are the

marginals of the Dirichlet distributed random variable W ∼ Dir(α), which is then

multiplied with an independent random variable G ∼ Beta(a, b). The resulting

random variable Y = WG follows a Beta-Liouville distribution, which allows to

account for negative dependence, inherited from the Dirichlet distribution through

a Beta stick-breaking construction, as well as positive dependence via a common

Beta-factor. More precisely, one obtains

Cor(Yi, Yj) = cij

(
E[G2]

α? + 1
− E[G]2

α?

)
,

for some cij > 0 and α? =
∑d

k=1 αk, cf. Fang (2017). Proposition 11 shows that

one can transform the Beta-Liouville distribution living within the simplex to one

that has support on the full hypercube, while also allowing for efficient sampling and

log-density evaluations.

Now note that also V − = (1−V1, . . . 1−Vd) is a sample on the hypercube if V ∼ cθ,

as is the convex combination U = (U1, . . . , Ud), where Ui = δiVi + (1− δi)(1− Vi) for
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any δ ∈ [0, 1]d. Put differently, we can write U = H (V ), where

H : v 7→ (1− δ) Id +{diag(2δ)− Id}v , (4.7)

and Id is the identity operator. It is straightforward to see that H is a C1-

diffeomorphism for δ ∈ ([0, 1]\{0.5})d from the hypercube into I1 × · · · × Id, where

Ii = [δi, 1− δi] if δi ∈ [0, 0.5) and Ii = [1− δi, δi] if δi ∈ (0.5, 1]. Note that

the Jacobian-determinant of H is efficiently computable and is simply equal to

|
∏d
i=1(2δi − 1)| for δ ∈ [0, 1]d.

We suggest to take initially at random δ ∈ [0, 1]d for the transformation H such

that

P(δi = ε) = p and P(δi = 1− ε) = 1− p (4.8)

with p, ε ∈ (0, 1). In our experiments, we set ε = 0.01 and p = 1/2. We found that

choosing a different (large enough) value of ε tends to yield no large difference, as this

choice will get balanced by a different value of the standard deviation of the Gaussian

marginal transformation. The motivation to consider U = H (V ) with V ∼ cθ was

first numerical stability since we need to compute quantile functions only on the

interval [ε, 1− ε] using this transformation. Second, this transformation can increase

the flexibility of our proposed family. We found empirically that the components of

V ∼ cθ tend to be non-negative in higher dimensions. However, using sometimes

(more) the antithetic component of V by considering U = H (V ), the transformed

density can also describe negative dependencies in high dimensions. What comes

to mind to obtain a flexible density is then to either optimize over the parameter δ

parametrising the transformation H or considering δ as an auxiliary variable in the

variational density, resorting to techniques developed for such hierarchical families,

see for instance (Ranganath et al., 2016; Yin and Zhou, 2018; Titsias and Ruiz,

2019). However, this proved challenging in an initial attempt, since for δi = 0.5, the

transformation H becomes non-invertible, while restricting δ on say δ ∈ {ε, 1− ε}d,

ε ≈ 0, seemed less easy to optimize. Consequently, we keep δ fixed after sampling it

initially according to (4.8). A sensible choice was p = 1/2 since it leads to a balanced

proportion of components of δ equal to ε and 1 − ε. However, the sampled value

of δ might not be optimal and we illustrate in the next section how the variational

density can be made more flexible. We found empirically that not applying H or
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setting for instance δi = 0.99 for all i ∈ {1, . . . , d} can lead to poor performance, see

for example the Bayesian neural network in Section 4.6.4, where such an approach

yields larger error rates than a mean-field model. To further illustrate the novel

density on the hypercube, we show estimates of the empirical correlation matrix and

the marginal distribution of the first component. We consider d = 100 with a = 5,

b = 1 and αi = c for any i ∈ {1, . . . , d} for different choices of c ∈ {0.2, 1, 5} in Figure

4.1. It can be observed that the marginal distribution is not uniform and that the

correlations tend to be non-negative. We also show the empirical correlation matrix

and the marginal distribution if one applies the transformation H to samples from

cθ with δ sampled according to (4.8) in Figure 4.2.

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Empirical correlation matrix based on 50000 samples from cθ with

concentration parameter c = 0.2 in 4.1a, c = 1 in 4.1b and c = 5 in 4.1c. Kernel

density estimate for the marginal distribution of the first component of cθ with

concentration parameter c = 0.2 in 4.1d, c = 1 in 4.1e and c = 5 in 4.1f.

4.4 Rotated Variational Density

We propose to apply rotations to the marginals in order to improve on the initial

orientation that results from the sampled values of δ. Rotated copulas have been used

before in low dimensions, see for instance Kosmidis and Karlis (2016), however, the

set of orthogonal matrices has d(d− 1)/2 free parameters. We reduce the number of

free parameters by considering only rotation matrices Rd that are given as a product



4.4. Rotated Variational Density 111

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Empirical correlation matrix based on 50000 samples from cθ after

applying the transformation H with concentration parameter c = 0.2 in 4.2a, c = 1

in 4.2b and c = 5 in 4.2c. Kernel density estimate for the marginal distribution of

the first component of cθ with concentration parameter c = 0.2 in 4.2d, c = 1 in 4.2e

and c = 5 in 4.2f.

of d/2 log d Givens rotations, following the FFT-style butterfly-architecture proposed

in Genz (1998), see also Mathieu and LeCun (2014) and Munkhoeva et al. (2018)

where such an architecture was used for approximating Hessians and kernel functions,

respectively. Recall that a Givens rotation matrix (Golub and Van Loan, 2012) is

a sparse matrix with one angle as its parameter that rotates two dimensions by

this angle. If we assume for the moment that d = 2k, k ∈ N∗, then we consider k

rotation matrices denoted O1, . . .Ok where for any i ∈ {1, . . . , k}, Oi contains d/2

independent rotations, i.e. is the product of d/2 independent Givens rotations. Givens

rotations are arranged in a butterfly architecture that provides for a minimal number

of rotations so that all coordinates can interact with one another in the rotation

defined by Rd. For illustration, consider the case d = 4, where the rotation matrix is

fully described using 4− 1 parameters ν1, ν2, ν3 ∈ R by R4 = O1O2 with

O1O2 =


c1 −s1 0 0

s1 c1 0 0

0 0 c3 −s3

0 0 s3 c3




c2 0 −s2 0

0 c2 0 −s2

s2 0 c2 0

0 s2 0 c2

 =


c1c2 −s1c2 −c1s2 s1s2

s1c2 c1c2 −s1s2 −c1ss

c3s2 −s3s2 c3c2 −s3cs

s3s2 c3s2 s3c2 c3c2

 ,
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where ci = cos(νi) and si = sin(νi). We provide a precise recursive definition of

Rd in Appendix 4.8.2 where we also describe the case where d is not a power of

two. In general, we have a computational complexity of O(d log d), due to the fact

that Rd is a product of O(log d) matrices each requiring O(d) operations. Moreover,

note that Rd is parametrized by d − 1 parameters (νi)i∈{1...d−1} and each Oi can

be implemented as a sparse matrix, which implies a memory complexity of O(d).

Furthermore, since Oi is orthonormal, we have O−1
i = O>i and |detOi| = 1.

To construct an expressive variational distribution, we consider as a base distri-

bution q0 the proposed copula-like density cθ. We then apply the transformations

T1 = H and T2 = G . The operator G in (4.5) is defined via quantile func-

tions of densities f1, . . . , fd, for which we choose Gaussian densities with parameter

φf = (µ1, . . . , µd, σ
2
1, . . . , σ

2
d) ∈ Rd × Rd+. As a final transformation, we apply the

volume-preserving operator

T3 : x 7→ O1 · · · Olog dx (4.9)

that has parameter φR = (ν1, . . . , νd−1) ∈ Rd−1. Altogether, the parameter for the

marginal-like densities that we optimize over is φ = (φf , φR) and simulation from the

variational density boils down to the following algorithm.

Algorithm 2 Sampling from the rotated copula-like density.
1: Sample (V1, . . . , Vd) ∼ cθ using Proposition 11.

2: Set U = H (V ) where H is defined in (4.7).

3: Set X ′ = G (U), where G is defined in (4.5).

4: Set X = T3(X ′), where T3 is defined in (4.9).

Note that we apply the rotations after we have transformed samples from the

hypercube into Rd, as the hypercube is not closed under Givens rotations. The

variational density can then be evaluated using the normalizing flow formula (4.3).

We optimize the variational lower bound L in (4.2) using reparametrization gradients,

proposed by Kingma and Welling (2014); Rezende et al. (2014); Titsias and Lázaro-

Gredilla (2014), but with an implicit reparametrization, cf. Figurnov et al. (2018),

for Dirichlet and Beta distributions. Such reparametrized gradients for Dirichlet and

Beta distributions are readily available for instance in tensorflow probability (Dillon

et al., 2017). Using Monte Carlo samples of unbiased gradient estimates, one can
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optimize the variational bound using some version of stochastic gradient descent. A

more formal description is given in Appendix 4.8.3.

We would like to remark that such sparse rotations can be similarly applied to

proper copulas. While there is no additional flexibility by rotating a full-rank Gaussian

copula, applying such rotations to a Gaussian copula with a low-rank correlation

yields a Gaussian distribution with a more flexible covariance structure if combined

with Gaussian marginals. In our experiments, we therefore also compare variational

families constructed by sampling (V1, . . . , Vd) from an independence copula in step 1

in Algorithm 2, i.e. Vi are independent and uniformly distributed on [0, 1] for any

i ∈ {1, . . . , d}, which results approximately in a Gaussian variational distribution if

the effect of the transformation H is neglected. However, a more thorough analysis

of such families is left for future work. Similarly, transformations different from the

sparse rotations in step 4 in Algorithm 2 can be used in combination with a copula-like

base density. Whilst we include a comparison with a simple Inverse Autoregressive

Flow (Kingma et al., 2016) in our experiments, a more exhaustive study of non-linear

transformations is beyond the scope of this work.

4.5 Related Work

Conceptually, our work is closely related to Tran et al. (2015); Han et al. (2016). It

differs from Tran et al. (2015) in that it can be applied in high dimensions without

having to search first for the most correlated variables using for instance a sequential

tree selection algorithm (Dissmann et al., 2013). The approach in Han et al. (2016)

considered a Gaussian dependence structure, but has only been considered in low-

dimensional settings. On a more computational side, our approach is related to

variational inference with normalizing flows (Rezende and Mohamed, 2015; Kingma

et al., 2016; Tomczak and Welling, 2016; Louizos and Welling, 2017; Berg et al.,

2018). In contrast to these works that introduce a parameter-free base distribution

commonly in Rd as the latent state space, we also optimize over the parameters of the

base distribution which is supported on the hypercube instead, although distributions

supported for instance on the hypersphere as a state space have been considered in

Davidson et al. (2018). Moreover, such approaches have been often used in the context

of generative models using Variational Auto-Encoders (VAEs) (Kingma and Welling,

2014), yet it is in principle possible to apply the proposed variational copula-like
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inference in an amortized fashion for VAEs.

A somewhat similar copula-like construction in the context of importance sampling

has been proposed in Dellaportas and Tsionas (2018). However, sampling from this

density requires a rejection step to ensure support on the hypercube, which would

make optimization of the variational bound less straightforward. Lastly, Khaled and

Kohn (2017) proposed a method to approximate copulas using mixture distributions,

but these approximations have not been analysed neither in high dimensions nor in

the context of variational inference.

4.6 Experiments

4.6.1 Bayesian Logistic Regression

Consider the target distribution π on (Rd,B(Rd)) arising as the posterior of a d-

dimensional logistic regression, assuming a Normal prior π0 = N (0, τ−1I), τ = 0.01,

and likelihood function L(yi|x) = f(yix>ai), f(z) = 1/(1 + e−z) with n observations

yi ∈ {−1, 1} and fixed covariates ai ∈ Rd for i ∈ {1, . . . n}. We analyse a previously

considered synthetic dataset where the posterior distribution is non-Gaussian, yet it

can be well approximated with our copula-like construction. Concretely, we consider

the synthetic dataset with d = 2 as in Murphy (2012), Section 8.4 and Khan et al.

(2018) by generating 30 covariates a ∈ R2 from a Gaussian N ((1, 5)>, I) for instances

in the first class, while we generate 30 covariates from N ((−5, 1)>, 1.12I) for instances

in the second class. Samples from the target distribution using a Hamiltonian Monte

Carlo (HMC) sampler (Duane et al., 1987; Neal, 2011) are shown in Figure 4.3a and

one observes non-Gaussian marginals that are positively correlated with heavy right

tails. Using a Gaussian variational approximation with either independent marginals

or a full covariance matrix as shown in Figure 4.3b does not adequately approximate

the target distribution. Our copula-like construction is able to approximate the

target more closely, both without any rotations (Figure 4.3c) and with a rotation of

the marginals (Figure 4.3d). This is also supported by the ELBO obtained for the

different variational families given in Table 4.1.

4.6.2 Centred Horseshoe Priors

We illustrate our approach in a hierarchical Bayesian model that posits a priori a

strong coupling of the latent parameters. As an example, we consider a Horseshoe
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Table 4.1: Comparison of the ELBO between different variational families for the

logistic regression experiment.

Variational family ELBO

Mean-field Gaussian -3.42

Full-covariance Gaussian -2.97

Copula-like without rotations -2.30

Copula-like with rotations -2.19

(a) (b) (c) (d)

Figure 4.3: Target density for logistic regression using a HMC sampler in 4.3a with

different variational approximations: Gaussian variational approximation with a full

covariance matrix in 4.3b, copula-like variational approximation without any rotation

in 4.3c and copula-like variational approximation with a rotation in 4.3d.

prior (Carvalho et al., 2010) that has been considered in the variational Gaussian

copula framework in Han et al. (2016). To be more specific, consider the generative

model y|λ ∼ N (0, λ), with λ ∼ C+(0, 1), where C+ is a half-Cauchy distribution,

i.e. X ∼ C+(0, b) has the density p(x) ∝ 1R+(x)/(x2 +b2) . Note that we can represent

a half-Cauchy distribution with Inverse Gamma and Gamma distributions using X ∼

C+(0, b) ⇐⇒ X2|Y ∼ IG(1/2, 1/Y );Y ∼ IG(1/2, 1/b2), see Neville et al. (2014),

with a rate parametrisation of the inverse gamma density p(x) ∝ 1R+(x)xa−1e−b/x

for X ∼ IG(a, b). We revisit the toy model in Han et al. (2016) fixing y = 0.01. The

model thus writes in a centred form as η ∼ G(1/2, 1) and λ|η ∼ IG(1/2, η). Following

Han et al. (2016), we consider the posterior density on R2 of the log-transformed

variables (x1, x2) = (log η1, log λ1). In Figure 4.4, we show the approximate posterior

distribution using a Gaussian family (4.4b) and a copula-like family (4.4c), together
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with samples from a HMC sampler (4.4a). A copula-like density yields a higher ELBO,

see Table 4.2. The experiments in Han et al. (2016) have shown that a Gaussian

copula with a non-parametric mixture model fits the marginals more closely. To

illustrate that it is possible to arrive at a more flexible variational family by using a

mixture of copula-like densities, we have used a mixture of 3 copula-like densities in

Figure 4.4d. Note that it is possible to accommodate multi-modal marginals using a

Gaussian quantile transformation with a copula-like density. Eventually, the flexibility

of the variational approximation can be increased using different complementary

work. For instance, one could use the new density within a semi-implicit variational

framework (Yin and Zhou, 2018) whose parameters are the output of a neural network

conditional on some latent mixing variable.

Table 4.2: Comparison of the ELBO between different variational families for the

centred horseshoe model.

Variational family ELBO

Mean-field Gaussian -1.24

Full-covariance Gaussian -0.04

Copula-like 0.04

3-mixture copula-like 0.08

(a) (b) (c) (d)

Figure 4.4: Target density for the horseshoe model using a HMC sampler in 4.4a

with different variational approximations: Gaussian variational approximation with

a full covariance matrix in 4.4b, copula-like variational approximation including a

rotation in 4.4c and a mixture of three copula-like densities with a one rotation and

marginal-like density in 4.4d.
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4.6.3 Bayesian Neural Networks with Normal Priors

We consider an L-hidden layer fully-connected neural network where each layer l,

1 6 l 6 L + 1 has width dl and is parametrised by a weight matrix W l ∈ Rdl−1×dl

and bias vector bl ∈ Rdl . Let h1 ∈ Rd0 denote the input to the network and f

be a point-wise non-linearity such as the ReLU function f(a) = max{0, a} and

define the activations al ∈ Rdl by al+1 =
∑

i h
l
iW

l
i· + bl for l > 1, and the post-

activations as hl = f(al) for l > 2. We consider a regression likelihood function

L(·|aL+2, σ) = N (aL+2, exp(0.5σ)), and denote the concatenation of all parameters

W , b and σ as x. We assume independent Normal priors for the entries of the

weight matrix and bias vector with mean 0 and variance σ2
0 . Furthermore, we assume

that log σ ∼ N (0, 16). Inference with the proposed variational family is applied on

commonly considered UCI regression datasets, repeating the experimental set-up

used in Gal and Ghahramani (2016). In particular, we use neural networks with

ReLU activation functions and one hidden layer of size 50 for all datasets with the

exception of the protein dataset that utilizes a hidden layer of size 100. We choose

the hyper-parameter σ2
0 ∈ {0.01, 0.1, 1., 10., 100.} that performed best on a validation

dataset in terms of its predictive log-likelihood. Optimization was performed using

Adam (Kingma and Ba, 2014) with a learning rate of 0.002. We compare the

predictive performance of a copula-like density cθ and an independent copula as a

base distribution in step 1 of Algorithm 2 and we apply different transformations T3

in step 4 of Algorithm 2: a) the proposed sparse rotation defined in (4.9); b) T3 = Id;

c) an affine autoregressive transformation T3(x) = {x − fµ(x)}exp(−fα(x)), see

Kingma et al. (2016), also known as an inverse autogressive flow (IAF). Here fµ and

fα are autoregressive neural networks parametrized by µ and α satisfying ∂fµ(x)i
∂xj

=

∂fα(x)i
∂xj

= 0 for i 6 j and which can be computed in a single forward pass by

properly masking the weights in the neural networks (Germain et al., 2015). In our

experiments, we use a one-hidden layer fully-connected network with width dIAF1 = 50

for fµ and fα. Note that for a d-dimensional target density, the size of the weight

matrices are of order d · dIAF1 , implying a higher complexity compared to the sparse

rotation. We also compare the predictions against Bayes-by-Backprop (Blundell et al.,

2015) using a mean-field model, with the results as reported in Mishkin et al. (2018)

for a mean-field Bayes-by-Backprop and low-rank Gaussian approximation proposed
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Table 4.3: Variational approximations with transformations and different base distri-

butions. Test root mean-squared error for UCI regression datasets. Standard errors

in parenthesis.

Copula-like Independent copula Copula-like Independent copula

with rotation with rotation with IAF with IAF

Boston 3.43 (0.22) 3.51 (0.30) 3.21 (0.27) 3.61 (0.28)

Concrete 5.76 (0.14) 6.00 (0.13) 5.41 (0.10) 5.82 (0.11)

Energy 0.55 (0.01) 2.28 (0.11) 0.53 (0.02) 1.30 (0.10)

Kin8nm 0.08 (0.00) 0.08 (0.00) 0.08 (0.00) 0.08 (0.00)

Naval 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Power 4.02 (0.04) 4.19 (0.04) 4.05 (0.04) 4.15 (0.04)

Wine 0.64 (0.01) 0.64 (0.01) 0.64 ( 0.01) 0.64 (0.01)

Yacht 1.35 (0.08) 1.38 (0.12) 0.96 (0.06) 1.25 (0.09)

Protein 4.20 (0.01) 4.51 (0.04) 4.31 (0.01) 4.51 (0.03)

therein called SLANG. Furthermore, we also report the results for Dropout inference

(Gal and Ghahramani, 2016). The test root mean-squared errors are given in Table

4.3 and Table 4.4; the predictive test log-likelihood can be find in the Appendix 4.8.5

in Table 4.6 and Table 4.7. We can observe from Table 4.3 and Table 4.6 that using a

copula-like base distribution instead of an independent copula improves the predictive

performance, using either rotations or IAF as the final transformation. The same

tables also indicate that for a given base distribution, the IAF tends to outperform

the sparse rotations slightly. Table 4.4 and Table 4.7 suggest that copula-like densities

without any transformation in the last step can be a competitive alternative to a

benchmark mean-field or Gaussian approximation. Dropout tends to perform slightly

better. However, note that Dropout with a Normal prior and a variational mixture

distribution that includes a Dirac delta function as one component gives rise to a

different objective, since the prior is not absolutely continuous with respect to the

approximate posterior, see Hron et al. (2018).

4.6.4 Bayesian Neural Networks with Structured Priors

We illustrate our approach on a larger Bayesian neural network. To induce sparsity

for the weights in the network, we consider a (regularised) Horseshoe prior (Piironen
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Table 4.4: Copula-like variational approximation without rotations and benchmark

results. Test root mean-squared error for UCI regression datasets. Standard errors in

parenthesis.

Copula-like Bayes-by-Backprop SLANG Dropout

without rotation (Mishkin et al., 2018) (Mishkin et al., 2018) (Mishkin et al., 2018)

Boston 3.22 (0.25) 3.43 (0.20) 3.21 (0.19) 2.97 (0.19)

Concrete 5.64 (0.14) 6.16 (0.13) 5.58 (0.12) 5.23 (0.12)

Energy 0.52 (0.02) 0.97 (0.09) 0.64 (0.04) 1.66 (0.04)

Kin8nm 0.08 (0.00) 0.08 (0.00) 0.08 (0.00) 0.10 (0.01)

Naval 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01)

Power 4.05 (0.04) 4.21 (0.03) 4.16 (0.04) 4.02 (0.04)

Wine 0.65 (0.01) 0.64 (0.01) 0.65 ( 0.01) 0.62 (0.01)

Yacht 1.23 (0.08) 1.13 (0.06) 1.08 (0.09) 1.11 (0.09)

Protein 4.31 (0.02) NA NA 4.27 (0.01)

et al., 2017) that has also been used increasingly as an alternative prior in Bayesian

neural network to allow for sparse variational approximations, see Louizos et al.

(2017); Ghosh and Doshi-Velez (2017) for mean-field models and Ghosh et al. (2018)

for a structured Gaussian approximation. We consider again an L-hidden layer fully-

connected neural network where we assume that the weight matrix W l ∈ Rdl−1×dl

for any l ∈ {1, . . . , L+ 1} and any i ∈ {1, . . . , dl−1} satisfies a priori

W l
i·|λli, τ l, c ∼ N (0, (τ lλ̃li)

2I) ∝ N (0, (τ lλli))
2I)N (0, c2), (4.10)

where(λ̃il)2 = c2(λli)
2/(c2 + τ2(λli)

2), λli ∼ C+(0, 1), τ li ∼ C+(0, bτ ) and c2 ∼

IG(ν2 , ν
s2

2 ) for some hyper-parameters bτ , ν, s2 > 0. The vector W (l)
i· represents

all weights that interact with the i-th input neuron. The first Normal factor in (4.10)

is a standard Horseshoe prior with a per layer global parameter τ l that adapts to the

overall sparsity in layer l and shrinks all weights in this layer to zero, due to the fact

that C+(0, bτ ) allows for substantial mass near zero. The local shrinkage parameter λli

allow for signals in the i-th input neuron because C+(0, 1) is heavy-tailed. However,

this can leave large weights un-shrunk, and the second Normal factor in (4.10) induces

a Student-tν(0, s2) regularisation for weights far from zero, see Piironen et al. (2017)

for details. We can rewrite the model in a non-centred form (Papaspiliopoulos et al.,

2003), where the latent parameters are a priori independent, see also Louizos et al.
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(2017); Ingraham and Marks (2017); Ghosh and Doshi-Velez (2017); Ghosh et al.

(2018) for similar variational approximations. We write the model as ηli ∼ G(1/2, 1),

λ̂li ∼ IG(1/2, 1), κl ∼ G(1/2, 1/b2τ ), τ̂ l ∼ IG(1/2, 1), βli ∼ N (0, I), W l
i· = τ lλ̃liβ

l
i,

τ l =
√
τ̂ lκl, λli =

√
λ̂liη

l
i and (λ̃li)

2 = c2(λli)
2/(c2 + (τ l)2(λli)

2). The target density is

the posterior of these variables, after applying a log-transformation if their prior is

an (inverse) Gamma law.

We performed classification on MNIST using a 2-hidden layer fully-connected network

where the hidden layers are of size 200 each. Further details about the algorithmic

details are given in Appendix 4.8.4. Prediction errors for the variational families as

considered in the preceding experiments are given in Table 4.5. We again find that a

copula-like density outperforms the independent copula. Using a copula-like density

without the rotation also performs competitively as long as one uses a balanced

amount of its antithetic component via the transformation H with parameter δ;

ignoring the transformation H or setting δi = 0.99 for all i ∈ {1, . . . , d} can limit the

representative power of the variational family and can result in high predictive errors.

The neural network function for the IAF considered here has two hidden layers of size

100× 100. It can be seen that applying the rotations can be beneficial compared to

the IAF for the copula-like density, whereas the two transformations perform similarly

for the independent base distribution. We expect that more ad-hoc tricks can be

used to adjust the rotations to some computational budget. For instance, one could

include additional rotations for a group of latent variables such as those within one

layer. Conversely, one could consider the series of sparse rotations O1, · · · ,Ok, but

with 2k < d, thereby allowing for rotations of the more adjacent latent variables only.

Our experiment illustrates that the proposed approach can be used in high-dimensional

structured Bayesian models without having to specify more model-specific dependency

assumptions in the variatonal family. The prediction errors are in line with current

work for fully connected networks using a Gaussian variational family with Normal

priors, cf. Mishkin et al. (2018). Better predictive performance for a fully connected

Bayesian network has been reported in Krueger et al. (2017) that use RealNVP

(Dinh et al., 2016) as a normalising flows in a large network that is reparametrised

using a weight normalization (Salimans and Kingma, 2016). It becomes scalable by

opting to consider only variational inference over the Euclidean norm of W l
i· and
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Table 4.5: MNIST prediction errors.

Variational approximation with Horseshoe prior and size 200× 200 Error Rate

Copula-like with rotations 1.70 %

Copula-like without rotations 1.78 %

Copula-like with IAF 2.04 %

Independent copula with IAF 2.88 %

Independent copula with rotations 2.90 %

Mean-field Gaussian 3.82 %

Copula-like without rotations and δi = 0.99 for all i ∈ {1, . . . , d} 5.70 %

performing point estimation for the direction of the weight vector W l
i·/||W l

i·||2. Such

a parametrisation does not allow for a flexible dependence structure of the weights

within one layer; and such a model architecture should be complementary to the

proposed variational family in this work.

4.7 Conclusion

We have addressed the challenging problem of constructing a family of distributions

that allows for some flexibility in its dependence structure, whilst also having a

reasonable computational complexity of O(d log d). Previously suggested variational

families (Tran et al., 2015; Han et al., 2016) using copulas require either O(d2)

parameters to describe the full covariance matrix or all d(d − 1)/2 pair copulas;

or scale as O(dk) for some integer k by imposing some restrictions such as a low-

rank Gaussian approximation of rank k or by truncating the number of levels in a

vine copula using sequential tree selection so that the copula density becomes the

product of kd pair copulas. It has been shown experimentally that it can constitute a

useful replacement of a Gaussian approximation without requiring many algorithmic

changes.

4.8 Appendix

4.8.1 Proof of Proposition 11

Proof. Let f : Rd → R+ be a positive and bounded function. We have by definition,

using the expression of the density of the Dirichlet and Beta distributions, see Fang
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(2017), and setting ud = 1−
∑d−1

i=1 ui,

E [f(V1, . . . , Vn)] =
Γ(α?)

B(a, b)

∫
[0,1]d

f

{
gu1/ max

j∈{1,...,d}
uj , . . . , gud/ max

j∈{1,...,d}
uj

}

× ga−1(1− g)b−1

{
d∏
`=1

uα`−1
`

Γ(α`)

}
Leb(g, u1, . . . , ud−1)

=

d∑
k=1

Γ(α?)

B(a, b)
Ak , (4.11)

where

Ak =

∫
[0,1]d

1

{
uk = max

j∈{1,...,d}
uj

}
f {gu1/uk, . . . , gud/uk}

× ga−1(1− g)b−1

{
d∏
`=1

uα`−1
`

Γ(α`)

}
Leb(g, u1, . . . , ud−1) . (4.12)

Then by symmetry, without loss of generality, we only need to consider A1. Using the

change of variable, (g, u1, u2, . . . , ud−1) 7→ (g, u1, gu2/u1, . . . , gud−1/u1), which is a

C1-diffeomorphism from ∆1 = {(g, u1, . . . , ud−1) ∈ [0, 1]d : u1 = maxj∈{1,...,d} uj} to

∆̃1 = {(g, u1, w2, . . . , wd−1) ∈ [0, 1]d : maxj∈{2,...,d−1}wj 6 g, g/u1 − g −
∑d−1

j=2 wj 6

g}, we get that

A1 =

∫
∆1

f {g, . . . , gud/u1} ga−1(1− g)b−1

{
d∏
`=1

uα`−1
`

Γ(α`)

}
Leb(g, u1, u2, . . . , ud−1)

=

∫
∆̃1

f

{
g, w2, . . . , wd−1, g/u1 − g −

d−1∑
i=2

wi

}
ga−1(1− g)b−1

×

{
d−2∏
`=2

(u1w`/g)α`−1

Γ(α`)

}
uα1−1

1

Γ(α1)

(1− u1 −
∑d−1

i=2 u1wi/g)αd−1

Γ(αd)

gd−2

ud−2
1

Leb(g, u1, w2, . . . , wd−1)

=

∫
∆̃1

f

{
g, w2, . . . , wd−1, g/u1 − g −

d−1∑
i=2

wi

}
ga−1(1− g)b−1

×

{
d−2∏
`=2

wα`−1
`

Γ(α`)

}
uα

?−2
1

Γ(α1)

(g/u1 − g −
∑d−1

i=2 wi)
αd

Γ(αd)
g−α

?+α1+1Leb(g, u1, w2, . . . , wd−1)

=

∫
∆̃1

f

{
g, w2, . . . , wd−1, g/u1 − g −

d−1∑
i=2

wi

}
ga−1(1− g)b−1

×

{
d−2∏
`=2

wα`−1
`

Γ(α`)

}
gα1−1

Γ(α1)

(g/u1 − g −
∑d−1

i=2 wi)
αd−1

Γ(αd)
(u1/g)α

?−2Leb(g, u1, w2, . . . , wd−1) .

Now using the change of variable (g, u1, w2, . . . , wd−1) 7→ (g, g/u1−
∑d−1

i=2 wi, w2, . . . , wd−1) =

(g, wd, . . . , wd−1), which is a C1-diffeomorphism from ∆̃1 to

∆̄1 = {(g, wd, w2, . . . , wd−1) : max
j∈{1,...,d}

wj 6 g} ,
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we obtain since g/u1 = g +
∑d

j=2wj that

A1 =

∫
∆̄1

f(g, w2, . . . , wd−1, wd))g
a−1(1− g)b−1

×

{
d∏
`=2

wα`−1
`

Γ(α`)

}
gα1

Γ(α1)

g +

d−1∑
j=1

wj


−α?

Leb(g, w1, w2, . . . , wd−1) .

Combining this result, (4.11) and (4.12) completes the proof.

4.8.2 Butterfly rotation matrices

Suppose d = 2k for some k ∈ N and let ci = cos νi and si = sin νi. For d = 1, define

R1 = [1]. Assume Rd has been defined. Then define

R2d =

Rdcd −Rdsd
R̃dsd R̃dcd

 ,
where R̃d has the same form as Rd except that the ci and si indices are all increased

by d. So for instance

R2 =

c1 −s1

s1 c1

 , R̃2 =

c3 −s3

s3 c3

 .
Suppose now that d is not a power of 2 and let k = dlog de. We construct Rd

as a product of k factors O1 · · · Ok as used in the construction of R2k . For any

i ∈ {1, . . . k}, we then delete from Oi the last 2k − d rows and columns. Then for

every ci in the remaining d× d matrix that is in the same column as a deleted si is

replaced by 1. As an example, for d = 5, we have

R5 =



c1 −s1 0 0 0

s1 c1 0 0 0

0 0 c3 −s3 0

0 0 s3 c3 0

0 0 0 0 1





c2 0 −s2 0 0

0 c2 0 −s2 0

s2 0 c2 0 0

0 s2 0 c2 0

0 0 0 0 1





c4 0 0 0 −s4

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

s4 0 0 0 c4


.

4.8.3 Optimization of the variational bound

Recall that for independent random variables Zi ∼ G(αi, 1), for i ∈ {1, . . . d}, we

have
(

Z1∑d
j=1 Zj

, . . . Zd∑d
j=1 Zj

)
∼ Dirichlet(α1, . . . , αd), cf. Fang (2017). Similarly,

for independent random variables Zd+1 ∼ G(a, 1) and Zd+2 ∼ G(b, 1), it holds

that Zd+1

Zd+1+Zd+2
∼ Beta(a, b). Recall that the parameter of the rotated variational
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family is ξ = (θ, φ, δ), where θ is the parameter of the copula-like base density,

whereas φ = (φf , φR) denotes the parameters of the quantile transformation and

the rotation, respectively. Furthermore, the parameter δ of the transformation H is

kept fix. Using Proposition 11 and Algorithm 2 for some fixed δ, we can construct a

function (z, φ) 7→ fφ,δ(z), z = (z1, . . . zd+2), that is almost everywhere continuously

differentiable such that fφ,δ(Z1, . . . Zd+2) ∼ qξ, where qξ is the density of the proposed

variational family with parameter ξ = (θ, φ, δ), that is the variational density qξ is

the pushforward density of independent Gamma densities with parameter θ through

the transport map fφ,δ. Differentiability with respect to φf can be achieved by a

continuous numerical approximation for the quantile function of a standard Gaussian

and applying appropriate (re)normalisation. Furthermore, there exists an invertible

standardization function Sθ with (z, θ) 7→ Sθ(z) = (P (Z1 6 z1) , . . . ,P (Zd+2 6 zd+2))

continuously differentiable such that S−1
θ (H) is equal to (Z1, . . . Zd+2) in distribution,

where H is a (d+2)-dimensional vector of iid random variables with uniform marginals

on [0, 1]. In particular, the distribution of H does not depend on ξ. The cumulative

distribution function of Z1 say at the point z1 is the regularised incomplete Gamma

function γ(z1, α1) that lacks an analytical expression though. However, one can apply

automatic differentiation to a numerical method that approximates γ(z1, α1) yielding

an approximation of ∂γ(z1,α1)
∂α1

. Let us define

l(z, φ, δ) =
logL(y1:n|fφ,δ(z)) + log π0(fφ,δ(z))

log qξ(fφ,δ(z))
.

Then L(ξ) = E [l(Z, φ, δ)] = E
[
l(S−1

θ (H), φ, δ)
]
, where in the first expectation, the

law of the random variable Z depends on θ. For a differentiable function g : Rn → Rm,

we denote by ∇xg(x) the Jacobian of g, that is ∇xg(x)ij = ∂gi(x)
∂xj

. Following the

arguments in Figurnov et al. (2018), we obtain for the Jacobian of the variational

bound

∇θ,φL(ξ) = E
[
∇θ,φl(S−1

θ (H), φ, δ)
]

= E
[
∇zl(S−1

θ (H), φ, δ)∇θ,φS−1
θ (H) +∇θ,φl(S−1

θ (H), φ, δ)
]

= E [∇zl(Z, φ, δ)∇θ,φZ +∇θ,φl(Z, φ, δ)] , (4.13)

where ∇φZ = 0 and ∇θZ = ∇θS−1
θ (H)|H=Sθ(Z) can be obtained by implicit differenti-

ation of Sθ(Z) = H which results in ∇θZ = −(∇zSθ(Z))−1∇θSθ(Z). So for instance
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∂Z1
∂α1

= − 1
pα1 (Z1)

∂γ(Z1,α1)
∂α1

, with pα1 being the density function of Z1 and recalling that

θ = (a, b, α1, . . . αd). We can thus optimize the variational bound using stochastic

gradient descent with unbiased samples from (4.13). We remark that for instance

in tensorflow probability (Dillon et al., 2017), such implicit gradients are used by

default as long as one simulates from the copula-like density using Proposition 11,

implements the density function cθ from (4.6) and applies the bijective transforma-

tions according to Algorithm 2. In this case, optimization using the proposed density

proceeds analogously as if one would use any reparametrisable variational family such

as Gaussian distributions.

4.8.4 Additional details for Bayesian Neural Networks with Struc-

tured Priors

In the MNIST experiments, we train the network on 50000 training points out of 60000

and report the prediction error rates for the test set of 10000 images. We used a batch-

size of 200 and used 4 Monte Carlo samples to compute the gradients during training

and 100 Monte Carlo samples for the prediction on the test set. We used Adam with

a learning rate in {0.0005, 0.0002} for 20000 iterations. The hyper-parameter for

the Horseshoe prior were ν = 4, s = 1, so c ∼ IG(2, 8), corresponding to a t4(0, 22)

slab. Furthermore, for the global shrinkage factor, we have used bτ ∈ {0.1, 1}. The

variational parameters of the copula-like density are restricted to be positive and we

have defined them as the softmax : x 7→ log(exp(x) + 1) of unconstrained parameters,

initialised so that softmax−1(αi) ∼ N (2, .01), softmax−1(a) = 15 and softmax−1(b) =

2. We have sampled δ according to (4.8) and initialised νi ∼ U(−0.2, 0.2) and the

log-standard deviations of the marginal-like distribution as log σi = −3. We aimed

for an initial mean of 0 for βli and of −3 for the log of the remaining variables. We

therefore choose µi so that the quantile of an initial Monte Carlo estimate for the

mean of Vi has the desired initial mean.



4.8. Appendix 126

4.8.5 Additional results for Bayesian Neural Networks with Gaus-

sian Priors

Table 4.6: Variational approximations with transformations and different base dis-

tributions. Test log-likelihood for UCI regression datasets. Standard errors in

parenthesis.

Copula-like Independent copula Copula-like Independent copula

with rotation with rotation with IAF with IAF

Boston -2.85 (0.07) -2.84 (0.09) -2.78 (0.1) -2.88 (0.09)

Concrete -3.29 (0.03) -3.30 (0.02) -3.22 (0.02) -3.26 (0.02)

Energy -1.04 (0.02) -2.34 (0.05) -0.93 (0.03) -1.78 (0.07)

Kin8nm 1.08 (0.01) 1.07 (0.01) 1.10 (0.01) 1.03 (0.01)

Naval 5.74 (0.05) 5.23 (0.05) 5.97 (0.05) 5.01 (0.05)

Power -2.82 (0.01) -2.85 (0.04) -2.83 (0.04) -2.85 (0.01)

Wine -1.01 (0.01) -1.02 (0.02) -1.02 (0.02) -1.02 (0.02)

Yacht -2.01 (0.04) -2.03 (0.06) -1.69 (0.06) -1.94 (0.07)

Protein -2.87 (0.00) -2.94 (0.00) -2.90 (0.01) -2.93 (0.01)
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Table 4.7: Copula-like variational approximation without rotations and benchmark

results. Test log-likelihood for UCI regression datasets. Standard errors in parenthesis.

Copula-like Bayes-by-Backprop SLANG Dropout

without rotation (Mishkin et al., 2018) (Mishkin et al., 2018) (Mishkin et al., 2018)

Boston -2.79 (0.08) -2.66 (0.06) -2.58 (0.05) -2.46 (0.06)

Concrete -3.25 (0.03) -3.25 (0.02) -3.13 (0.03) -3.04 (0.02)

Energy -1.00 (0.03) -1.45 (0.02) -1.12 (0.01) -1.99 (0.02)

Kin8nm 1.09 (0.01) 1.07 (0.00) 1.06 (0.00) 0.95 (0.01)

Naval 5.45 (0.12) 4.61 (0.01) 4.76 (0.00) 3.80 (0.01)

Power -2.83 (0.01) -2.86 (0.01) -2.84 (0.01) -2.80 (0.01)

Wine -1.02 (0.01) -0.97 (0.01) -0.97 (0.01) -0.93 (0.01)

Yacht -1.92 (0.06) -1.56 (0.03) -1.88 (0.01) -1.55 (0.03)

Protein -2.89 (0.01) NA NA -2.87 (0.01)



Chapter 5

Gradient-based adaptive HMC

Hamiltonian Monte Carlo (HMC) is a popular Markov Chain Monte Carlo (MCMC)

algorithm to sample from an unnormalized probability distribution. A leapfrog

integrator is commonly used to implement HMC in practice, but its performance can

be sensitive to the choice of mass matrix used therein. We develop a gradient-based

algorithm that allows for the adaptation of the mass matrix by encouraging the

leapfrog integrator to have high acceptance rates while also exploring all dimensions

jointly. In contrast to previous work that adapt the hyperparameters of HMC using

some form of expected squared jumping distance, the adaptation strategy suggested

here aims to increase sampling efficiency by maximizing an approximation of the

proposal entropy. We illustrate that using multiple gradients in the HMC proposal

can be beneficial compared to a single gradient-step in Metropolis-adjusted Langevin

proposals. Empirical evidence suggests that the adaptation method can outperform

different versions of HMC schemes by adjusting the mass matrix to the geometry of

the target distribution and by providing some control on the integration time.

5.1 Introduction

Consider the problem of sampling from a target density π on Rd of the form π(q) ∝

e−U(q), with a potential energy U : Rd → R being twice continuously differentiable.

HMC methods (Duane et al., 1987; Neal, 2011; Betancourt, 2017) sample from a

Boltzmann-Gibbs distribution µ(q, p) ∝ e−H(q,p) on the phase-space R2d based on the

(separable) Hamiltonian function

H(q, p) = U(q) +K(p) with K(p) =
1

2
p>M−1p.



5.1. Introduction 129

The Hamiltonian represents the total energy that is split into a potential energy

term U and a kinetic energy K which we assume is Gaussian for some symmetric

positive definite mass matrix M . Suppose that (q(t), p(t))t∈R evolve according to the

differential equations

dq(t)

dt
=
∂H(q(t), p(t))

∂p
= M−1p(t) and

dp(t)

dt
= −∂H(q(t), p(t))

∂q
= −∇U(q(t)).

(5.1)

Let (ϕt)t>0 denote the flow of the Hamiltonian system, that is for fixed t, ϕt maps

each (q, p) to the solution of (5.1) that takes value (q, p) at time t = 0. The exact

HMC flow ϕ preserves volume and conserves the total energy i.e. H ◦ ϕt = H.

Consequently, the Boltzmann-Gibbs distribution µ is invariant under the Hamiltonian

flow, that is µ(ϕt(E)) = µ(E) for any Borel set E ⊂ R2d. Furthermore, the flow

satisfies the generalized reversibility condition F ◦ϕt = ϕ−t ◦F with the flip operator

F(q, p) = (q,−p). Put differently, the Hamiltonian dynamics go backward in time by

negating the velocity. If an analytical expression for the exact flow were available, one

could sample from µ using the invariant Markov chain that at state (q, p) first draws a

new velocity p′ ∼ N (0,M) with the next state set to ϕT (q, p′) for some integration time

T > 0. Such a velocity refreshment is necessary as the HMC dynamics preserve the

energy and so cannot be ergodic. However, the Hamiltonian flow cannot be computed

exactly, except for very special potential functions. Numerical approximations to the

exact solution of Hamiltonian’s equations are thus routinely used, most commonly

the leapfrog method, also known as (velocity) Verlet integrator (Hairer et al., 2003;

Bou-Rabee and Sanz-Serna, 2018). For a step size h > 0 and L steps, such an

algorithm updates the previous state q0 and a new velocity p0 ∼ N (0,M) by setting,

for 0 6 ` 6 L− 1,

p`+ 1
2

= p` −
h

2
∇U(q`); q`+1 = q` + hM−1p`+ 1

2
; p`+1 = p`+ 1

2
− h

2
∇U(q`+1).

This scheme can be motivated by splitting the Hamiltonian wherein the kick

mappings in the first and third step update only the momentum, while the drift map-

ping in the second step advances only the position q with constant speed. For T = Lh,

the leapfrog integrator approximates ϕT (q0, p0) by (qL, pL) while also preserving some

geometric properties of ϕ, namely volume preservation and generalized reversibil-

ity. The leapfrog method is a second-order integrator, making an O(h2) energy
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error H(qL, pL)−H(q0, p0). A µ-invariant Markov chain can be constructed using a

Metropolis-Hastings acceptance step. More concretely, the proposed state (qL, pL) is

accepted with the acceptance rate a(q0, p0) = min{1, exp [− (H(qL, pL)−H(q0, p0))]},

while the next state is set to F(q0, p0) in case of rejection, although the velocity flip

is inconsequential for full refreshment strategies.

We want to explore here further the generalised speed measure introduced in

Titsias and Dellaportas (2019) for adapting RWM or MALA that aim to achieve fast

convergence by constructing proposals that (i) have a high average log-acceptance

rate and (ii) have a high entropy. Whereas the entropy of the proposal in RWM or

MALA algorithms can be evaluated efficiently, the multi-step nature of the HMC

trajectories makes this computation less tractable. The recent work in Li et al. (2020)

consider the same adaptation objective by learning a normalising flow that is inspired

by a leapfrog proposal with a more tractable entropy by masking components in a

leapfrog-style update via an affine coupling layer as used for RealNVPs (Dinh et al.,

2016). Yu et al. (2019) sets the integration time by maximizing the proposal entropy

for the exact HMC flow in Gaussian targets, while choosing the mass matrix to be

the inverse of the sample covariance matrix.

5.2 Related work

The choice of the hyperparameters h, L andM can have a large impact on the efficiency

of the sampler. For fixed L and M , a popular approach for adapting h is to target an

acceptance rate of around 0.65 which is optimal for iid Gaussian targets in the limit

d→∞ (Beskos et al., 2013) for a given integration time. HMC hyperparameters have

been tuned using some form of expected squared jumping distance (ESJD) (Pasarica

and Gelman, 2010), using for instance Bayesian optimization (Wang et al., 2013)

or a gradient-based approach (Levy et al., 2018). A popular approach suggested

in (Hoffman and Gelman, 2014) tunes L based on the ESJD by doubling L until

the path makes a U-turn and retraces back towards the starting point, that is by

stopping to increase L when the distance to the proposed state reaches a stationary

point (Andrieu et al., 2020); see also Wu et al. (2018) for a variation and Park and

Atchadé (2020) for a version using sequential proposals. The Riemann manifold

HMC algorithm from Girolami and Calderhead (2011) has been suggested that uses a

position dependent mass matrixM(x) based on a non-separable Hamiltonian, but can
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be computationally expensive, requiring O(d3) operations in general. An alternative

to chooseM or more generally the kinetic energy K was proposed in Livingstone et al.

(2019b) by analysing the behaviour of x 7→ ∇K(∇U(x)). Different pre-conditioning

approaches have been compared for Gaussian targets in Langmore et al. (2019). A

popular route has also been to first transform the target using tools from variational

inference as in Hoffman et al. (2019) and then run a HMC sampler with unit mass

matrix on the transformed density with a more favourable geometry.

A common setting to study the convergence of HMC assumes a log-concave

target. In the case that U is m1-strongly convex and m2-smooth, Mangoubi and

Smith (2017); Chen and Vempala (2019) analyse the ideal HMC algorithm with unit

mass matrix where a higher condition number κ = m2/m1 implies slower mixing:

The relaxation time, i.e. the inverse of the spectral gap, grows linear in κ, assuming

the integration time is set to T = 1
2
√
m2

. Chen et al. (2019b) establish non-asymptotic

upper bounds on the mixing time using a leap-frog integrator where the step size h

and the number L of steps depends explicitly on m1 and m2. Convergence guarantees

are established using conductance profiles by obtaining (i) a high probability lower

bound on the acceptance rate and (ii) an overlap bound, that is a lower bound on

the KL-divergence between the HMC proposal densities at the starting positions q0

and q′0, whenever q0 is close to q′0. While such bounds for controlling the mixing time

might share some similarity with the generalised speed measure, they do not lend

themselves easily to a gradient-based adaptation.

5.3 Entropy-based adaptation scheme

We derive a novel method to approximate the entropy of the proposed position after

L leapfrog steps. Our approximation is based on the assumption that the Hessian

of the target is locally constant around the mid-point of the HMC trajectory. This

allows for a fast stochastic trace estimator of the marginal proposal entropy. We then

develop a penalised loss function that can be minimized using stochastic gradient

descent while sampling from the Markov chain in order to optimize a generalised

speed measure.
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5.3.1 Marginal proposal entropy

Suppose that CC> = M−1, where C is defined by some parameters θ and can be

a diagonal matrix, a full Cholesky factor, etc. Without loss of generality, the step

size h > 0 can be fixed. We can reparameterise the momentum resampling step

p0 ∼ N (0,M) by sampling v ∼ N (0, I) and setting p0 = C−>v. One can show by

induction that the L-th step position qL and momentum pL of the leapfrog integrator

can be represented as a function of v via

qL = TL(v) = q0 −
Lh2

2
M−1∇U(q0) + LhCv − h2M−1ΞL(v), (5.2)

and

pL =WL(v) = C−>v − h

2
[∇U(q0) +∇U ◦ TL(v)]− h

n−1∑
i=1

∇U ◦ Ti(v)

where

ΞL(v) =

L−1∑
i=1

(L− i)∇U ◦ Ti(v), (5.3)

see also Livingstone et al. (2019a); Durmus et al. (2017); Chen et al. (2019b) for the

special case with an identity mass matrix. Observe that for L = 1 leap-frog steps,

this reduces to a MALA proposal with preconditioning matrix M−1.

Under regularity conditions, see for instance Durmus et al. (2017), the transfor-

mation TL : Rd → Rd is a C1-diffeomorphism. With ν denoting the standard Gaussian

density, the density rL of the HMC proposal for the position qL after L leapfrog steps

is the pushforward density of ν via the map TL so that1

log rL(TL(v)) = log ν(v)− log | detDTL(v)|. (5.4)

Observe that the density depends on the Jacobian of the transformation TL : v 7→ qL.

We would like to avoid computing log | detDTL(v)| exactly. Define the residual

transformation

SL : Rd → Rd, v 7→ 1

Lh
C−1TL(v)− v. (5.5)

Then DTL(v) = LhC(I +DSL(v)) and consequently

log |detDTL(v)| = d log(Lh) + log | detC|+ log | det(I +DSL(v))|. (5.6)

1We denote the Jacobian matrix of a function f : Rd → Rd at the point x as Df(x).
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Combining (5.4) and (5.6) yields the log-probability of the HMC proposal

log rL(TL(v)) = log ν(v)− d log(Lh)− log |detC| − log |det(I +DSL(v))|. (5.7)

Comparing the equations (5.2) and (5.5), one sees that SL(v) = c− h
LC
>ΞL(v)

for some constant c ∈ Rd that depends on θ but is independent of v and consequently,

DSL(v) = − h
LC
>DΞL(v). We next show a recursive expression for DSL with a proof

given in Appendix 5.6.2.

Lemma 12 (Jacobian representation). It holds that DS1 = 0 and for any ` ∈

{2, . . . , L}, v ∈ Rd,

DS`(v) = −h2
`−1∑
i=1

(`− i) i
`
C>∇2U (Ti(v))C (I +DSi(v)) . (5.8)

In particular, DS`(v) is a symmetric matrix. Suppose further that L2h2 <

supq∈Rd
1

4‖C>∇2U(q)C‖p
. Then for any ` ∈ {1, . . . , L} and v ∈ Rd, we have

‖DS`(v)‖p <
1
8 .

Consider for the moment a Gaussian target with potential function U(q) =

1
2(q− q?)>Σ−1(q− q?) for q? ∈ Rd and positive definite Σ ∈ Rd×d. Then, due to (5.8),

for any q ∈ Rd, v ∈ Rd,

DSL(v) = −h2
L−1∑
i=1

(L− i) i
L
C>Σ−1C(I +DSi(v)) = DL +RL(v),

where

DL = −h2C>Σ−1C

(
L−1∑
i=1

(L− i) i
L

)
= −h2L

2 − 1

6
C>Σ−1C

and a remainder term RL(v) = −h2C>Σ−1C
(∑L−1

i=1 (L− i) iLDSi(v)
)
. From Lemma

12, we see that if
∥∥C>Σ−1C

∥∥
2
6 h2

4L2 , then I +DSL(v) and −DSL(v) are positive

definite. Then RL is also positive definite and log det(I +DL) 6 log | det(I +DSL(v))|

and we can maximize the lower bound instead. Notice that R2 = 0 and one can

include higher order terms O
([
h2C>Σ−1C

]k), k > 1, in the approximation DL, but

we have not explored this systematically.

For an arbitrary potential energy U , we suggest to maximize

L(θ) = log |det(I +DL)| with DL = −h2L
2 − 1

6
C>∇2U(qbL/2c)C (5.9)
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as an approximation of log | det(I +DSL)|. The intuition is that we assume that the

target density can be approximated locally by a Gaussian one with precision matrix

given by the Hessian of U at the mid-point qbL/2c of the trajectory.

Unlike in the Gaussian case, the matrix DL depends on q0 and v, although we

make this dependence not explicit to simplify the notation. In general, however,

neither DSL(v), I +DSL(v), RL(v) nor DL need to be positive definite. We want

to optimize L(θ) given in (5.9) even if we do not have access to the Hessian ∇2U

explicitly, but only through Hessian-vector products ∇2U(q)w for some vector w ∈ Rd.

Vector-Jacobian products vjp(f, x, w) = w>Df(x) for differentiable f : Rd → Rd

can be computed efficiently via reverse-mode automatic differentiation, so that

∇2U(q)w = vjp(∇U, q, w)> can be evaluated with complexity linear in d.

Suppose the multiplication with DL is a contraction so that all eigenvalues of DL

have absolute values smaller than one. Then one can apply a Hutchinson stochastic

trace estimator of log | det(Id +D,L)| with a Taylor approximation, truncated and

re-weighted using a Russian-roulette estimator (Lyne et al., 2015), see also Han et al.

(2018); Behrmann et al. (2019); Chen et al. (2019a) for similar approaches in different

settings. More concretely, let N be a positive random variable with support on N

and let pk = P (N > k). Then,

L(θ) = log det(I +DL) = EN,ε

[
N∑
k=1

(−1)k+1

kpk
ε> (DL)k ε

]
, (5.10)

where ε is drawn from a Rademacher distribution. While this yields an unbiased

estimator for L(θ) and its gradient as shown in Appendix 5.6.1.1 if DL is contractive,

it can be computationally expensive if N has a large mean or have a high variance if

DL has an eigenvalue that is close to 1 or −1, see (Lyne et al., 2015; Cornish et al.,

2019). Since both the first order Gaussian approximation as well as the Russian

Roulette estimator hinges on DL having small absolute eigenvalues, we consider a

constrained optimisation approach that penalises such large eigenvalues. For the

random variable N that determines the truncation level in the Taylor series, we

compute bN = (DL)Nε/
∥∥(DL)Nε

∥∥
2
and µN = b>NDLbN . Note that this corresponds

to applying N times the power iteration algorithm and with |λ1| > |λ2| > . . . > |λd|

denoting the eigenvalues of the symmetric matrix DL, almost surely µn → λ1 for

n → ∞, see Golub and Van Loan (2012). For some δ ∈ (0, 1), we choose some

differentiable monotone increasing penalty function h : R→ R such that h(x) > 0 for
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x > δ and h(x) = 0 for x 6 δ and we add the term γh(|µN |) for γ > 0 to the loss

function that we introduce below, see Appendix 5.6.1.2 for an example of h.

5.3.2 Adaptation with a generalised speed measure

Extending the objective from Titsias and Dellaportas (2019) to adapt the HMC

proposal, we aim to solve

arg min
θ

∫ ∫
π(q0)ν(v)

[
− log a ((q0, v), (TL(v),WL(v))) + β log rL(TL(v))

]
dvdq0,

(5.11)

where TL, WL, rL as well as the acceptance rate a depend on q0 and the parameters

θ we want to adapt. Also, the hyper-parameter β > 0 can be adapted online

by increasing β if the acceptance rate is above a target acceptance rate α? and

decreasing β otherwise. We choose α? = 0.67, which is optimal for increasing d

under independence assumptions (Beskos et al., 2013). One part of the objective

constitutes minimizing the energy error ∆(q0, v) = H(TL(v),WL(v))−H(q0, C
−>v)

that determines the log-acceptance rate via log a(q0, C
−>v) = min{0,−∆(q0, v)}.

Unbiased gradients of the energy error can be obtained without stopping any gradient

calculations in the backward pass. However, we found that a multi-step extension of

the biased fast MALA approximation from Titsias and Dellaportas (2019) tends to

improve the adaptation by stopping gradients through ∇U as shown in Appendix

5.6.1.3.

Suppose that the current state of the Markov chain is q. We resample the

momentum v ∼ N (0, I) and aim to solve (5.11) by taking gradients of the penalised

loss function

−min{0,−∆(q, v)} − β (d log h+ log |detC|+ L(θ)− γh(|µN |)) ,

as illustrated in Algorithm 3, which also shows how we update the hyperparameters

β and γ. Algorithm 3 requires to choose learning rates ρθ, ρβ and ργ .

Instead of simulating a single Markov chain, the parameters can be updated using

multiple parallel chains. We used 10 parallel chains throughout our experiments. The

adaptive algorithm should also allow to make advantage of SIMD (single instruction,

multiple data) operations, thereby benefiting from hardware accelerators such as

GPUs. Pseudo-code for simulating from the adaptive chain can found in Algorithm 3.
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Algorithm 3 Sample the next state q′ and adapt β, γ and θ.

1: Sample velocity v ∼ N (0, I) and set p = C−>v.

2: Apply integrator LF to obtain (q`, p`,∇U(q`))06`6L = LF(q, p).

3: Stop gradients ∇U(q`) = stop_grad(∇U(q`)) for 0 6 ` 6 L.

4: Compute ΞL(v) using (5.3).

5: Compute ∆(q0, v) using (5.13) and set a = min{1, e−∆(q0,v)}.

6: Compute η̄N , y = Rademacher().

7: Set L(θ) = stop_grad(y)>DLε.

8: Set bN = stop_grad
(

η̄N
‖η̄N‖22

)
and µN = b>NDLbN .

9: E(θ) = −min{0,−∆(q0, v)} − β (d log h+ log |detC|+ L(θ)− γh(|µN |)) .

10: Adapt θ ← θ − ρθ∇θE(θ).

11: Adapt β ← Πβ [β(1 + ρβ(a− α?)]. #Πβ projects onto a compact set; default

value [10−2, 102].

12: Adapt γ ← Πγ [γ + ργh(|µN |)]. #Πγ projects onto a compact set; default value

[103, 105].

13: Sample u ∼ U(0, 1) and set q′ = 1{u6a} qL + 1{u>a} q.

14: function DL(w):

15: #DL(w) = DLw computes Hessian-vector products efficiently

16: z = vjp(∇U, stop_grad(qbL/2c), Cw)>

17: return −h2L2−1
6 C>z

18: end function

19: function Rademacher:

20: Sample Rademacher random variable ε and truncation level N .

21: Initialise y ←− 0 and η̄0 = ε.

22: for k = 1...N do

23: #Apply a spectral normalisation for stability if DL is not a contraction;

δ′ ∈ (0, 1).

24: Set η̄k = DLη̄k−1 · min {1, δ′ ‖η̄k−1‖2 / ‖DLη̄k−1‖2} and y ← y + (−1)k

pk
η̄k.

25: end for

26: return η̄N , y

27: end function
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5.4 Numerical experiments

This section illustrates the mixing performance of the entropy-based sampler for

a variety of target densities. First, we consider Gaussian targets either in high

dimensions or with a high condition number. Our results confirm (i) that HMC

scales better than MALA for high-dimensional Gaussian targets and (ii) that the

adaptation scheme learns a mass matrix that is adjusted to the geometry of the target.

Next, we apply the novel adaptation scheme to Bayesian logistic regression models

and find that it often outperforms NUTS, except in a few data sets where some

components might mix less efficiently. We also compare the entropy-based adaptation

with Riemann-Manifold based samplers for a Log-Gaussian Cox point process models.

We find that both schemes mix similarly, which indicates that the gradient-based

adaptation scheme can learn a suitable mass matrix without having access to the

expected Fisher information matrix. Then, we consider a high-dimensional stochastic

volatility model where the entropy-based scheme performs favourably compared to

alternatives and illustrate that efficient sparsity assumptions can be accommodated

when learning the mass matrix. Finally, we show in a toy example how the suggested

approach might be modified to sample from highly non-convex potentials. Our

implementation builds up on tensorflow probability (Lao et al., 2020) with some

target densities taken from Sountsov et al. (2020).

5.4.1 Gaussian targets

Anisotropic Gaussian distributions.We consider sampling from a multivariate

Gaussian distribution N (0,Σ) with strictly convex potential U(q) = 1
2q
>Σ−1q for

different covariance matrices Σ. For c > 0, assume a covariance matrix given by

Σij = δij exp (c(i− 1)/(d− 1) log 10). We set (i) c = 3 and d ∈ {103, 104} and (ii)

c = 6 and d = 100, as considered in Sohl-Dickstein et al. (2014). The eigenvalues

of the covariance matrix are thus distributed between 1 to 100 in setting (i), while

they vary from 1 and 106 in setting (ii). The preconditioning factor C is assumed to

be diagonal. We adapt the sampler for 4× 104 steps in case (i) and for 105 steps in

case (ii). We compute the minimum effective sample size (minESS) of all functions

q 7→ qi over i ∈ {1, . . . , d} as shown in Figure 5.1 for d = 103 with leapfrog steps

ranging from L = 1 to 10. We also compared it with a NUTS implementation in

tensorflow probability (Lao et al., 2020) with a default maximum tree depth of 10 and
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step sizes adapted using dual averaging. HMC performs well in terms of minESS/sec

for L > 1 and the mass matrix adapts to the target covariance with the condition

number of C>Σ−1C becoming relatively close to 1. The entropy objective also yields

acceptance rates approaching 1 for increasing leap-frog steps and multiplication

with DL becomes a contraction. Results for d = 104 can be found in Figure 5.7

in Appendix 5.6.4.1 which indicate that as the dimension increases, using a more

leap-frog steps becomes more advantageous. For the case (ii) of a very ill-conditioned

target, results from Figure 5.8 in Appendix 5.6.4.2 also show that L > 1 is beneficial

and that NUTS without some adaptation of the mass matrix mixes less efficiently.

We want to emphasize that for fixed L, high acceptance rates for HMC need not be

disadvantageous. This is illustrated in Figure 5.10 in Appendix 5.6.4.4 for a Gaussian

target N (0, I) in dimension d = 10, where tuning just the step-size to achieve a target

acceptance rate can lead to slow mixing for some L, because the proposal can make

a U-turn.

Correlated Gaussian distribution.We sample from a 51-dimensional Gaussian

target with covariance matrix given by the squared exponential kernel plus small white

noise as in Titsias and Dellaportas (2019), with k(xi, xj) = exp
(
−1

2(xi − xj)2/0.42
)

+ .01δij

on the regular grid [0, 4]. We consider a general Cholesky factor C. The adaptation is

performed over 105 steps. Results over 10 runs are shown in Figure 5.9 in Appendix

5.6.4.3 which indicates that HMC with moderate L around 4 performs best.

5.4.2 Logistic regression

Consider a Bayesian logistic regression model with n data points yi ∈ {0, 1}

and d-dimensional covariates xi ∈ Rd for i ∈ {1, . . . , n}. Assuming a Gaus-

sian prior with covariance matrix Σ0 implies a potential function U(q) =∑n
i=1

[
−yix>i q + log

(
1 + ex

>
i q
)]

+ 1
2q
>Σ−1

0 q.

We considered six datasets (Australian Credit, Heart, Pima Indian, Ripley,

German Credit and Caravan) that are commonly used for benchmarking inference

methods, cf. Chopin et al. (2017). The state dimension ranges from d = 3 to d = 87.

We choose Σ0 = I and parametrize C via a Cholesky matrix. We adapt over 104

steps. HMC with a moderate number of leap-frog steps tends to perform better for

four out of six data sets, with subpar performance for the Australian and Caravan

data in terms of minESS/sec, albeit with higher median ESS/sec across dimensions
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(a) Minimum effective sample

size of q 7→ qi per second (af-

ter adaptation).

(b) Minimum effective sample

size of q 7→ qi. NUTS adapted

over 1/10-th of the steps.

(c) CPU time (after adapta-

tion). NUTS adapted over

1/10-th of the steps.

(d) Average acceptance rate

(after adaptation).

(e) Estimates of the eigenval-

ues of DL using power itera-

tion.

(f) Condition number of trans-

formed Hessian C>Σ−1C.

Figure 5.1: Anisotropic Gaussian target (d = 1000).

or for computing the potential energy function. The adaptive HMC algorithm tends

to perform well if DL is contractive during iterations of the Markov chain such as

for the German Credit data set as shown in Figure 5.2. If this is not the case as

for the Caravan data in Figure 5.3, the adapted HMC algorithm can perform worse

than MALA or NUTS. More detailed diagnostics for all data sets can be found in

Appendix 5.6.5.

5.4.3 Log-Gaussian Cox Point Process

We consider inference in a log-Gaussian Cox process model. This is an ideal setting for

Riemann-Manifold MALA and HMC (Girolami and Calderhead, 2011), since a con-

stant metric tensor is used therein that does not depend on the position, so the complex-

ity is no longer cubic but only quadratic in the dimension d of the target. Consider an

area on [0, 1]2 that is discretized into grid locations (i, j), for i, j = 1, . . . , n. The obser-

vations yij are Poisson distributed and conditionally independent given a latent inten-

sity process λ = {λ}ij with means λij = m exp(xij) for m = n−2 and a latent vector x
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(a) Minimum effective sample

size per second (after adapta-

tion).

(b) Average acceptance rate

(after adaptation).

(c) Estimates of the eigenval-

ues of DL using power itera-

tion.

Figure 5.2: Bayesian logistic regression for German credit data set (d = 25).

(a) Minimum effective sample

size per second (after adapta-

tion).

(b) Average acceptance rate

(after adaptation).

(c) Estimates of the eigenval-

ues of DL using power itera-

tion.

Figure 5.3: Bayesian logistic regression for caravan data set (d = 87).

drawn from a Gaussian process with constant mean function µ and covariance function

Σ(i,j),(i′,j′) = σ2
x exp{−

√
(i− i′)2 + (j − j′)2/(nβ)}. The target density is thus propor-

tional to p(y, x) ∝
∏n×n
i,j exp [yijxij −m exp(xij)] exp

[
−(x− µ1)>Σ−1(x− µ1)/2

]
.

For the Riemann-Manifold based samplers, the preconditioning matrix isM = Λ+Σ−1

where Λ is a diagonal matrix with diagonal elements {m exp(µ+ Σii)}i and we adapt

the step size using dual averaging. We generate simulated data for d ∈ {64, 256}.

We adapt for 2000 steps using a Cholesky factor C. Figure 5.17 in Appendix 5.6.7

illustrates that the gradient-based adaptation can achieve a higher minESS/sec score

for d = 64 with high acceptance rates for higher leap-frog steps. In dimension d = 256,

the Riemann-Manifold samplers perform slightly better in terms of minESS/sec, see

Figure 5.4 and Figure 5.18 for a comparison of the inverse mass matrices.
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(a) Minimum effective sample

size per second (after adapta-

tion).

(b) Average acceptance rate

(after adaptation).

(c) Estimates of the eigenval-

ues of DL using power itera-

tion.

Figure 5.4: Cox process in dimension d = 256.

5.4.4 Stochastic volatility model

We consider a stochastic volatility model (Kim et al., 1998; Jacquier et al., 2002) that

has been used with minor variations for adapting HMC (Girolami and Calderhead,

2011; Hoffman and Gelman, 2014; Wu et al., 2018). Assume that the latent log-

volatilities follow an autoregressive AR(1) process so that h1 ∼ N (0, σ2/(1 − φ2))

and for t ∈ {1, . . . , T − 1}, ht+1 = φht + ηt+1 with ηt ∼ N (0, σ2). The observations

follow the dynamics yt|ht ∼ N (0, exp(µ+ ht)). The prior distributions for the static

parameters are: the persistence of the log-volatility process (φ+ 1)/2 ∼ Beta(20, 1.5);

the mean log-volatility µ ∼ Cauchy(0, 2); and the scale of the white-noise process

σ ∼ Half-Cauchy(0, 1). We reparametrize φ and σ with a sigmoid- and softplus-

transformation, respectively. Observe that the precision matrix of the AR(1) process

is tridiagonal. Since a Cholesky factor of such a matrix is tridiagonal, we consider the

parameterisation C = B−1
θ for an upper-triangular and tridiagonal matrix Bθ. The

required operations with such banded matrices have a complexity of O(d), see for

instance Durrande et al. (2019). For comparison, we also consider a diagonal matrix

C. We apply the model to ten years of daily returns of the S&P500 index, giving rise

to a target dimension of d = 2519. In order to account for the different number of

gradient evaluations, we use 3.5× 104/L steps for the adaptation and for evaluating

the sampler based on L ∈ {1, . . . , 10} leapfrog steps. We run NUTS for 1000 steps

which has a four times higher run-time compared to the other samplers. In addition

to using effective sample size to assess convergence, we also report the potential scale

reduction factor split-R̂ (Gelman et al., 2013; Vehtari et al., 2021) where large values
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are indicative of poor mixing. We report results over three replications in Figure

5.5 with more details in Figure 5.19, Appendix 5.6.8. First, HMC with moderately

large L tends to improve the effective samples per computation time compared to the

MALA case, while also having a smaller R̂. Second, using a tridiagonal mass matrix

improves mixing compared to a diagonal one, particularly for the latent log-volatilities

as seen in the median ESS/sec or median R̂ values. The largest absolute eigenvalue

of DL tends to be smaller for a tridiagonal mass matrix and the acceptance rates are

approaching 100% more slowly for increasing L. Third, NUTS seems less efficient as

does using a dual-adaptation scheme.

We imagine that similar efficient parametrizations of M or M−1 can be used for

different generalisations of the above stochastic volatility model, such as including p

sub-diagonals for log-volatilities having a higher-order AR(p) dynamics or multivariate

extensions using a suitable block structure. Likewise, this approach might also be

useful for inferences in different Gaussian Markov Random Field models with sparse

precision matrices.

(a) Minimum effective sample

size per second (after adapta-

tion).

(b) Median effective sample

size per second (after adap-

tation).

(c) Maximum R̂ of q 7→ qi (af-

ter adaptation).

Figure 5.5: Stochastic volatility model (d = 2519).

5.4.5 Learning non-linear transformations

To illustrate an extension to sample from highly non-convex targets by learning a non-

linear transformation within the suggested framework as explained in greater detail

in Appendix 5.6.3, we consider sampling from a two-dimensional Banana distribution

that results from the transformation of N (0,Λ) where Λ is a diagonal matrix having

entries 100 and 1 via the volume-preserving map φb(x) = (x1, x2 + b(x2
1 − 100)),

for b = 0.1, cf. (Haario et al., 1999). We consider a RealNVP-type (Dinh et al.,
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2016) transformation f = f3 ◦ f2 ◦ f1 where f1(x1, x2) = (x1, x2 · g(s(x1)) + t(x1),

f2(x1, x2) = (x1 · g(s(x2)) + t(x1), x2) and f3(x1, x2) = (c1x1, c2x2). The functions s

and t are neural networks with two hidden layers of size 50. For numerical stability,

we found it beneficial to use a modified affine scaling function g as a sigmoid function

scaled on a restricted range such as (0.5, 2), as also suggested in (Behrmann et al.,

2021). As an alternative, we also consider learning a linear transformation f(x) = Cx

for a Cholesky matrix C as well as NUTS and a standard HMC sampler with step size

adapted to achieve a target acceptance rate of 0.65. Figure 5.6 summarizes effective

sample sizes where each method uses 4× 105 samples before and after the adaptation.

Whereas a linear transformation does not improve on standard HMC, applying a

non-linear transformation can improve significantly the effective sample size even

after taking into account the computational costs.

(a) Minimum effective sample

size per second (after adapta-

tion).

(b) Minimum effective sample

size (after adaptation).
(c) Average acceptance rate

(after adaptation).

Figure 5.6: Banana-shaped target in dimension d = 2.

5.5 Discussion and Outlook

Convergence.We have used Adam (Kingma and Ba, 2014) with a constant step

size to adapt the mass matrix, but have stopped the adaptation after some fixed steps

so that any convergence is preserved. Different conditions have been established so

that infinite adaptive schemes that continue to modify C still converge to the correct

invariant distribution, such as diminishing adaptation and containment (Roberts and

Rosenthal, 2007). An analysis of the convergence properties of the adaptive HMC

algorithm is left for future work.

Limitations.Our approach to learn a constant mass matrix can struggle for targets

where the Hessian varies greatly across the state space, which can yield relatively
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short integration times with very high acceptance rates. While this effect might be

mitigated by considering non-linear transformations, it remains challenging to learn

flexible transformations efficiently in high dimensions.

Variations of HMC.We have considered a standard HMC setting for a fixed

number of leap-frog steps. One could consider a mixture of HMC kernels with

different numbers of leap-frog steps and an interesting question would be how to learn

the different mass matrices jointly in an efficient way.

Instead of a full velocity refreshment, partial refreshment strategies (Horowitz,

1991) can sometimes mix better. The suggested adaptation approach can yield very

high acceptance rates particularly for increasing leap-frog steps and the learned mass

matrix can be used with a partial refreshment. However, it would be interesting to

analyse if the adaptation can be adjusted to such persistent velocity updates. It would

also be of interest to analyse if similar ideas can be used to adapt different numerical

integrators such as those suggested in Beskos et al. (2011) for target densities relative

to a Gaussian measure.

Our focus was on learning a mass matrix so that samples from the Markov chain

can be used for estimators that are consistent for increasing iterations. However,

unbiased estimators might also be constructed using coupled HMC chains (Heng and

Jacob, 2019) and one might ask if the adapted mass matrix leads to shorter meeting

times in such a setting.

5.6 Appendix

5.6.1 Gradient terms for the adaptation scheme

5.6.1.1 Gradients for the entropy approximation

Following the arguments in Chen et al. (2019a), we can compute the gradient of the

term in (5.10) using

∂

∂θi
L(θ) = T

( ∞∑
k=0

(−1)k [DL]k
∂

∂θi
{DL}

)
= EN,ε

[
N∑
k=0

(−1)k

pk
ε> [DL]k

∂

∂θi
{DL} ε

]
,

which yields a stochastic gradient via a Russian-roulette estimator.

Additionally, to avoid gradients with infinite means even if DL is not contractive,

we consider a spectral normalisation, so that instead of computing recursively η0 = ε
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and ηk = DLηk−1 for k ∈ {1, . . . , N}, we set η̄0 = ε and

η̄k = DLη̄k−1 · min
{

1, δ′ ‖η̄k−1‖2 / ‖DLη̄k−1‖2
}

(5.12)

for k ∈ {1, . . . , N} and δ′ ∈ (0, 1), such as δ′ = 0.99 in all our experiments. We obtain

an estimator
∂

∂θi
L(θ) ≈ EN,ε

[
N∑
k=0

(−1)k

pk
η̄>k

∂

∂θi
{DL} ε

]
.

5.6.1.2 Gradients for the penalty function

We used the following penalty function

h(x) = (x− δ)2
1{x∈[δ,δ2)} + ((δ2 − δ)2 + (δ2 − δ)2(x− δ2))1{x>δ2}

throughout our experiments with δ ∈ {0.75, 0.95}, and δ2 = 1 + δ. The motivation

was to have a quadratic increase for the penalty term if the largest absolute eigenvalue

approaches 1, and then smoothly switch to a linear function for values larger than δ2.

Gradients for this function can be computed routinely using automatic differentiation.

5.6.1.3 Gradients for the energy error

We can write the energy error as

∆(q0, v) = U(TL(v))− U(q0) +K(WL(v))−K(C−>v)

= U

(
q0 + LhCv − h2CC>ΞL(v)− Lh

2

2
CC>∇U(q0)

)
− U(q0)

+
1

2

∥∥∥∥∥v − h

2
C [∇U(q0) +∇U (qL)]− hC

L−1∑
`=1

∇U(q`)

∥∥∥∥∥
2

− 1

2
‖v‖2 . (5.13)

Recall from (5.3) that ΞL(v) is a weighted sum of potential energy gradients along

the leap-frog trajectory. For computing gradients of the energy-error for the fast

approximation, we therefore stop the gradient for all ∇U(q`) for any ` ∈ {1, . . . , L}.

5.6.2 Proof of Lemma 12

Proof. We generalise the arguments from Chen et al. (2019b), Lemma 7. Proceeding

by induction over n, we have for the case n = 1, for any v ∈ Rd, that DT1(v) = hC

and S1(v) = 1
hC
−1q0− h

2C
>∇U(q0) with derivative of zero. For the case n = 2, using

(5.2) and (5.3), one obtains

DT2(v)− 2hC − h3CC>∇2U(T1(v))C (5.14)
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and moreover

DS2(v) = −h
2

2
C>∇2U(T1(v))C (5.15)

which establishes (5.8). Clearly, ‖DS2(v)‖p <
1
8 if 22h2 < 1

4‖C>∇2U(T1(v))C‖
p

.

Further, for any n < L, again from (5.2) and (5.3),

DTn+1(v) = (n+ 1)hC − h2CC>DΞn+1(v)

= (n+ 1)hC − h2CC>

[
n∑
i=1

(n+ 1− i)∇2U(Ti(v))DTi(v)

]

= (n+ 1)hC − h2CC>

[
n∑
i=1

(n+ 1− i)∇2U(Ti(v))ihC (I +DSi(v))

]

= (n+ 1)hC + (n+ 1)hC

[
−h2

n∑
i=1

(n+ 1− i)
n+ 1

iC>∇2U(Ti(v))C (I +DSi(v))

]
,

which shows the representation (5.8) for the case n+ 1 by recalling that DTn+1(v) =

(n + 1)hC(I +DSn+1(v)). Assume now that ‖DS`(v)‖p < 1/8 holds for all ` 6 n.

Then for any v ∈ Rd

‖DSn+1(v)‖p 6
h2

n+ 1

n∑
i=1

i(n+ 1− i)
∥∥∥C>∇2U(Ti(v))C

∥∥∥
p
‖I +DSi(v)‖p

6
h2

n+ 1

n∑
i=1

L2

4

∥∥∥C>∇2U(Ti(v))C
∥∥∥
p
‖I +DSi(v)‖p

6
h2

n+ 1

n∑
i=1

L2

4

1

4L2h2

(
1 +

1

8

)
6

1

8

where the second inequality follows from (n+ 1− i)i 6 (n+1−i+i
2 )2 6 L2

4 , whereas the

third inequality follows from the induction hypothesis and the assumption L2h2 <

supq
1

4‖C>∇2U(q)C‖
p

.

5.6.3 Extension to learn non-linear transformations

The suggested approach can perform poorly for non-convex potentials or even convex

potentials such as arsing in a logistic regression model for some data sets. We

illustrate here how to learn a reasonable proposal for a general potential function

by considering some version of position-dependent preconditioning. Consider an

invertible differentiable transformation f : Rd → Rd. The idea now is to run HMC

with unit mass matrix for the transformed variables z = f−1(q) where q ∼ π. Write

π̃ for the density of z and let Ũ be the corresponding potential energy function which

is given by

Ũ(z) = U(H(z))− log | detDf(z)|
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with gradient

∇Ũ(z) = Df(z)>∇U(f(z))−∇ log | detDf(z)|.

The transformation f as well as Ũ generally depend on some parameters θ that

we again omit for a less convoluted notation. Our approach can be seen as an

alternative for instance to Hoffman et al. (2019) where such a transformation is

first learned by trying to approximate π̃ with a standard Gaussian density using

variational inference, while the HMC hyperparameters are adapted in a second step

using Bayesian optimisation.

We write T̃L : v 7→ zL for the transformation that maps the initial velocity

v = p0 ∼ N (0, I) to the L-th leapfrog step zL, starting at z0 based on the potential

function Ũ with unit mass matrix M = I. Analogously, we define the mapping

W̃L : v 7→ pL and similarly to (5.5), we define

S̃L(v) =
1

Lh
T̃L(v)− v.

We can then reparametrise the proposal at the point q0 = f(z0) by v 7→ f(T̃L(v)).

Consequently, the log-density of the proposal is given by

log rL(f(T̃L(v))) = log ν(v)− log |detDf(T̃L(v))| − log | detDT̃L(v)|,

and we can write

log | detDT̃L(v)| = d logLh+ log | det(I +DS̃L(v))|.

We use the same approximation

DS̃L(v) ≈ −h2L
2 − 1

6
∇2Ũ(zbL/2c)

based on the transformed Hessian now.

Hessian-vector products can similarly be computed using vector-Jacobian prod-

ucts: With g(z) = grad(Ũ,z), we then compute ∇2Ũ(z)w = vjp(g, z, w)> for

z = f−1(stop_grad(f(zbL/2c)). The motivation for stopping the gradients comes from

considering the special case f : z 7→ Cz that corresponds to the position-independent

preconditioning scheme above. For such a linear transformation,

Ũ(z) = C>∇2U(Cz)C.

To recover the previous case, we stop gradients at qbL/2c = f(zbL/2c) = CzbL/2c.
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Gradients for the log-accept ratio can be computed based on the log-accept

ratio of the transformed chain (Johnson and Geyer, 2012). The energy error of the

transformed chain is

∆θ(q0, v) =Uθ(T̃L(v))− Uθ(f−1(q0)) +K(W̃L(v))−K(v)

=U
{
f
[
f−1(q0) + Lhv − h2Ξ̃L(v)

− Lh
2

2

(
Df(f−1(q0))>∇U(q0)−∇ log | detDf(f−1(q0))

) ]}
+ log | detDf(zL)| − U(q) + log |detDf(f−1(q))|

+
1

2

∣∣∣∣∣
∣∣∣∣∣v − h

2

[
Df(z0)>∇U(f(z0))−∇ log |detDf(z0) + Df(zL)>∇U(f(zL))

−∇ log | detDf(zL)|
]
− h

L−1∑
`=1

Df(z`)
>∇U(f(z`))−∇ log |detDf(z`)|

∣∣∣∣∣
∣∣∣∣∣
2

− 1

2
‖v‖2 ,

where

Ξ̃L(v) =

L∑
i=1

(L− i)
[
Df(zi)

>∇U(f(zi))−∇ log | detDf(zi)
]

and z0, . . . , zL is the leap-frog trajectory starting at z0 = f−1(q0). We also stop all

U gradients, i.e. ∇U(f(z`)) ← stop_grad(∇U(f(z`)). It can be seen this recovers

the above setting if f : z 7→ Cz.
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5.6.4 Gaussian targets experiments

5.6.4.1 High-dimensional anisotropic Gaussian target

(a) Minimum effective sample

size of q 7→ qi per second (af-

ter adaptation).

(b) Minimum effective sample

size of q 7→ qi. NUTS adapted

over 1/10-th of the steps.

(c) CPU time (after adapta-

tion). NUTS adapted over

1/10-th of the steps.

(d) Average acceptance rate

(after adaptation)

(e) Estimates of the eigenval-

ues of DL using power itera-

tion.

(f) Condition number of trans-

formed Hessian C>Σ−1C.

Figure 5.7: Independent Gaussian target (d = 10000).
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5.6.4.2 Ill-conditioned anisotropic Gaussian target

(a) Minimum effective sample

size of q 7→ qi per second (af-

ter adaptation).

(b) Minimum effective sample

size of q 7→ qi. NUTS adapted

over 1/10-th of the steps.

(c) CPU time (after adapta-

tion). NUTS adapted over

1/10-th of the steps.

(d) Average acceptance rate

(after adaptation)

(e) Estimates of the eigenval-

ues of DL using power itera-

tion.

(f) Condition number of trans-

formed Hessian C>Σ−1C.

Figure 5.8: Ill-conditioned Gaussian target (d = 100).
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5.6.4.3 Correlated Gaussian target

(a) Minimum effective sample

size of q 7→ qi per second (af-

ter adaptation).

(b) Minimum effective sample

size of q 7→ qi. NUTS adapted

over 1/10-th of the steps.

(c) CPU time (after adapta-

tion). NUTS adapted over

1/10-th of the steps.

(d) Average acceptance rate

(after adaptation)

(e) Estimates of the eigenval-

ues of DL using power itera-

tion.

(f) Condition number of trans-

formed Hessian C>Σ−1C.

Figure 5.9: Correlated Gaussian target (d = 51).

5.6.4.4 IID Gaussian target

(a) Average acceptance rate

(after adaptation).

(b) Minimum effective sample

size of q 7→ qi. NUTS uses

1/10-th of the samples.

(c) CPU time (after adapta-

tion). NUTS uses 1/10-th of

the samples.

Figure 5.10: IID Gaussian target (d = 10).
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5.6.5 Logistic regression experiments

5.6.6 Australian credit data

(a) Minimum effective sample

size of q 7→ qi per second (af-

ter adaptation).

(b) Minimum effective sample

size of of q 7→ q2i per second

(after adaptation)

(c) Effective sample size of of

q 7→ log π(q) per second (after

adaptation).

(d) Median effective sample

size of q 7→ qi per second (af-

ter adaptation).

(e) Median effective sample

size of of q 7→ q2i per second

(after adaptation).

(f) Minimum effective sample

size of q 7→ qi.

(g) Average acceptance rate

(after adaptation)

(h) CPU time (after adapta-

tion)

(i) Estimates of the eigenval-

ues of DL using power itera-

tion.

Figure 5.11: Bayesian logistic regression for Australian Credit data set (d = 15).
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5.6.6.1 Heart data

(a) Minimum effective sample

size of q 7→ qi per second (af-

ter adaptation).

(b) Minimum effective sample

size of of q 7→ q2i per second

(after adaptation).

(c) Effective sample size of of

q 7→ log π(q) per second (after

adaptation).

(d) Median effective sample

size of q 7→ qi per second (af-

ter adaptation).

(e) Median effective sample

size of of q 7→ q2i per second

(after adaptation).

(f) Minimum effective sample

size of q 7→ qi.

(g) Average acceptance rate

(after adaptation).

(h) CPU time (after adapta-

tion).

(i) Estimates of the eigenval-

ues of DL using power itera-

tion.

Figure 5.12: Bayesian logistic regression for Caravan data set (d = 14).



5.6. Appendix 154

5.6.6.2 Pima data

(a) Minimum effective sample

size of q 7→ qi per second (af-

ter adaptation).

(b) Minimum effective sample

size of of q 7→ q2i per second

(after adaptation)

(c) Effective sample size of of

q 7→ log π(q) per second (after

adaptation).

(d) Median effective sample

size of q 7→ qi per second (af-

ter adaptation).

(e) Median effective sample

size of of q 7→ q2i per second

(after adaptation).

(f) Minimum effective sample

size of q 7→ qi.

(g) Average acceptance rate

(after adaptation)

(h) CPU time (after adapta-

tion)

(i) Estimates of the eigenval-

ues of DL using power itera-

tion.

Figure 5.13: Bayesian logistic regression for Pima data set (d = 8).
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5.6.6.3 Ripley data

(a) Minimum effective sample

size of q 7→ qi per second (af-

ter adaptation).

(b) Minimum effective sample

size of of q 7→ q2i per second

(after adaptation)

(c) Effective sample size of of

q 7→ log π(q) per second (after

adaptation).

(d) Median effective sample

size of q 7→ qi per second (af-

ter adaptation).

(e) Median effective sample

size of of q 7→ q2i per second

(after adaptation).

(f) Minimum effective sample

size of q 7→ qi.

(g) Average acceptance rate

(after adaptation)

(h) CPU time (after adapta-

tion)

(i) Estimates of the eigenval-

ues of DL using power itera-

tion.

Figure 5.14: Bayesian logistic regression for Ripley data set (d = 3).
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5.6.6.4 German credit data

(a) Minimum effective sample

size of q 7→ qi per second (af-

ter adaptation).

(b) Minimum effective sample

size of of q 7→ q2i per second

(after adaptation).

(c) Effective sample size of of

q 7→ log π(q) per second (after

adaptation).

(d) Median effective sample

size of q 7→ qi per second (af-

ter adaptation).

(e) Median effective sample

size of of q 7→ q2i per second

(after adaptation).

(f) Minimum effective sample

size of q 7→ qi.

(g) Average acceptance rate

(after adaptation).

(h) CPU time (after adapta-

tion).

(i) Estimates of the eigenval-

ues of DL using power itera-

tion.

Figure 5.15: Bayesian logistic regression for German credit data set (d = 25)..
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5.6.6.5 Caravan data

(a) Minimum effective sample

size of q 7→ qi per second (af-

ter adaptation).

(b) Minimum effective sample

size of of q 7→ q2i per second

(after adaptation).

(c) Effective sample size of of

q 7→ log π(q) per second (after

adaptation).

(d) Median effective sample

size of q 7→ qi per second (af-

ter adaptation).

(e) Median effective sample

size of of q 7→ q2i per second

(after adaptation).

(f) Minimum effective sample

size of q 7→ qi.

(g) Average acceptance rate

(after adaptation).

(h) CPU time (after adapta-

tion).

(i) Estimates of the eigenval-

ues of DL using power itera-

tion.

Figure 5.16: Bayesian logistic regression for Caravan data set (d = 87).
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5.6.7 Log-Gaussian Cox Point Process

(a) Minimum effective sample

size per second (after adapta-

tion).

(b) Average acceptance rate

(after adaptation).

(c) Estimates of the eigenval-

ues of DL using power itera-

tion.

Figure 5.17: Cox process in dimension d = 64.

(a) Inverse mass matrix (Λ +

Σ−1)−1 of the Riemann mani-

fold based samplers.

(b) Inverse mass matrix CC>

for the entropy-based scheme

with L = 1.

(c) Inverse mass matrix CC>

for the entropy-based scheme

with L = 5.

Figure 5.18: Inverse mass matrix for the Cox process in dimension d = 256 for the

different schemes.

5.6.8 Stochastic volatility model
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(a) Minimum effective sample

size of q 7→ qi per second (af-

ter adaptation).

(b) Median effective sample

size of q 7→ qi per second (af-

ter adaptation).

(c) Minimum effective sample

size of q 7→ qi (after adapta-

tion).

(d) Maximum R̂ of q 7→ qi (af-

ter adaptation).

(e) Median R̂ of q 7→ qi (after

adaptation).

(f) Effective sample size of of

q 7→ log π(q) per second (after

adaptation).

(g) Average acceptance rate

(after adaptation).

(h) CPU time (after adapta-

tion).

(i) Estimates of the eigenval-

ues of DL using power itera-

tion.

(j) First 100 dimensions of

M−1 for L = 5 with a tridiag-

onal mass matrix.

(k) Last 100 dimensions of

M−1 for L = 5 with a tridiag-

onal mass matrix.

(l) Last 100 dimensions of M

for L = 5 with a tridiagonal

mass matrix.

Figure 5.19: Entropy-based adaptation and NUTS for the Stochastic volatility model.
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(a) Minimum effective sample

size of q 7→ qi per second (af-

ter adaptation).

(b) Median effective sample

size of q 7→ qi per second (af-

ter adaptation).

(c) Minimum effective sample

size of q 7→ qi (after adapta-

tion).

(d) Maximum R̂ of q 7→ qi (af-

ter adaptation).
(e) Median R̂ of q 7→ qi (after

adaptation).

(f) Effective sample size of of

q 7→ log π(q) per second (after

adaptation).

Figure 5.20: Dual adaptation for the Stochastic volatility model.



Chapter 6

Outlook and future work

Different topics have been explored in this thesis. We summarize our contributions

and remark on some limitations.

Chapter 2.We have introduced a new Bayesian framework for inferring DNA

methylation patterns on a genome-wide scale. Our approach allows for more flexible

methylation regimes that have not been explored previously. By making use of the

dependence structure from a hidden Markov model, we have developed a novel method

for detecting differentially methylated positions and regions. This new method is

applicable for methylation data with low read depth or missing observations by

borrowing strength from neighbouring CpG sites. A limitation of our model is that

it does not include other covariates that might have an impact on the underlying

methylation signal.

Chapter 3.We have developed a new approximate inference scheme for generic state

space models. It has been shown that this can be seen as an alternative to particle

MCMC methods on an extended state space. This method has been applied for

inference in non-linear Hawkes processes with latent intensity dynamics, which can

be seen as an alternative to approaches using Neural ODEs (Chen et al., 2020). Our

approach has the limitation that it does not provide a tight upper bound and trying

to target the smoothing distribution can be an alternative (Lawson et al., 2018). We

have also ignored a high-variance term in our gradient estimator. Recently, Corenflos

et al. (2021) have suggested an alternative using optimal transport ideas with a higher

computational costs, whilst Scibior et al. (2021) proposed to modify the backward

pass while retaining a standard particle filter in the forward pass.
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Chapter 4.A novel variational density on Rd has been developed that allows for

modeling dependencies with a reasonable complexity of O(d log d) which is of similar

order as previously suggested variational families under low-rank assumptions. We

have applied the density for inference in a high-dimensional sparse Bayesian neural

network. In contrast to Gaussian densities, a limitation of our density is that its

theoretical properties are less-well understood. In most applications of Bayesian

neural networks, the primary goal is often not to find a good approximation of

the posterior distribution over the weights of the network, but rather to find a

variational distribution that yields good predictive performance by Bayesian model

averaging. In this case, more expressive distributions might not necessarily help,

see for instance Swiatkowski et al. (2020) that show that a mean-field Gaussian

model that is restricted to a low-rank structure for the reshaped posterior standard

deviations can yield similar performance than an unrestricted mean-field model and

Farquhar et al. (2020) that show that a mean-field assumption becomes less restrictive

as the depth of the network increases.

Chapter 5.A new adaptation scheme for HMC has been proposed which can improve

the mixing efficiency compared to some previously suggested adaptation procedures.

We have considered adapting a standard HMC algorithm, but expect that some

ideas can be extended to adapt different variants of HMC. However, the suggested

adaptation strategy might be more limited to sampling from target densities where

the Hessian of the log-density is relatively constant across the state space. We have

also considered a moderate number of leapfrog steps and it remains questionable if

the adaptation scheme is sensible if one wants to apply many more leapfrog steps in

the order of O(103) as considered for instance in Izmailov et al. (2021) for inference

in large Bayesian neural networks.

We conclude with two future projects as a follow-up of Chapter 5.

Adaptive MCMC for learning deep generative models.We are interested

in learning deep generative latent variable models using Variational Autoencoders

(VAEs) (Kingma and Welling, 2014; Rezende et al., 2014). Let X ⊂ Rdx , Z ⊂ Rdz and

fix some prior density p(z) for z ∈ Z, with all densities assumed with respect to the

Lebesgue measure. Consider a conditional density pθ(x|z), also called decoder, with

z ∈ Z, x ∈ X and θ ∈ Θ ⊂ Rdθ . We can interpret this decoder as a generative network



163

that tries to explain a data point x using a latent variable z. This latent structure

yields the following distribution of the data pθ(x) =
∫
X pθ(x|z)p(z)dz. Denote the

empirical distribution of some observed data set by µ. We want to minimize the

negative log-likelihood with respect to µ, i.e. minθ∈Θ

∫
X− log pθ(x)µ(dx). Consider

also the posterior density pθ(z|x) ∝ p(z)pθ(x|z) as well as the conditional distribution

qφ(z|x) with parameter φ ∈ Φ ⊂ Rdφ , commonly termed encoder.

We fix x ∈ X and consider now a Markov kernel Mk
φk,x

with parameter φk ∈

Φk ⊂ Rdφk , that is reversible with respect to pθ(z|x). We can construct a distribution

qφ(z|x) by first sampling from an initial tractable distribution q0
φ0

(z|x) and then

applying the K Markov kernels Mk
φk,x

for k ∈ {1, . . . ,K}. Put another way, we

consider the following variational family

Qx = {qKφ,x(·|x) = q0
φ0

(·|x)M1
φ1,x . . .M

K
φK ,x

, φk ∈ Φk}.

Our aim is to learn the parameters φk such as the pre-conditioning matrix when

Mk
φk,x

is a MALA or HMC kernel using the same objective as considered in Chapter

5, while also optimizing over φ0 to minimize∫
X

KL
(
q0
φ0,(·|x)|pθ(·|x)

)
µ(dx)

and over θ by maximizing∫
X

(
EqKφ,x(z|x) [log pθ(x|z)]

)
µ(dx).

Adaptive piecewise-peterministic Markov processes.We are interested in the

problem of adapting piecewise-deterministic Markov processes (PDMPs) that can

be used to sample from some target density π on X ⊂ Rd. For a review, see

Fearnhead et al. (2018); Vanetti et al. (2017). We augment the state space X with

a velocity variable v ∈ V drawn from some probability distribution ν. For the

Zig-Zag (ZZ) process, cf. Bierkens et al. (2019), ν is the uniform distribution on

V = {−1, 1}d, while for the Bouncy-Particle Sampler (BPS), see Bouchard-Côté et al.

(2018), ν is a rotation invariant distribution such as the uniform distribution on the

d-dimensional unit-sphere or ν = N (0, σ2 I). Let us recall a definition of a PDMP

(X,V ) on X × V, cf. Davis (1984); Jacobsen (2006); Durmus et al. (2018). Consider

a time-homogeneous differential flow ϕ : R+ × X × V → Rd, (t, x, v) 7→ ϕt(x, v)

measurable and continuously differentiable that satisfies for all (x, v) ∈ X × V,
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s, t > 0, ϕt+s(x, v) = ϕt(ϕs(x, v)). The stochastic dynamics of (X,V ) are based on a

marked point process (Tn, In, X̃n, Ṽn) with marks (In, X̃n, Ṽn) ∈ {1, .., `}×X ×V and

jump times T1 < T2 < ... being R+-valued random variables generated by ` intensities

or jump rates λi : R+ ×X × V → R+, (t, x) 7→ λi(t, x, v). Furthermore, we introduce

stochastic time-homogeneous Markov kernels Qi : X × V × B(X × V)→ [0, 1] with

x 7→ Qi(x,B) measurable and continuous for all B ∈ B(X × V), which describes the

probability Qi(x,B) that the process jumps into set B ∈ B(X × V), given the state

(x, v) ∈ X × V immediately before the jump of component i and ϕs(X̃n, Ṽn) is the

state of (X,V ) at time Tn + s < Tn+1.

Observe that the stochastic process (X,V ) is a random variable from a probability

space (Ω,F ,P) to the path space of right continuous functions with left limits that

can be sampled from using thinning methods. The continuous-time process yields an

embedded discrete-time Markov chain (X̃k, Ṽk, Sk, Ik)k∈N with X̃k = XTk , Ṽk = VTk

and Tk =
∑k

j=1 Sk having filtration F̃n = σ((X̃k, Ṽk, Sk, Ik)k6n) that satisfies

P
(

(X̃k+1, Ṽk+1) ∈ B,Sk+1 6 s, Ik+1 = i|F̃k
)

=

∫ s

0
Qi(ϕt(X̃k, Ṽk), B)λi(ϕt(X̃k, Ṽk)) exp

−∑̀
j=1

∫ t

0
λj(ϕu(X̃k, Ṽk))du

 dt.

We aim to explore further adapting the transition dynamics of this embedded Markov

chain, which includes all simulated events, including those where the jumps can be

of size zero if events are simulated using thinning. For instance, one can consider

learning a C1-diffeomorphism fθ : X → X such that a standard BPS or ZZ sampler

has stationary distribution πθ ⊗ ν, where πθ(A) = π(fθ(A)) for A ∈ B(X ) and that

(fθ(X̃k))k∈N with X̃k the position component of the embedded Markov chain has a

large expected squared jumping distance or a large generalised speed measure.
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