3,446 research outputs found

    K-mean Clustering for Segmentation of Irregular Shape Fruit Images under Various Illumination

    Get PDF
    Segmentation is the first step in analyzing or interpreting an image automatically. In particular applications, like image compression or image recognition, entire image can�t be processed directly. Hence many segmentation techniques are proposed to segment an image before processing it. This made it possible to develop many techniques which are currently using in different industries and agriculture field. They are either applied for grading or inspecting quality of food products and Fruits. These developed techniques use thresholding and clustering approach to get proper segmented output. In this paper an image segmentation approach is developed based on k-means adaptive clustering. This approach segments the various shape fruit images particularly which are non-circular (like banana, mango, and pineapple) and captured in various illumination such as low, Medium and high intensity. Earlier segmentation methods were not apposite for fruit images captured in natural light; as they were responsive to various colour intensity predisposed by the sunlight illumination. Natural illumination tempts an uneven amount of light intensity on the surface of the object, resulting in poor quality image segmentation. This approach will deal with problem of light effect. K-means clustering is renowned method for image segmentation. This method is more efficient, robust than the others. It provides best result when dataset is well separated and distinct. Different shape fruit images are segmented properly along with grey scale. The analytical results are the evidence for the accurate segmentation of banana, mango pineapple using new approach developed here

    A Review on Advances in Automated Plant Disease Detection

    Get PDF
    Plant diseases cause major yield and economic losses. To detect plant disease at early stages, selecting appropriate techniques is imperative as it affects the cost, diagnosis time, and accuracy. This research gives a comprehensive review of various plant disease detection methods based on the images used and processing algorithms applied. It systematically analyzes various traditional machine learning and deep learning algorithms used for processing visible and spectral range images, and comparatively evaluates the work done in literature in terms of datasets used, various image processing techniques employed, models utilized, and efficiency achieved. The study discusses the benefits and restrictions of each method along with the challenges to be addressed for rapid and accurate plant disease detection. Results show that for plant disease detection, deep learning outperforms traditional machine learning algorithms while visible range images are more widely used compared to spectral images

    Classification Models for Plant Diseases Diagnosis: A Review

    Get PDF
    Plants are important source of our life. Crop production in a good figure and good quality is important to us. The diagnosis of a disease in a plant can be manual or automatic. But manual detection of disease in a plant is not always correct as sometimes it can be not be seen by naked eyes so an automatic method of detection of plant diseases should be there. It can make use of various artificial intelligence based or machine learning based methods. It is a tedious task as it needs to be identified in earlier stage so that it will not affect the entire crop. Disease affects all species of plant, both cultivated and wild. Plant disease occurrence and infection severity vary seasonally, regarding the environmental circumstances, the kinds of crops cultivated, and the existence of the pathogen. This review attempts to provide an exhaustive review of various plant diseases and its types, various methods to diagnose plant diseases and various classification models used so as to help researchers to identify the areas of scope where plant pathology can be improved

    Computer Vision System for Non-Destructive and Contactless Evaluation of Quality Traits in Fresh Rocket Leaves (Diplotaxis Tenuifolia L.)

    Get PDF
    La tesi di dottorato è incentrata sull'analisi di tecnologie non distruttive per il controllo della qualità dei prodotti agroalimentari, lungo l'intera filiera agroalimentare. In particolare, la tesi riguarda l'applicazione del sistema di visione artificiale per valutare la qualità delle foglie di rucola fresh-cut. La tesi è strutturata in tre parti (introduzione, applicazioni sperimentali e conclusioni) e in cinque capitoli, rispettivamente il primo e il secondo incentrati sulle tecnologie non distruttive e in particolare sui sistemi di computer vision per il monitoraggio della qualità dei prodotti agroalimentari. Il terzo, quarto e quinto capitolo mirano a valutare le foglie di rucola sulla base della stima di parametri qualitativi, considerando diversi aspetti: (i) la variabilità dovuta alle diverse pratiche agricole, (ii) la senescenza dei prodotti confezionati e non, e (iii) lo sviluppo e sfruttamento dei vantaggi di nuovi modelli più semplici rispetto al machine learning utilizzato negli esperimenti precedenti. Il lavoro di ricerca di questa tesi di dottorato è stato svolto dall'Università di Foggia, dall'Istituto di Scienze delle Produzioni Alimentari (ISPA) e dall'Istituto di Tecnologie e Sistemi Industriali Intelligenti per le Manifatture Avanzate (STIIMA) del Consiglio Nazionale delle Ricerche (CNR). L’attività di ricerca è stata condotta nell'ambito del Progetto SUS&LOW (Sustaining Low-impact Practices in Horticulture through Non-destructive Approach to Provide More Information on Fresh Produce History & Quality), finanziato dal MUR-PRIN 2017, e volto a sostenere la qualità della produzione e dell'ambiente utilizzando pratiche agricole a basso input e la valutazione non distruttiva della qualità di prodotti ortofrutticoli.The doctoral thesis focused on the analysis of non-destructive technologies available for the control quality of agri-food products, along the whole supply chain. In particular, the thesis concerns the application of computer vision system to evaluate the quality of fresh rocket leaves. The thesis is structured in three parts (introduction, experimental applications and conclusions) and in 5 chapters, the first and second focused on non-destructive technologies and in particular on computer vision systems for monitoring the quality of agri-food products, respectively. The third, quarter, and fifth chapters aim to assess the rocket leaves based on the estimation of quality aspects, considering different aspects: (i) the variability due to the different agricultural practices, (ii) the senescence of packed and unpacked products, and (iii) development and exploitation of the advantages of new models simpler than the machine learning used in the previous experiments. The research work of this doctoral thesis was carried out by the University of Foggia, the Institute of Science of Food Production (ISPA) and the Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA) of National Research Council (CNR). It was conducted within the Project SUS&LOW (Sustaining Low-impact Practices in Horticulture through Non-destructive Approach to Provide More Information on Fresh Produce History & Quality), funded by MUR- PRIN 2017, and aimed at sustaining quality of production and of the environment using low input agricultural practices and non-destructive quality evaluation

    Colour Relations in Form

    Get PDF
    The orthodox monadic determination thesis holds that we represent colour relations by virtue of representing colours. Against this orthodoxy, I argue that it is possible to represent colour relations without representing any colours. I present a model of iconic perceptual content that allows for such primitive relational colour representation, and provide four empirical arguments in its support. I close by surveying alternative views of the relationship between monadic and relational colour representation

    Computer vision based classification of fruits and vegetables for self-checkout at supermarkets

    Get PDF
    The field of machine learning, and, in particular, methods to improve the capability of machines to perform a wider variety of generalised tasks are among the most rapidly growing research areas in today’s world. The current applications of machine learning and artificial intelligence can be divided into many significant fields namely computer vision, data sciences, real time analytics and Natural Language Processing (NLP). All these applications are being used to help computer based systems to operate more usefully in everyday contexts. Computer vision research is currently active in a wide range of areas such as the development of autonomous vehicles, object recognition, Content Based Image Retrieval (CBIR), image segmentation and terrestrial analysis from space (i.e. crop estimation). Despite significant prior research, the area of object recognition still has many topics to be explored. This PhD thesis focuses on using advanced machine learning approaches to enable the automated recognition of fresh produce (i.e. fruits and vegetables) at supermarket self-checkouts. This type of complex classification task is one of the most recently emerging applications of advanced computer vision approaches and is a productive research topic in this field due to the limited means of representing the features and machine learning techniques for classification. Fruits and vegetables offer significant inter and intra class variance in weight, shape, size, colour and texture which makes the classification challenging. The applications of effective fruit and vegetable classification have significant importance in daily life e.g. crop estimation, fruit classification, robotic harvesting, fruit quality assessment, etc. One potential application for this fruit and vegetable classification capability is for supermarket self-checkouts. Increasingly, supermarkets are introducing self-checkouts in stores to make the checkout process easier and faster. However, there are a number of challenges with this as all goods cannot readily be sold with packaging and barcodes, for instance loose fresh items (e.g. fruits and vegetables). Adding barcodes to these types of items individually is impractical and pre-packaging limits the freedom of choice when selecting fruits and vegetables and creates additional waste, hence reducing customer satisfaction. The current situation, which relies on customers correctly identifying produce themselves leaves open the potential for incorrect billing either due to inadvertent error, or due to intentional fraudulent misclassification resulting in financial losses for the store. To address this identified problem, the main goals of this PhD work are: (a) exploring the types of visual and non-visual sensors that could be incorporated into a self-checkout system for classification of fruits and vegetables, (b) determining a suitable feature representation method for fresh produce items available at supermarkets, (c) identifying optimal machine learning techniques for classification within this context and (d) evaluating our work relative to the state-of-the-art object classification results presented in the literature. An in-depth analysis of related computer vision literature and techniques is performed to identify and implement the possible solutions. A progressive process distribution approach is used for this project where the task of computer vision based fruit and vegetables classification is divided into pre-processing and classification techniques. Different classification techniques have been implemented and evaluated as possible solution for this problem. Both visual and non-visual features of fruit and vegetables are exploited to perform the classification. Novel classification techniques have been carefully developed to deal with the complex and highly variant physical features of fruit and vegetables while taking advantages of both visual and non-visual features. The capability of classification techniques is tested in individual and ensemble manner to achieved the higher effectiveness. Significant results have been obtained where it can be concluded that the fruit and vegetables classification is complex task with many challenges involved. It is also observed that a larger dataset can better comprehend the complex variant features of fruit and vegetables. Complex multidimensional features can be extracted from the larger datasets to generalise on higher number of classes. However, development of a larger multiclass dataset is an expensive and time consuming process. The effectiveness of classification techniques can be significantly improved by subtracting the background occlusions and complexities. It is also worth mentioning that ensemble of simple and less complicated classification techniques can achieve effective results even if applied to less number of features for smaller number of classes. The combination of visual and nonvisual features can reduce the struggle of a classification technique to deal with higher number of classes with similar physical features. Classification of fruit and vegetables with similar physical features (i.e. colour and texture) needs careful estimation and hyper-dimensional embedding of visual features. Implementing rigorous classification penalties as loss function can achieve this goal at the cost of time and computational requirements. There is a significant need to develop larger datasets for different fruit and vegetables related computer vision applications. Considering more sophisticated loss function penalties and discriminative hyper-dimensional features embedding techniques can significantly improve the effectiveness of the classification techniques for the fruit and vegetables applications

    A comprehensive review of fruit and vegetable classification techniques

    Get PDF
    Recent advancements in computer vision have enabled wide-ranging applications in every field of life. One such application area is fresh produce classification, but the classification of fruit and vegetable has proven to be a complex problem and needs to be further developed. Fruit and vegetable classification presents significant challenges due to interclass similarities and irregular intraclass characteristics. Selection of appropriate data acquisition sensors and feature representation approach is also crucial due to the huge diversity of the field. Fruit and vegetable classification methods have been developed for quality assessment and robotic harvesting but the current state-of-the-art has been developed for limited classes and small datasets. The problem is of a multi-dimensional nature and offers significantly hyperdimensional features, which is one of the major challenges with current machine learning approaches. Substantial research has been conducted for the design and analysis of classifiers for hyperdimensional features which require significant computational power to optimise with such features. In recent years numerous machine learning techniques for example, Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision Trees, Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) have been exploited with many different feature description methods for fruit and vegetable classification in many real-life applications. This paper presents a critical comparison of different state-of-the-art computer vision methods proposed by researchers for classifying fruit and vegetable

    Sensors for product characterization and quality of specialty crops—A review

    Get PDF
    This review covers developments in non-invasive techniques for quality analysis and inspection of specialty crops, mainly fresh fruits and vegetables, over the past decade up to the year 2010. Presented and discussed in this review are advanced sensing technologies including computer vision, spectroscopy, X-rays, magnetic resonance, mechanical contact, chemical sensing, wireless sensor networks and radiofrequency identification sensors. The current status of different sensing systems is described in the context of commercial application. The review also discusses future research needs and potentials of these sensing technologies. Emphases are placed on those technologies that have been proven effective or have shown great potential for agro-food applications. Despite significant progress in the development of non-invasive techniques for quality assessment of fruits and vegetables, the pace for adoption of these technologies by the specialty crop industry has been slow
    corecore