1,690 research outputs found

    Algorithms for the enhancement of dynamic range and colour constancy of digital images & video

    Get PDF
    One of the main objectives in digital imaging is to mimic the capabilities of the human eye, and perhaps, go beyond in certain aspects. However, the human visual system is so versatile, complex, and only partially understood that no up-to-date imaging technology has been able to accurately reproduce the capabilities of the it. The extraordinary capabilities of the human eye have become a crucial shortcoming in digital imaging, since digital photography, video recording, and computer vision applications have continued to demand more realistic and accurate imaging reproduction and analytic capabilities. Over decades, researchers have tried to solve the colour constancy problem, as well as extending the dynamic range of digital imaging devices by proposing a number of algorithms and instrumentation approaches. Nevertheless, no unique solution has been identified; this is partially due to the wide range of computer vision applications that require colour constancy and high dynamic range imaging, and the complexity of the human visual system to achieve effective colour constancy and dynamic range capabilities. The aim of the research presented in this thesis is to enhance the overall image quality within an image signal processor of digital cameras by achieving colour constancy and extending dynamic range capabilities. This is achieved by developing a set of advanced image-processing algorithms that are robust to a number of practical challenges and feasible to be implemented within an image signal processor used in consumer electronics imaging devises. The experiments conducted in this research show that the proposed algorithms supersede state-of-the-art methods in the fields of dynamic range and colour constancy. Moreover, this unique set of image processing algorithms show that if they are used within an image signal processor, they enable digital camera devices to mimic the human visual system s dynamic range and colour constancy capabilities; the ultimate goal of any state-of-the-art technique, or commercial imaging device

    BaTiO???3 ceramics for PTC applications.

    Get PDF

    Principles of technical photography and photoinstrumentation

    Get PDF
    A brief review of fundamental image formation principles, camera systems, and special cameras and imaging techniques used in scientific, technical and instrumentation photography for the purpose of visualizing otherwise invisible events or to make measurements of such events. The article describes in brief how the various systems work and the technology that makes their operation possible

    NON-CONTACT SPATIALLY CONSTRAINED OPTICAL SCANNING METHODS APPLIED FOR DEPTH, WIDTH AND GAP MEASUREMENTS

    Get PDF
    The thesis presents the non-contact laser projection based systems utilized for quantifying the feature dimensions like width, depth and air gaps. Laser diode, Charge coupled device (CCD) and post-processing software using image processing tools are the major components of the non-contact measurement systems. The study involves two methods where the first method comprises of active laser-based triangulation and morphological edge detection for depth and width measurement applications. The second method uses edge detection technique and Dynamic Field of View (DFOV) for gap detection and tracking. Using the developed techniques, the case studies are conducted with smooth plastic fenders with induced artificial deviations, MIG welding seam and different air gap deco finishes. Experimental validations are carried out by comparing the results with commercial systems like 3D scanner and commercial sensor. Also, the Gauge Repeatability and Reproducibility (GR&R) studies are produced to identify the gap measurement tool capabilities interms of accuracy and repeatability

    Design, analysis and optimization of visible light communications based indoor access systems for mobile and internet of things applications

    Get PDF
    Demands for indoor broadband wireless access services are expected to outstrip the spectrum capacity in the near-term spectrum crunch . Deploying additional femtocells to address spectrum crunch is cost-inefficient due to the backhaul challenge and the exorbitant system maintenance. According to an Alcatel-Lucent report, most mobile Internet access traffic happens indoors. To alleviate the spectrum crunch and the backhaul challenge problems, visible light communication (VLC) emerges as an attractive candidate for indoor wireless access in the 5G architecture. In particular, VLC utilizes LED or fluorescent lamps to send out imperceptible flickering light that can be captured by a smart phone camera or photodetector. Leveraging power line communication and the available indoor infrastructure, VLC can be utilized with a small one-time cost. VLC also facilitates the great advantage of being able to jointly perform illumination and communications. Integration of VLC into the existing indoor wireless access networks embraces many challenges, such as lack of uplink infrastructure, excessive delay caused by blockage in heterogeneous networks, and overhead of power consumption. In addition, applying VLC to Internet-of-Things (IoT) applications, such as communication and localization, faces the challenges including ultra-low power requirement, limited modulation bandwidth, and heavy computation and sensing at the device end. In this dissertation, to overcome the challenges of VLC, a VLC enhanced WiFi system is designed by incorporating VLC downlink and WiFi uplink to connect mobile devices to the Internet. To further enhance robustness and throughput, WiFi and VLC are aggregated in parallel by leveraging the bonding technique in Linux operating system. Based on dynamic resource allocation, the delay performance of heterogeneous RF-VLC network is analyzed and evaluated for two different configurations - aggregation and non-aggregation. To mitigate the power consumption overhead of VLC, a problem of minimizing the total power consumption of a general multi-user VLC indoor network while satisfying users traffic demands and maintaining an acceptable level of illumination is formulated. The optimization problem is solved by the efficient column generation algorithm. With ultra-low power consumption, VLC backscatter harvests energy from indoor light sources and transmits optical signals by modulating the reflected light from a reflector. A novel pixelated VLC backscatter is proposed and prototyped to address the limited modulation bandwidth by enabling more advanced modulation scheme than the state-of-the-art on-off keying (OOK) scheme and allowing for the first time orthogonal multiple access. VLC-based indoor access system is also suitable for indoor localization due to its unique properties, such as utilization of existing ubiquitous lighting infrastructure, high location and orientation accuracy, and no interruption to RF-based devices. A novel retroreflector-based visible light localization system is proposed and prototyped to establish an almost zero-delay backward channel using a retroreflector to reflect light back to its source. This system can localize passive IoT devices without requiring computation and heavy sensing (e.g., camera) at the device end

    VAN LCOS microdisplays: a decade of technological evolution

    Get PDF
    Abstract—Microdisplays of the liquid crystals on silicon (LCOS) type have gone through a rapid evolution during the last decade. We present an overview of how vertically aligned nematic (VAN) LCOS have evolved from an attractive, but notoriously difficult and even infamous technology, to the mainstream microdisplay technology that it is today. At the same time, we highlight a number of remaining issues and concerns, and present some ideas of how to remedy them
    corecore