4,290 research outputs found

    Balancing exposed and hidden nodes in linear wireless networks

    Get PDF
    Wireless networks equipped with the CSMA protocol are subject to collisions due to interference. For a given interference range, we investigate the tradeoff between collisions (hidden nodes) and unused capacity (exposed nodes). We show that the sensing range that maximizes throughput critically depends on the activation rate of nodes. For infinite line networks, we prove the existence of a threshold: When the activation rate is below this threshold, the optimal sensing range is small (to maximize spatial reuse). When the activation rate is above the threshold, the optimal sensing range is just large enough to preclude all collisions. Simulations suggest that this threshold policy extends to more complex linear and nonlinear topologies. Keywords: Carrier-sensing range; Markov processes; collisions; exposed nodes; hidden nodes; random-access; throughput; wireless network

    Reliable routing scheme for indoor sensor networks

    Get PDF
    Indoor Wireless sensor networks require a highly dynamic, adaptive routing scheme to deal with the high rate of topology changes due to fading of indoor wireless channels. Besides that, energy consumption rate needs to be consistently distributed among sensor nodes and efficient utilization of battery power is essential. If only the link reliability metric is considered in the routing scheme, it may create long hops routes, and the high quality paths will be frequently used. This leads to shorter lifetime of such paths; thereby the entire network's lifetime will be significantly minimized. This paper briefly presents a reliable load-balanced routing (RLBR) scheme for indoor ad hoc wireless sensor networks, which integrates routing information from different layers. The proposed scheme aims to redistribute the relaying workload and the energy usage among relay sensor nodes to achieve balanced energy dissipation; thereby maximizing the functional network lifetime. RLBR scheme was tested and benchmarked against the TinyOS-2.x implementation of MintRoute on an indoor testbed comprising 20 Mica2 motes and low power listening (LPL) link layer provided by CC1000 radio. RLBR scheme consumes less energy for communications while reducing topology repair latency and achieves better connectivity and communication reliability in terms of end-to-end packets delivery performance

    QoS routing in ad-hoc networks using GA and multi-objective optimization

    Get PDF
    Much work has been done on routing in Ad-hoc networks, but the proposed routing solutions only deal with the best effort data traffic. Connections with Quality of Service (QoS) requirements, such as voice channels with delay and bandwidth constraints, are not supported. The QoS routing has been receiving increasingly intensive attention, but searching for the shortest path with many metrics is an NP-complete problem. For this reason, approximated solutions and heuristic algorithms should be developed for multi-path constraints QoS routing. Also, the routing methods should be adaptive, flexible, and intelligent. In this paper, we use Genetic Algorithms (GAs) and multi-objective optimization for QoS routing in Ad-hoc Networks. In order to reduce the search space of GA, we implemented a search space reduction algorithm, which reduces the search space for GAMAN (GA-based routing algorithm for Mobile Ad-hoc Networks) to find a new route. We evaluate the performance of GAMAN by computer simulations and show that GAMAN has better behaviour than GLBR (Genetic Load Balancing Routing).Peer ReviewedPostprint (published version

    Joint Link Scheduling and Routing for Load Balancing in STDMA Wireless Mesh Networks

    Get PDF
    In wireless mesh networks, it is known to be effective to use a TDMA based MAC than a contention-based CSMA. In addition, if spatial TDMA is used, network performance can be improved further because of its spatial reuse effect. However this scheme still has a disadvantage in the system performance aspect without a load-balanced routing because the resource of links that are not used is wasted and frequently used links are out of resources. That is, the number of available flows in network is limited because load balancing is not performed. In this paper, we propose joint link scheduling and routing through a cross-layer scheme. For this, we propose a load balancing routing method to maximize available resources under the given traffic pattern and scheduling method for maximizing link utilization on the given route. These two methods are iterated until an optimized solution can be obtained. The proposed algorithm can be formulated using a mathematical LP problem and we show that it is very effective for load balancing compared to simple adoption of IEEE 802.11s which is a standard TDMA protocol in wireless mesh network. If the proposed algorithm is applied to initial design solution such as Smart Grid, the number of available flows can be increased and the load on each link can be balanced

    Distributed MAC Protocol Supporting Physical-Layer Network Coding

    Full text link
    Physical-layer network coding (PNC) is a promising approach for wireless networks. It allows nodes to transmit simultaneously. Due to the difficulties of scheduling simultaneous transmissions, existing works on PNC are based on simplified medium access control (MAC) protocols, which are not applicable to general multi-hop wireless networks, to the best of our knowledge. In this paper, we propose a distributed MAC protocol that supports PNC in multi-hop wireless networks. The proposed MAC protocol is based on the carrier sense multiple access (CSMA) strategy and can be regarded as an extension to the IEEE 802.11 MAC protocol. In the proposed protocol, each node collects information on the queue status of its neighboring nodes. When a node finds that there is an opportunity for some of its neighbors to perform PNC, it notifies its corresponding neighboring nodes and initiates the process of packet exchange using PNC, with the node itself as a relay. During the packet exchange process, the relay also works as a coordinator which coordinates the transmission of source nodes. Meanwhile, the proposed protocol is compatible with conventional network coding and conventional transmission schemes. Simulation results show that the proposed protocol is advantageous in various scenarios of wireless applications.Comment: Final versio

    The impact of incapacitation of multiple critial sensor nodes on wireless sensor network lifetime

    Get PDF
    Kablosuz Algılayıcı Aglar (KAA) askeri güvenlik ve çevre gözetleme vb. kritik kontrol etme uygulamalarında sıkça kullanılmaktadır. Bu tip kritik uygulamarda algılayıcı dügümler ? düsman saldırıları için potansiyel birer hedeftir. KAA'ların en önemli performans ölçütlerinden birisi ag yasam süresi oldugu için çe¸sitli saldırılarla algılayıcı dügümlerden en kritik olanlarının ele geçirilmesi ve i¸slevsiz hale getirilmesi ag yasam süresini ciddi miktarda etkilemektedir. Bu çalı¸smada Dogrusal Programlama (DP) tabanlı iki tane özgün algoritma geli¸stirilmis olup kritik dügümlerin ele geçirilmesinin KAA ya¸sam süresine olan etkileri sistematik biçimde ele alınmı¸stır. Bu çalısma sonucunda kritik dügümlerin ele geçirilmesinin ag yasam süresini ciddi ölçüde düsürdügü sonuçlarına varılmıstır.Wireless Sensor Networks (WSNs) are envisioned to be utilized in many application areas such as critical infrastructure monitoring, therefore, WSN nodes are potential targets for adversaries. Network lifetime is one of the most important performance indicators in WSNs. Possibility of reducing the network lifetime significantly by eliminating a certain subset of nodes through various attacks will create the opportunity for the adversaries to hamper the performance of WSNs with a low risk of detection. However, the extent of reduction in network lifetime due to elimination of a group of critical sensor nodes has never been investigated in the literature. Therefore, in this study , we created a novel Linear Programming (LP) framework to model the impact of critical node elimination attacks on WSNs and explored the parameter space through numerical evaluations of the LP model. Our results show that critical node elimination attacks can shorten the network lifetime significantly

    Capacity analysis of wireless mesh networks

    Get PDF
    The next generation wireless· netWorks experienced agreat development with emergence of wireless mesh networks (WMNs), which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the· network capacity must be addressed to· exploit the optimum netWork performance. The wireless mesh network capacity analysis shows that the throughput of each mesh , node degrades in order of l/n with increasing number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis,Bottleneck collision domain, Medium access control (MAC) laye
    corecore