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Balancing exposed and hidden nodes in linear
wireless networks

P.M. van de Ven, A.J.E.M. Janssdtellow, IEEE and J.S.H. van Leeuwaarden

Abstract—Wireless networks equipped with the CSMA pro- transmissions per unit of time. We investigate the relation
tocol are subject to collisions due to interference. For a gen petween the sensing range and the throughput. The effect
|nt_erference range we investigate the tradeoff between dadions of the sensing range can be understood as follows. A small
(hidden nodes) and unused capacity (exposed nodes). We show ) . -
that the sensing range that maximizes throughput criticaly ;ensmg range a||9WS for rr_10re Slmqltaneous transmissions,
depends on the activation rate of nodes. For infinite line netorks, IS less effective in reducing collisions. On the other hand,
we prove the existence of a threshold: When the activation ta a large sensing range admits fewer transmissions, but also
is below this threshold the optimal sensing range is small ¢ mitigates interference. The main contribution of this paise

maximize spatial reuse). When the activation rate is abovehe o axamination of this tradeoff in relation to its effect ie
threshold the optimal sensing range is just large enough to throughput

preclude all collisions. Simulations suggest that this theshold . . .
policy extends to more complex linear and non-linear topolgies. ~ The network is characterized by the sensing range and the

interference range. A node can only initiate a new transmis-
Index Terms—Carrier-sensing range, collisions, exposed nodes, sion when all nodes within its sensing range are inactive.
hidden nodes, Markov processes, random-access, throughipu This transmission is successful when all nodes within the
wireless networks interference range of the destination node are inactivd, an
fails otherwise. The network performance suffers from two
|. INTRODUCTION complementary issues: hidden nodes and exposed nodes (see
%6]). Hidden nodes are nodes located outside the sensing
rgnge of the transmitter and are therefore not detected by
e carrier-sensing mechanism. Hidden nodes cause ooHisi
they are within the receiver’s interference range. Eggos

Carrier sense multiple-access (CSMA) type protocols for
a popular class of medium access protocols for wireless n
works. The first CSMA protocol was introduced by KIeinrocIE
and Tobagi [16] in 1975, and has seen many incarnatio . L2
since, including the widely used 802.11 standard. In thjzepa nodes are nodes located outside the receiver’s interferenc

we provide an asymptotc analysis of large wireless neworl G Lt TSR B8 SHEECED SRS SR S8 O 8 B
operating under CSMA, in the presence of collisions. » €XP

CSMA is a randomized protocol that allows nodes tBlocked. As the sensing range grows, the number of hidden

access the medium in a distributed manner. The absencer]8‘1;ies decreases, and the number OT exposed nodes increases
a centralized scheduler creates more flexibility and allfavs In recent years the performance ISSUes caus_,ed _by hidden

the deployment of larger networks. An early example of su d exposed_nodes h_ave been ex_tel_"nswely studied in re__\search
a randomized procedure is the ALOHA protocol [1], whic iterature. Various studies look modifying the CSMA algbm

forces nodes to wait for some random backoff period befogé ehr_mnate elthter h'd?e? (|)1r explosezdo n(iges, fr:)rbexantwple
starting a transmission, in order to reduce the likelihodd y using separate control channels [20], through busy tone

nearby nodes transmitting simultaneously. The latter &eve

would cause the signals to interfere with each other, and m cz;l]r_rler—sensm? Imechan;tsm [ls]i H(I)_w_evetr_, n%.jzcz ap-
result in a collision that renders the transmissions useIeB oach IS successiul In simuitaneously eliminating hidee

CSMA improves upon ALOHA by letting nodesensetheir exposed nodes, and solving either issue may exacerbate the

surroundings to detect the presence of other transmittiﬂ&er' In general, eliminating both hidden and exposed siode

nodes. If a node detects at least one active (i.e. tranagjtti 1S _f_ﬁns'dertid tct)hbe a vgry .d'mfhun g;ol\z,lfml [13'![.h t
node within its sensing range, its backoff timer is frozen us, rather than modifying the algorithm, we wan

deferring the countdown until the channel is sensed cle{:ﬁ. balange hidden E}I_nhd expglsed n??_ez_by tcharefully_choosmg
Using this mechanism, collisions can be further reduced. € sensing range. The probiem of Tinding the sensing range

A key performance measure in wireless networks is throqu—at maximizes throughput has received considerabletatien

: ) ecent years [11], [17], [18], [27], [29], [30]. Althoughese
put, which we define as the average number of Succesgv{/bc!rks each consider a distinct physical-layer and MAC+taye

A preliminary version of this paper appeared as [24] model, all treat exposed and hidden nodes in a similar manner

Yofk’t\gw\r/]aﬂe?geht\s/erh\i(s 1"822&“3 S'i'\?eTnﬁgﬁ?%smiémae?ézsﬁma)‘mh €entThat s, they assume for each transmission the existence of a
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Technology, Department of Electrical Engineering, 5600 EiBdhoven, The collide (be blocked) if any node in this area is active. Rathe

Netherlands (e-mail: a.j.e.m.janssen@tue.nl) o than analyzing a fixed network structure, hidden and exposed
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Department of Mathematics and Computer Science, 5600 MBteiven, The node events are then _apmeimated by assuming a rand_omized
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gnals [12], [19] or by modifying and temporarily disalgin
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or exposed node by multiplying the size of these areas by thesent the proofs of those results that are not alreadyeprov
node density, and assuming that nodes operate independentlearlier sections.
from each other.

This approach ignores both the network structure and com- [I. MODEL DESCRIPTION
plex interactions between nodes in a random-access ngtworkye consider a linear array @h -+ 1 nodes, and we denote
and provides only a crude approximation of the carrierisens the set of all nodes byV' = {—n,...,n}. We fix the

tradeoff. In the present paper we consider a fixed netwofignsmission distancé, and assume that whenever a node
topology, and propose a model that does take into accoygtivates, it transmits a single packet to either the nade
the node interactions, by keeping track of the activity &f thhops to its right (with probability)) or to the nodeA hops
nodes over time. Careful analysis of the resulting Markay jts left (with probability 1 — 1). To accommodate this,
chain model allows us to demonstrate that the optimal sgnsige introduce (pure destination) nodest 1,...,n + A and
range in fact depends on the activation rate of the nodes. —(n+1),...,—(n+ A), which receive packets, but do not
The classical model for such interaction in wireless nefransmit packets themselves. The case= 1 corresponds to
works is developed in Boorstyn and Kershenbaum [5]. Thigarest-neighbor transmissions, where nodes can onlsmtiain
model is a special instance of a loss network [15], and has begckets over a single hop. Fax > 2, nodes are allowed
used in recent years to study throughput-optimality [48]{1 to skip their immediate neighbors. As will be shown in
[21], [23] and faimess [8], [9], [25], [26] in a setting witlt  proposition 2, the throughput is insensitive to the paramet
collisions. The stability region for large wireless netk®mith  , we assume that all nodes are saturated, meaning that they
collisions was investigated in [6]. _ have an infinite supply of packets available for transmissio
In the spirit of [5], we model the network as a continuous- After each transmission nodes enter a backoff period,
time Markov process with interaction between the nodes, §aaning that they will remain inactive for some time. The
that nodes within a certain distance of an active node 3ggih of the backoff period is assumed to be exponentially
silenced, just as in CSMA. Such interaction is referred to ¥istributed with meanl /o. We assume all nodes to have
statistical physics abard-coreinteraction. Typical for such the same sensing rang8, so that nodev is prohibited
models is the existence of a Gibbs measure that descrilgesy, transmitting whenever at least one nodefor which
the stationary distribution. This Gibbs measure is norreali lv—w| < B is active (i.e. transmitting), in which case we say
by the partition function, which involves a computatiogall hat nodey is blockedby nodew. So when a node finishes its
cumbersome summation over all possible configurations. g ckoff period and it finds at least one node within distance
substantial ingredient of this paper is to characterize and,ctive, it enters a new backoff period. When a node finds
approximate the partition function. We shall consider thg nodes within distancg inactive upon finishing backoff, it
network, and thus the partition function, in the asymptotigiarts a transmission. Transmissions last for an expaaiinti
regime where the number of nodes in the network tendgtributed duration with unit mean. Under these assumptio
to infinity. For such infinite line networks we are able tqne (25,4 1)-dimensional process that describes the activity of

obtain structural results on the joint effect of hidden rodg,gges is a continuous-time Markov process. Each state of the
and exposed nodes.We determine analytically the throughpyarkov process is described by

optimal sensing range that achieves the best tradeoff katwe —_—
reducing hidden nodes and preventing exposed nodes. w = (W_p,...,wn) €{0,1}7"77, 1)

We propose a novel model for evaluating the effect Qfhere,, — 1 when nodev is active, ands, = 0 otherwise.
exposed and hidden nodes on throughput. In contrast tg; C {0,1}2"+! be the set of alfeasiblestates. Here we

existing such models we keep track of node activity over fimg, | . feasible if no twol’s in w are 3 positions or less apart,
and capture the effect of higher-order node interactions pp .~ _ gif 1 < lv— w| < B. Lete, denote the vector
E., Wy = < < B. "

network performance. This model reveals various sur@isifyiih 41| zeros, except for a 1 at position The Markov process
results that cannot be derived in the existing simplified e®d 15t describes the activity of nodes is then fully specifigd b

our main findings are as follows: the state spac@ and the transition rates
« The throughput-optimal sensing rangé depends on the

activation rates. The §* takes values in some bounded , o if w: =wt e,

interval, and increases wit; rw,)=q 1 ifu'=w—e, ©
« For regular networks, the transition frofif small to 3* 0 otherwise

large is very sudden; It is well known that this is a reversible Markov process (see
« The network topology and transmission distance have[%], [22]) with limiting distribution

significant impact org*. 1 n wy . .
The remainder of this paper is structured as follows. In  7(w) = { OZQ”H o=-n gtﬁesv:s;smle, (3)

Section Il we introduce the model, and derive some auxiliary

results. Section Ill discusses the main results on theararriwith Z2,,41 the partition function or normalization constant
sensing tradeoff. In Section IV we perform a detailed stutly f the probability distributionr. The partition function can be
the partition function. In Section V we validate the analgti defined recursively as (see [5], [22])

results for the line network by simulation, and we invedtga 1+ ic i=0,1,....,0+1,

networks with more general topologies. In Section VI we i = { Zii40Zig1 i>B+2. (4)



The sequencéZ;)s, is well studied. In fact, for a network transmissions from nodéto nodeA (node A). This yields:
with ¢ nodes, Z; represents the partition function, defined

as the summation of probability over all possible states. He={veN|>8+1, [v-A|<n},
Straightforward calculations show that the the generating H;, = {U eN | | >B8+1, v+ A|<n },
:I(Jenrﬁ?r?in[gﬁ)(x) of Z; can be written as (see e.g. Pinksy and g ={veN|p<B v-A>n+1},
E={veN| <8 [v+Al=n+1},
s _ 1 B+1 _ B.={veN|<s [v-Al<n},
Goa) =S Za = LT __9T_ (5 _{ | }
2 (z—1)(1 -z — ozh*l) Bi={veN | <8, [v+Al<n}.
- . S0& UB, =& UB = {veN]||v < B} An example
tL"‘j:] ASO) o As denote thes + 1 distinct roots (see Proposi- . 'A"_1 is given in Figure 1(a). Node 3 is a hidden node,

as it interferes with the transmission from notleto node
ML\ _s=0. (6) 1 (n = 2) despite the carrier-sensing mechanisin={ 1). In
Figure 1(b) node 0 is an exposed node to the transmission from
We denote by, the unique positive real root for whick, > node 2 to node 3 because it would not interfeye=(2) with
|>\j|7 j 7& 0 (see [22]) App|y|ng partia| fraction expansion tothiS transmission but is nevertheless silenced by the igctiv
(5) yields the following result (proved in Section VI): of node 2 (3 = 2).

Proposition 1. The partition functionZ; is given by
ﬂ .
Zi=Y ¢\ ,i=01,..., (7)
3=0

where \; are the roots of(6), and

B+1
>‘j

i = —""—. (8)
! (B + 1)>\j -p (@) Node 3 is a hidden node, and may
interfere with the transmission between

The proof of Proposition 1 is provided in Appendix VI, hodes 0 and 1.

along with the other proofs not given in the main text.
To model interference, we introduce an interference
rangen > A. A transmission succeeds if and only if at the
start of this transmission no nodes within distancef the a s
0

receiving node are already active. This type of interfeeeisc

referred to in the literature as thgerfect capturecollision

model [5]. Note that neither (2) nor (3) depends gnas

collisions have no impact on the dynamics of the system.

Using the sensing rangé and interference range we can _ _

define formally hidden nodes and exposed nodes. Consider a (sti)l)ehlggc? k?ylfhgnt é’é@ﬁigi é‘r?%%twuggﬁcﬁgggg'g
transmission from node to nodew. Hidden nodes are then and 3.

defined as nodes that are outside the sensing range lmft

within the interference range af. Such nodes are not blockedrig. 1. Examples of hidden and exposed nodes.

by the activity of nodey, but their proximity to nodev makes

the hidden nodes harmful to the transmission frono w. We focus on node 0 (the node in the middle of the network)
Conversely, exposed nodes are those nodes that are witaial in particular its throughput,,(3,n,0) defined as the
the sensing range of, but outside the interference rangeaverage number of successful transmissions per unit of time
of w. Such nodes are blocked by an ongoing transmission . .

from v to w, despite the fact that they will not cause thi§ roposition 2. The throughput of node 0 is given by

transmission to fail. Denote b, (H;) the set of hidden nodes

anmax{ﬁ,'r]fA}anmax{ﬁ,'r]JrA}

of transmissions from node 0 to node(node A): all nodes 0n(B,m,0) =0 Zon+1 ®)
outside the sensing range of 0, but within the interference nr
range of the receiving nod& (node A). By &, (&) we Proof: Denote by#d, (6;) the rate of successful transmis-

denote the set of nodes to which this transmission is expossidn of node 0 to nod& (node A ), s08,,(3,n,0) = 6, +6;.

so all nodes within the sensing range of 0, but outside tfige activation attempts to node (node A ) occur according
interference range of the receiving node. For completewessto a Poisson process with rate) (rate o(1 — ¢)). We first
let B, (B;) denote the set of all remaining nodes that blockonsider activation attempts towards node. Whether an



activation attempt is successful depends on the state of (peeventing hidden nodes by setting) large) and allowing

system when this attempt occurs. Define harmless transmissions (preventing exposed nodes byngsetti
_ S B small). We want to obtain structural insights in how to

A ={wel | FeBUE wy =1}, choosef’, and for this purpose the expressions 0 in

Ay = {W SRY | YVoeBU& 1wy, =0, IveH, 1w, =1 }, (7) andéb,,(8,n,0) in (9) are too cumbersome. Therefore, we

As={weQ|WeB UEUH, tw, =01}, investigate the throughput in the regime where the network

o . becomes largen( — ~0), so that (9) simplifies considerably,
When the system is in state € Ay, the attempt is blocked_ allowing for more explicit analysis. The analytic resultat

an(: rtlode (?4rema|dns(;n. Its ctuglrenli sctjate..:/vm:,_n tthe s|3_/|stem 'SV obtain for the infinite network provide remarkably sharp
astatew € Az, node U IS not blocked so 1t activates. OWeve[’;1pproximations for the finite network; see Section 11I-BI Al

at least one h@den node is active so the transmission faads_ roofs that are not given in this section are provided in

does not contribute to the throughput. When the system is ction VI

ol ey e SopLIe SSSUIoD SHRIaISES M sian by presentng the liming_expression o
) C 0.(B,n,0) as the size of the network becomes infinite:

(cf. [2]) that the probability of an arbitrary activationtetnpt (8,m,0)

resulting in a successful transmission is equal to the ilmit Proposition 3. Let A, denote the unique positive real root of

probability of the system being in a statec A3. So the rate of (6). Then

successful transmissions initialized (and thus the thinpug) B—fa(B)
iS given by 9(6; m, U) = lim 9n(6777; U) = 0075 (17)
b =09 Y m(w). (10) noee (B+DAo—f
wEA3 where
From the definitions of3,, £, and#, we see that 2 ifo<p<n—A,
Ay={weQ|VYoe (D UDy):w, =00}, 11 faB)=q n+B+A ifn-A<B<n+A,  (18)
3={w [ Vo€ (D1U D) w } (11) 28 it 8>n+A.
where , .. .
Proof: From Rouché’s theorem (see De Bruijn [7]) it
Dy ={-n,...,—max{B,n— A} - 1}, readily follows that\o > |\;| for j = 1,..., 3, and so from
Dy = {max{B,n+ A} +1,...,n}. (12) (7) we get
Let Zp denote the partition function for a subset of nodes Zi = coNy (1 +0(1)), i— oo. (19)
C . _ n Wy
?he—n N defined aSZD ZwEQ, YveDec:w,=0 H'U:—n o Hence
__Zp,uD, .
0, = Ui/fﬁ- (13) nh_{féo 0n(B,m,0)
The model on the line has the property that by conditioning — i U00Agfma"{ﬂ’"fA}coAg’ma"{ﬂ’“A}
on the activity of one of the nodes, its state space can be de- T nSoo o )\gnﬂ
composed, leading to two smaller instances of the same model e\~ max{Bn—AY—max{g,n+A} -1 (20)
on the line. In particular, we know théfp,,p, = Zp, Zp, Y ’
(see [5, Equation (15)]), so that which, using (8) with; = 0, yields (18). ]
Zp, Zp, Now that we have the limiting expression for the throughput
Or U@DiZN in (17) we opt for an asymptotic analysis. That is, instead of
T ot 8o Ay T searching for3;;, we search for its asymptotic counterpart
— O"l/} {Bn—A} {B:"H’A}, (14)
Zon+1 B* = argmax8(B,n,0), (22)
where Z; denotes the partition function of a network with A
consecutive nodes on a line. Similarly, where we henceforth considér as a function of the real

variableg > 0. In Section IlI-B we show that the erroj, —0)|

ann’lax = ann’lax
) {82 Bn+8) © (15) and|s* — 5*| become small, already for moderate values of

9110'(171/)

Zon+1 Because we consider from here onwards the regime oo,
and (9) follows by adding, and¢;. ® Al nodes have the same number of nodes within their sensing
range. This removes all boundary effects, and all nodes have
I1l. M AIN RESULTS the same throughput, which is why just investigating node 0

Our principal aim is to choose the sensing ramigso that is sufficient to investigate the entire network.
t[f;:ﬁtnheroughpuﬁn(ﬁ,n,a) is maximized for a givem ando. Proposition 4. 8 € [ — A,y + Al.
By = argmax 6, (5,n,0). (16) The result of Proposition 4 can be understood as follows.

p By increasing8 beyondn + A, no additional collisions are
Determining 8} corresponds to quantifying and optimizingorevented, but an increasing number of nodes is silenced.

the tradeoff between preventing collisions through irgerfice On the other hand, the nodes that become unblocked when



decreasing belown— A, cause collisions when they activate(ii) The width of the threshold interval is asymptoticallyen
Although this result may seem intuitively clear, to the auth as

knowledge such a result has not been proved rigourously 2T A 1
(at least not in the present setting). Note that for all velue  omax — Omin ~ (—1
B € [n—A,n+ A], we can rewrite (17), using (6), as n

2
T s ) as n — oQ. (26)

Do (B))F1-5 Here we say thatf(n) ~ g(n) if f(n)/g(n) — 1 as
0(8,m,0) =g(B) - L (22) n — oo. From Theorem 2(ii) we see that the width of the
p+1 threshold interval isO(n~2). Therefore, the interval width
with decreases rapidly as a function:gfand we can speak of an
g(B) = B —1 -1, B— o0 (23) almost immediate transition from one regimé" (= n — A)
Ao(B) — % to the other * = n + A). As a by-product of the proof of

We are now in the position to present our main result. Whilheorem 2(ii) we obtain sharp approximations to:. and

we already know that the optimal sensing range is contain@gax’ see (93)-(94):
in the intervally — A, n+ AJ, the next result is more specific. &, ;. =i (14 )72, Gmax = fir (14 44)"T2, (27)

Theorem 1. There exists a threshold intervébmin, omax]  with ie = 7/(n + a+) andas = ((2A + 3 + 2A)7 + 2A —

such that . 1)/2(27 +1).
B* = { n-A ?f 7 < Omin, (24) So far we have maximized the throughput oyerwhile
n+A i o> Omax, assumingo to be fixed. We now assume is bounded as
and 8* increases fromy — A to n+ A wheno increases from 0 < ¢ < oy for some constant, and consider the joint
Omin 10 Omax. optimization problem of finding théo, 5)-pair that solves
The proof of Theorem 1, see Section VI, follows from a (0,B8)" = argmax 6(53,n,0). (28)
detailed study of)(3, 7, o) which involves implicit differenti- B8,0<o<oy
ation with respect t@ (since\(3) is defined implicitly). There is the following result.

When o is large, nodes activate very quickly after finishin heo;zm 3..Thebsolution to the joint optimization prob-
their previous transmissions. When the system is in a m Q—m( )is given by
imal independent set, and if collisions are not ruled out, an (0,8)" = (01,587 (a1))- (29)

activating node suffers a collision almost surely. Thislakys . . .
why for o large, the optimal sensing range fls= 1 + A, So according to Theorem 3, the throughput is maximized by

preventing collisions completely. On the other hand, wheifttingo as large as possible, and choosing the corresponding
o is small, collisions become rare, as few nodes are actigBtimal value off.

simultaneously. In this case, the throughput is best selbyed

increasing the spatial reuse, that is, decreasing the repndh. Throughput limiting behavior

range (up ton — A). This explains the result of Theorem 1 We now consider some limiting regimes for which we can

Theorem 1 can be interpreted as follows (see Figure 5}

for o small. make more explicit statements about the throughput. From
Theorem 2 we can already see that the threshold interval
p* moves in the direction of zero as becomes large which
implies thatg* = n + A for small values ofs. The next
n+ A ) result shows that in the regime wherebecomes large, the

maximum throughput tends to zero.

Proposition 5. Let o > 0 be fixed. As) — oo,

n—A
=5 (0 (i)
max ,N,0) = —————— —_— .
8 K n+A+1 In(n + A)
(30)
Omin _ Omax o For 5 > n + A our model reduces to a model without
collisions that was studied extensively in [3], [5], [1022],
Fig. 2. The optimal sensing rang¥ as a function of. [25], [28]. In particular, one immediately obtains from (6)
and (17) the following result:
Note that Theorem 1 (_joes not give the_ exact values,pf _Corollary 1. Let3 > 75+ A. Then
andonax. INstead, we give below an estimate of the location N 1
and width of the threshold interval. 0(B,n,0) = A 31
(B:1.9) = T =3 (31)

Theorem 2. Let k = —Tx with 7 = (V5 —1)/2.

(i) The threshold interval is bounded as This result was also derived in [3], [10], [22], [28]. Note

that as the intended receiver is no longer relevant in the cas
[Omin, Omax] C [K(1 4+ K)""2, k(14 £)"2].  (25) without collisions,A does not appear in (31).



From Proposition 7 and the proof of Proposition 5 it i& = 5. For 8 small the error|d,,(3) — 6(8)| is negligible,

seen that\y — oo aso — oo and g is fixed, and that but the error increases gkincreases. This can be explained
B(A —1) - oo asf — oo and o is fixed. Thus the by the observation that for large$, the number of roots
throughput is approximatelg% when eithers or 5 is large. of (6) increases, as does the number of roots discarded by the
This can be understood as follows. For large the high approximation. This phenomenon becomes more pronounced
activation rate allows for configurations close to the maxim for larger values ofs. The non-monotone behavior 6f, is

size independent set: A configuration in which one out ofyvecaused by the fact that for finite, the system is directed to
8+ 1 nodes in active. Fop large, when a node deactivatesmaximum-size independent sets of active nodes, in paaticul

a large number of neighboring nodes become eligible for o large, and these sets change dramatically withThe
activation. The time until the first such node activates goesost important observation is that the erfé; — 6| is small

to 0 wheng increases. for those values of; that lead to a large throughput. Figure 5
Corollary 2. Let3 <n+ A. Then

lim 6(5,n,0) =0. (32)
T —r00
Proof: From (45) withj = 0 it follows that
Xo(0) =0TF +O(1), o — oo (33)
Substituting (33) into (17), and using thak () > 25 when @0 = 0.25 (b) o =5
8 <n+ A, yields
g(gﬁ + @(1))ﬂ—fA(B) Fig. 4. The throughpu®,, (dashed) and (solid) plotted againsf3 (with
o(ﬂa , U) = 1 n = 100).
(B+1)(cT7 +0(1)) = 8
IR S =t /N is similar to Figure 4, but instead of fixingand varyings, we
B+ 17 (A 4o()) =0, o= oo, (34) sets = 16 and varyn. In Figure 5(a) we take = 0.25 and in
which gives (32). - Figure 5(b) we taker = 5. The accuracy of the approximation

Figure 3 shows the throughput plotted against the actinatif!creases with.
rates forn = 7, A = 1 and various values gf. Wheng < n,
the throughput gradually drops to 0, whereas for 7 + 1,

the throughput will eventually converge to the limijt(5+1).  ** | ood
This confirms Corollaries 1 and 2. , fo i '

i
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(@ o =025 (b)) c=5

0.06

0.04 Fig. 5. The throughpu®,, (dashed) and (solid) plotted against: (with
B = 16).

e Figure 6 shows the optimal sensing range plotted against
for n = 5. Each of the Figures 6(a)-6(d) shows the optimal
range s’ (o) for finite n. We taken = 5 for all figures, and
let o increase from 0.15 to 0.19. The vertical lines indicate
Fig. 3. The throughpu# (8, n, o) plotted against for n = 7 and various the approximations of the threshold interval from (27), and
values ofg. we see that these are sharp. The optimal sensing rahéer

n — oo behaves as predicted by Theorem 1, jumping from
n — 1 before the threshold interval, tp+ 1 after this interval,
and 3 shows a similar pattern. We conclude that— oo
We now look at the approximation err¢,, — 6| and the Provides a good approximation for the behavior of finiteediz
resulting error in the optimal sensing range. To investigaf€tworks, already for small and moderate values..of
the error we plotd,, and # in Figure 4, represented by the AN alternative approach to studying the difference between
dashed line and the solid |ine, respectively_ All resultsg‘g finite and infinite networks is to look at the rate at which
were obtained by using (7) and (9) in combination with th@. converges td. This rate is characterized by /Aol the
infinite-series expressions for the roots in Section IV.Hist Modulus of the ratio of the second-largest and largest root
section we restrict ourselves to the case= 1, but we see Of (6). Approximating\, and A; using the termd = 1,2

B. Finite versus infinite line networks

similar behavior for generaﬁ_ from the expanSion (45), we obtain f@rlarge
We taken = 100 (201 nodes)y = 4, and we let5 increase N 12
from 1 to 100. In Figure 4(ay = 0.25, and in Figure 4(b) ‘)\—0‘ ~(1—2r(1 —r)(1—cosa))”’?, (35)



7 7 Next we consider the case that=1,..., 3. We now write
6 e 6 (6) as
i e i ML= =-0, A1-N)* =w;, (41)
4 a where
. . w; = g/ B2m(i=1/2)/8 (42)
0.15 0.16 0.17 0.18 0.19 0.15 0.16 0.17 0.18 0.19
@n=15 (b) n =20 Then we get fojw;| sufficiently small
7| 7|
) 1 d -1 A l
6 P E— 6 o R — R - l.
r;‘ / >‘J - Z i < > [()\(1 _ )\)1/6) w
5 i 5 =1 A=0
‘ ‘ = (1/B)-
=3 Ut @)
0.15 0.16 0.17 0.18 0197 0.15 0.16 0.17 0.18 0197 =1 ’
(©)n=25 (d) n =30 The radii of convergence of the series in (40) and (43) are

easily obtained from the asymptotics

Fig. 6. The optimal sensing rang¥; (dashed) ang* (solid) plotted against
o around the threshold interval for various valuesnoandn = 5. D(z41)=2"2e72V2r(1 4+ O(z7Y)), z — o0, (44)

of theI"-function, used to examine the Pochhammer quantities

where 1 - (z)n = I(z + n)/T(z) and the factorialg! = I'(l + 1) that
r= m7 a = 311 (36) occur in both series. This yieI_ds the result that both series

converge wherno| < £(8) and diverge follo| > £(8). When

The case withr small generally shows better convergenc%| (B) the terms in either series ae@(l~3/2). -
as illustrated in Figure 5. Here a similar approximation ban
obtained using (37) and (38). Proposition 7. For large o > 0,
V. PARTITION FUNCTION ROOTS = (ﬂ;Jrll)zq ! -
In this section we study the roofs, . . ., Az of (6) in more Aj(o) = Z n Y v J=0,1...,5, (49)
=1

detail. In particular, we derive exact infinite-series egzions
for the roots that are used in this paper both for numeriogherev; = o'/(#+1)e2™3/(B+1) The series expansion {@#5)
purposes (in Section V) and to prove Corollary 2. Thessnverges for

roots are essential in Section IlI-B, where the finite and o> £(B), (46)
infinite networks are compared. Our main tool will be the

Lagrange inversion theorem (see [7]), and depending on fad diverges otherwise, wheg¢s) is given in(39).

value ofo, this gives two different infinite-series expressions.  proof: We can treat the casegs= 0 andj = 1,...,3
Let (), = T'(z + n)/T'(z) denote the Pochhammer symbol. simultaneously now. We write (6) in the form
Proposition 6. For smallo > 0, 1 1 & 1\ 7 B
o l 1 ﬁl X 1-— == =v -, (47)
=1+ Z : (37) A o
where we let
(l/ﬁ -1 1 . _1
. - : = . 1) A+t i
Yi() lz; T A (—) eI, j=0.1,...5 (48)
= g

where w; = ol/Pe?™(i=1/2)/8 and ¢, = \/—1. The series

expansions if37) and (38) converge for with ¢~ 7+ > 0 in (48). We get for sufficiently large from

Lagrange’s inversion theorem (with= 1/)) that

56
< < = 00 1— l
V=o= (B4 1)+t $0) (39) 1 - Z 1 <_> 1 < Y ) v
and diverge otherwise. = ! u(l—u)= /@D
Proof: We first consider the cage= 0. Setug = Ao — 1, _ i U]__l (49)
S0 po satisfiesyo(1 + uo)? = o. Hence for small values of - 6 +1),., 1 '
|o| we have by Lagrange’s inversion theorem B . _ _ _
% 1 g\ p I The Pochhz_ammer q_uantwﬁ‘?)l,l vams_hes if and only if
Lo = Z il (_) (7) o l=1,2,... is a multiple of 3+ 1. The radius of convergence
1\ du (1 + p)P =0 of the series in (49) is again determined by the asymptotics
oo -1 of the I"-function in (44). Here it must also be used that
o Z ﬂl l 1 l (40)
= -1 ™
= N-J)==————, J>0. (50)

I'(J+1)sinwJ’



It follows that the series in (49) is convergent wHeh> £(5) (iii) In case theo can take any valu® < o < oy, the
and divergent wheto| < £(8). When|o| = £(8) the terms pair (o, 8)* that jointly maximizes the throughput is given
in the series ar@(1—3/2). B by (01,8%(01)). So the optimal setting is to choose theas

Figure 7 shows the roots of (6) drawn in the complex large as possible, and then to select the sensing range that
plane forg = 4. Each heavy solid line corresponds to a roahaximizes throughput for this particularvalue.
as a function ofr, and the dots represent the threshjeld= We have further shown that the threshold interval is in
&(B). The light solid straight line and the dashed straight lin@many cases small, which implies that one can speak of an
illustrate the leading behavior of each rootsa$ 0 or 0 — oo almost immediate transition from one regimg (= n — A)
according to Propositions 6 and 7, respectively. The dashedthe other §* = n + A). We have argued that, when the
curve encircling the origi) and the pointl is the image of aggressiveness of the nodes is large enough, the system no
v € C with [v] = ¢/B+1) ¢ = (), under the mapping longer gains from the potential benefits of more flexibility
given by the reciprocal of the right-hand side of (45) with (small 3), and just settles for the situation with no collisions.
replaced byw. We shall now discuss two remaining issues. In Section V-A

we consider the case of random transmission distance, and in
15 Section V-B we investigate whether the notions of two regime
/ and a critical threshold carry over to more general top@sgi

A. Random transmission distance

We now relax the assumption that packets are always sent
to nodes at distancé, and instead allow for transmissions
towards any node within some transmission rahge 1. We
assume that a transmission is intended for a node at distance
A with probability aa, A = 1,..., D. By conditioning on
AN the transmission distance and following the arguments from

=08 the proof of Proposition 2, the throughpijt in this case may

\ be written as

D
) Z’n—m' x{B,n— Zn—m- {81
0.(B,n,0) = E aAAo ax{f.n ZA} ax{B8,n+A}
A=1 2n+1

/

I S
. ]
/!

Y

(51)
with Z; the partition function (7), as before.
Fig. 7. The roots oh3+1 42\ = o as functions of in (37), (38) and (45), The choice for sensing rangg, that maximizes (51) be-
for 8 = 4. haves markedly different from the fixed-range case. Conside
for example a network witm = 15, = 6 and D = 2
(so the transmission range is either 1 or 2). We numerically
V. DISCUSSION AND OUTLOOK compute the@n as a function ot for a; = 0.1 andas; = 0.9
q:figure 8(a)) and fo; = 0.7 andas = 0.3 (Figure 8(b)).

node interaction when making the tradeoff between hiddgﬁe optimal sensing range no longer consists of two regimes
nodes and exposed nodes. In order to get a handle on :fﬁgarated by a threshold interval, and we see/fhatoes not

throughput function (and hence the partition function) Wgeces_sarily approaoh+D_: 8 wheng is large. This pan_be
studied the wireless network in the asymptotic regime plained by the observation that, felarge, the contribution
a%‘o the throughput by transmissions over a distance of at leas

The distinguishing feature of this paper is the presence

infinitely many nodes. This resulted in a tractable limitin i h . h Ki d | K
expression for the throughput of node zero (and hence of y 'l will approach 0, since the network is so densely packet

other node) that allowed us to prove the following threeltesu Nt aII_ Sl_JCh transmission W'"_S“ffer a _COII'S'OO' However
fransmissions over a smaller distance will remain sucagssf

(i) To optimize the throughput, one should always choose . . S -
sensing rang@ that is close to the interference rangeand SO dhependmg on_the ch0|cehof Fh@“ |t”m|ght be beneﬂ?lal
in fact the optimal sensing range is contained in the interi¢ Choose a sensing range that is smaller thanD), even for

[n — A,n+ A] (see Proposition 4). o= OT ” h h K b
(i) The sensing ranges* that optimizes the throughput Analogous to Proposition 3, when the network becomes

equalsy — A for less aggressive nodes (sma)l and + A large we can once more use the asymptotic in (7), and we
for aggressive nodes (largg. In fact, we were able to show may write

the existence of a threshold interval forthat distinguishes . D

these two regimes (Theorem 1). This important result pewid  6(5,7n,0) = 7}1—{2@ 0.(B,m,0) = Z anlna(B,n,0), (52)

(partial) justification for the frequently made assumpttbat A=1
no collisions occur. Indeed, one key take away is that i \yith
large enough, ruling out all collisions by settifg= n + A )\g—fA(m

is optimal. Oa(B,m,0) = TGt —5 (53)
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n = 2 andn = 4. We see thaf* behaves similar to the optimal
sensing range for finite linear networks observed in Sec-
tion 111-B, which suggests that using the average througlagu

an objective is a natural extension of the throughput of node
0. Most importantly, we observe the anticipated dependence
of 8* on o, and a very narrow critical interval between the
regimesg* small ands* large.

w & o o N o o

Q

o

o

0.2 0.3 0.4 0.5

o

0.2 0.3 0.4 0.5

(a) fl =0.1 andfg =0.9 (b) fl =0.7 andfg =0.3

P
Fig. 8. The impact of the sensing range as a functioa,dbrn = 6, D = 2 3 5
andn = 15. 4 [

2 3

2
This asymptotic throughput function may have several@tati ! .
ary points as a function g8, as is illustrated in Figure 9. This e o
makes the issue of finding an optin#i(o) more complicated o T T T o T T
than in the case of a fixed transmission range. @)n=2 (B) =4

Although each of the individual terméa in (52) has a , , ,
unique stationary point, there is no intuitive explanatiamy rljgch-)?k The throughput-average optimal sensing range fo8-aode linear
unigueness does not necessarily hold when multiple teres ar
combined. It is worth noting that the existence of multiple Next we considei6 nodes placed on 4 x 4 grid at unit
stationary points appears rare, and that the counterexangiktance from each other. We sét= 1 andn = 1, so each
for unigueness in Figure 9 relies on the careful choice fer thode is connected with up to 4 links, and transmissions are

coefficientsa; andas,. potentially interfered with by activity of the direct neigbrs
of the receiving node, see Figure 11(a). Figure 11(b) shows
0(8) — 6(8) 0(8) — 0(8) the optimal sensing rangg* plotted againsts. Similar to

7%/  our analytical results for the linear network we observe tha
o has a significant impact on the optimal sensing range: The
B* is increasing ino. The intuition for this is similar to that
for linear networks provided in Section Ill. Note that theotw

optimal regimes are once again separated by a narrow tritica
(a) o = 0.204 (b) o = 0.205 interval.

4.x10 ”’

Fig. 9. 6(3,n,0) — (8,7, o) plotted againsp € [7,8], forn = 6, A = 2, B
a1 = 0.132, a2 = 0.868 and various values of.

B. General topologies

In order to investigate topologies beyond linear networks w
require a more general description of the model. In addition
to nodes we also introduce links connecting two nodes, repre 000c 002 004 00¢ o008 01(
senting the possibility of transmissions taking place leetw (@) A4 x 4 grid network. (b) The optimal sensing rangé* plotted
these nodes. For two nodes to be able to transmit data, we againsto.
require them to be at most within (Euclidian) distantef
each other, and we assume that links are formed betweenrajl 11. A grid network and its optimal sensing range.
nodes within distancé. Each node has activation rate and
the destination of a transmission is chosen uniformly anadhg  Finally, we obtain by simulation the optimal sensing range
links originating from the activating node. The sensinggafi  for two randomly generated networks. Each network is cteate
and interference rangg are also defined using Euclidianby placing 16 nodes uniformly at random in a unit square. We
distance. assume a transmission rangedof 0.2 and interference range

Our numerical experiments consist of discrete-event simy-= 0.4. Figure 12 shows the topologies of both networks
lations of the dynamics described in Section I, generdlipe under consideration: The vertices correspond to the naus a
arbitrary network topologies. While for infinite line netrks two nodes share an edge if they are within transmission range
it suffices to maximize the throughput of just node 0 (due = 0.2. We let the sensing range vary frgth=0to 5 = 0.5
symmetry), our objective for general networks is to maxienizn small increments, and simulate for eaghthe throughput
the average per-node throughput. First, we apply this tibgec as a function ofs. Figure 13 shows the average per-node
to a 16-node linear network with nodes at unit distance atiskoughput plotted against, for various values of3, and in
d =1, so nodes only transmit to direct neighbors. Figure 1Bigure 14 we plot the optimal sensing rangeobtained from
shows the optimal sensing ran@gé as a function ofs, for the simulations.




- o .

(a) Network 1 (b) Network 2

Fig. 12. Two heterogeneous network topologies.

The two irregular networks shown in Figure 12 have ver

distinct structures, and as expected the behavior and rper

mance of CSMA differs significantly between these networkgo

10

optimal sensing ranges equaks for o below the interval,
and gy for o above the interval. For the two examples in
Section V-B there is indeed such a threshold interval, but a
more thorough study is needed.

Obtaining numerical and analytical results for complex
topologies with many nodes is challenging. For one thing, th
state space no longer decomposes (as with the line network),
so that the calculation of the partition function becomeseamo
involved. In determining the stationary distribution, amehce
the throughput of nodes, the brute-force method would be
to sum over all possible configurations, but that will become
computationally cumbersome, already for moderate instanc
of the network. Alternative approaches would be to use limit
theorems, for instance for highly dense networks with many
odes. We conjecture that in such networks we would again
d that the optimal sensing range is increasing rather than
nstant in the activation rate.

Compare for example the difference in throughput, and tbe fa

that the impact of the sensing range is smaller for network
2. However, both networks also show striking similarities,

VI. REMAINING PROOFS

and behave largely as predicted by our analytical results #. Proof of Proposition 1

linear networks. For instance, we see that foismall, the

throughput drops as increases due to the higher number

of collisions. Moreover, the optimal sensing rangé is
an increasing function ob. Note that for these particular
networks the existence of various optimal regimes sepéra
by critical intervals is less pronounced. In general, the¢off

for individual nodes in an irregular network is more complex P(z) =1+0¢

We write the generating function from (5) as

Z(w,0) = % (54)
tehere
xi:‘i—l x, S(x)=1—z— ozt (55)

than in a linear network due to the node heterogeneity, and

raises many interesting questions for future research.

It is shown in [22] that the equatio§(z) = 0 hasg + 1

roots z;, j = 0,1,...,8, and exactly one of themy, is
0 0 real and positive, whilgz;| > z¢, j = 1,...,5. To prove
o1 pos O 05 Proposition 1 we first need to establish that these roots are
o o 6025 distinct
0.06 B=0.25 0.06 8=0 Ist :
o B=0 o Proposition 8. The roots ofS(z) = 0 are distinct.
00 01 02 03 04 057 00 01 02 03 04 057 Proof: When S(z) = S'(x) = 0, we have
(a) Network 1 (b) Network 2 log ol —0=_1_ U(ﬁ + 1)303. (56)
Fig. 13. The throughput for various values (@f This implies thatr = 1+ 4 > 1 and so that = ;5% < 0.
However,o is non-negative. [ |
) ) Now we proceed with the proof of Proposition 1. Let=
Of Of 1/x; so that\ = \; satisfies (6). Using that all zeros Sfare
04 04 distinct, we have foZ(z, o) the partial fraction expansion
0.3 0.3 B P( ) 1
02 02 Z(x,0) = - 4 ) (57)
0.1 0.1 = S (ﬂfg) T —x;
00 01 02 03 04 057 00 01 02 03 04 057 N
(a) Network 1 (b) Network 2 ow it
. . : . P(z;) 1+ o-L— —x;ﬂ
Fig. 14. The optimal sensing range plotted against S = 7= 3
S'(zj)  —1—(B+ 1oz 1+ (B+1)ox]
g8 )\

C. Future work - : 1—z; \ : (58)
T . _ 1+ (B+1)=2  (B+DA =8
Wireless networks equipped with CSMA on complex to- ) !

pologies form highly relevant objects for further study. IAiere it has been used that

particular, we have raised the question whether a threshold -1 o — 1—ux; (59)

interval for the activation rater exists, which says that the 1—x; Ux?“’ J z;



Then for|z| < zo we have

P(z;) o= —a'
Z(x,0) = par S,(ij) ; x§+1
= i zt (Zﬁ: L,\) (60)
=0 j=0 (B + DA =B T
as required.
B. Proof of Proposition 4
As introduced earlier,
Ho = Ao — 1. (61)
Then o depends o ando, we haveyy > 0, and
po(1+ po)’ =0 (62)

By implicit differentiation with respect t@, we get from (62)
that
Opo _ —po(1 + po) In(1 + po)
B 1+ po + Bro

In particular, bothuy and )y decrease as a function 6f> 0.
Consider the case that< g < n — 1. Using PV

. (63)

Ao—1
we get
o A
00B,m,0) = TG+ Do = B)
o A
_ (64)

o )
to(1 + po + Bro)

Now ), *" increases as a function ¢f, and we shall show
that puo (1 + po + Buro) decreases is > 0. We have from (63)

that
0

8
fo(1 + po) In(1 + po)
<0,

[Bud + ko + 1)

_ o 14204 B
O 14 po+ Buro

< pio(po — (1 + o) In(1 + po)) (65)

where the last inequality follows fromlnz > x — 1,2 > 1.
We conclude tha# increases as a function ¢fe (0,1 — 1].

Next we consider the case that> n+ 1. From)\g = ﬁ
we get

AP Ao — 1
0 s Ty = v = 0
Bom0) =0 G N =5~ B+ re =B
Ho
== 66
1+ po + Bro (66)
Now
dpo _ 2
ﬂ( Ko ): v o (67)
0B \ 1+ po + Buo (14 po + Buo)

see (63), and s decreases as a function 6f> n+ 1. Since
0 depends continuously oft > 0, the result follows.
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C. Proof of Theorem 1
The proof of the result as stated in Theorem 1 requires
expanding several other results. We consjgler [n— A, n+A]
so that
AgTA 1 —n-A
0Bm0) =0z = LI T
(B+ 1o -8 1+ po + Bro
From (63) it follows from a straightforward but somewhat
lengthy computation that

(68)

9 —opo(1 4 po) 1"
a0 9 ,1,0)] =
aﬂ[ (8.m,0)] (14 po + Buo)?
: )
x(1-n+A+14+ ————)In(1+ . (69
( (n 1+M0+5u0> n( 1o) (69)
Let
B
FB,o)=m+A+14+ ——)In(1 + po). (70
(B,0) =(n 1+u0+5u0> n(1+ po). (70)
Then we have fop € [n — A,n + A] that
F(B,0) > 1 = 0 increases strictly at 3, (72)
F(B,0) < 1= 0 decreases strictly at f. (72)

We analyzeF(3,0) in some detail, especially for values of
B,0 such thatF'(g8, o) = 1. We recall here thaty = uo(53,0)
is a function of 8 ando as well.

We fix 8 > 0, and we compute

0 n+A 1+ 5
_F =
do (8.2) po+1 1+ po+ Bro
(1+ po + Bpo)? | 0o
We get from (62) by implicit differentiation that

oo o(1+ po + Buo)

Furthermore, it is seen from (62) that(5,0) — 0 aso | 0
and thatuy (8, 0) — oo aso — co. Hence uo(8, o) increases
from 0 to oo aso increases from 0 tec. Moreover,

n+A BIn(1 4 o)
po +1 ’ 1+ po+ Bpo’

It follows from (74) and (75) thatZ F(8,0) > 0. Then,
from (70) and from the fact that, increases from 0 teo

aso increases from 0 teo, we have thatF’'(g, o) increases
from 0 to co aso increases from 0 too. Therefore, for any
B > 0, there is a uniqgue = o(5) such that

F(B,0) =F(B8,0(B)) = 1. (76)

We shall next show that(3) increases it € [n—A, n+A].

By implicit differentiation in (76), we have fof € [n—A,n+
Al

(75)

0= L (F(8.0(8))] =F5(8.0(8))

~dp
-+ O'/(ﬂ)Fa(ﬂao—(ﬂ»’

where Fg and F,, denote the respective partial derivatives
(ando’(n £+ A) is the left and right derivative for and —,
respectively). We already know thdt, > 0, and we shall

(77)



show now thatF(8,0(8)) < 0. To that end, we
using definition (70) ofF' and (63) that
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compute, showing thatf strictly increases aB = n — A and strictly
decreases af = n + A, and assumes its maximum &at=

0 B(o).
—|F
15} D. Proof of Theorem 2
= —In(1+ + A+ —
(L4 ko) | (m L+ po + ﬂuo) We shall show below that
L+ o — B(1+5) % -
Ho L] n
X — . 78 +A+1+ In(l+k) <1
1+ po + Bro (14 po + Bro)? (78) (n 1+ (ﬁ*AJrl)/‘E) ( )
Next, from (70) and (76) we have that < A1 n+A4a ln(1 85
1 (n+ A+ +1+(7;+A+1)/<)n( ) (85)
> —
pio = In(1 + pio) T+A+1+ ﬁ7 (79) wherex = 7/(n+A). Assuming this, we recall that (for fixed
and so HomHe B > 0) po strictly increases i and vice versa. When now
OF o_ =r(14rK)"2, (86)
a_ﬁ(ﬂv o(8)) < —In(1+ po)
o thenk = po(8 = n—A,0_) and we have thal'(n—A,o_) <
y [ 1 L+ po—B(L+ 5)%5”} 1. Soo_ < omin SiNCEF is increasing ino. Similarly, when
Lo+ B0 (L4 po+Buo)*  J,mg(s) o4 = k(L4 R)THA, (87)
—BIn(1 + w ou
:(—0)2 po + (14 5)—0 we have thak = uo(8 = n+ A, 04) and then from (85) that
(1 + po + BMO) B o=a(8)
Fn+A,o4) > 1 and soo; > omax-
_ —HoBIn(l + po) This proves Theorem 2(i). It remains to show (85). As to
(14 po + Bpo)? the first inequality in (85) we have
(1 + po) In(1 + o)
x[1(1+ﬂ) (80) n-—A
’ 1-— A+1 In(1
where (63) has been used once more. Finally, from (70) n—1
1-— A+1
and (76), U oy oy s
(1 + po) In(1 + o) _ 1 2
1+ = (I=Mm+A)k—nn+A+1)k%)
SR + po + Bpo  lo=o(8) 1+ (n —1A + 1)k

(1+8)A + o)
(n+A+1)(1+ po + Buo) +

<1,
o=0(8)

since0 < 8 <n+ A andyug > 0. Hence,Fg(3,0(3)) <0 as
required. It now follows from (77) and fror, (3, o(5)) > 0

thato'(8) > 0 wheng € [np — A, n+ Al

B  IT (G _AtDm

x (1= (n+A)k = ((n+A)k)?) =0

sincel — 7 — 72 =0 and (n + A)x = 7. As to the second
inequality of (85) we have

(88)

We have now shown that(3) increases irf € [n— A, n+ N
Al. Next we let 1-— A+1 U In(1
] (n+A+ +1+(77+A+1)m> n(1+ &)
Omin ‘= 0(77 - A) < 0(77 + A) =: Omax- (82) n + A 1 2
) , , , <l-(Mn+A+1+ Yk — =K%)
FOr o € [omin, Omax] there is defined the inverse function I+(n+A+1)k 2
B(o) € [n— A,n+ A] that increases iw. It follows then _ 1 B B 2
from 1+ (+A+ DR (1 (n+ A)s = ((n+ A)x)
F(ﬂ(o—%g):la FB(B(0)70)<0 (83) I€2(U+A+1/2*%(T}+A+1)2H)). (89)
and (69)-(72) tha¥(8,n,0) is maximal atg = (o) when
0 € [Omin, Omax]- As before
We shall now complete the proof of Theorem 1. l®E 1— Aj — A)k)2 =0 90
[Omin, Omax), @nd assume that < onin. Theno < o(8) (n+ Ak = ((n+ A)r) (0)
and soF(5,0) < F(B,0(8)) = 1 since F increases inr. and
Hence,d strictly decreases &t. Similarly, 6 strictly increases 1 1 )
at g € (n— A,n+ A) wheno > opax. It follows that ¢ n+A+ 3~ 5(77+A+ 1)k
strictly decreases i¥ € [n — A,n + A] wheno < o, and 1 (p+A+1)2
that# strictly increases i € [n— A, 7+ A] wheno > opax. =n+A+ 3 2 ED) (91)
Finally, wheno € (0min, 0max), We have that ] ) ]
With ¢ =n+ A — 1, the right-hand side of (91) becomes
Fin—A,0) > F(n—A,0min) 3 (€42
=1=F+ A 0omax) > F(n+A,0), (84) §+5— (92)

2 2E+1)”



and this is positive since = 1(v/5—1) < 2 and¢ > 0. This

shows the second inequality in (85).

We next prove Theorem 2(ii), and for this we need the

following result:

Proposition 9. With 8 =n + v where—A <y < A,

o(B) = p(l+p)"7, (93)
where
.
W=—
n+a+0O(n1)
_(2A+3+27)T+2A71, (94)
2(27 + 1)

and theO holds uniformly iny € [-A, A].
Proof: We haveo(3) = pu(1+ u)? wherey is the unique
solution of the equation

m+A+1+ b )u)ln(lJru):l.

1+(1+23

We know from the proof of Theorem 2(i) that = O(n~1).
Multiplying (95) by 1 + (1 + 8)ur and expanding

(95)

In(1 +p) = = 212 + (), (96)

we get
1 1 1 1.,
B+ 50+ A+ )8+ 5A+ )+ (n+ A —1

(97)

%(n +A+ DB+ 1) +0n?).

Next leta € R be independent off and use8 = n + v to
write

1 1., 1, 1 )
775+§77+(A+§)5+5A+57(77+04)
1 1 1
+(A+1+7—2a)n+(A+§)v+§A+5—042. (98)
Together withn + A = n+ a + A — «, we obtain

7+ )2+ (n+ ) — 1= 51+ A+ D+ -+ Dy
—(A=a)u+0n%) = (A+1+7—20)

1 1 1
+(A+§)7+§A+§ — o)’ (99)
We now takea such that the whole second term in (99)
O(n~?). Using thatu = £ + O(n~?), this leads to

20— (A+ 147 - 20)7 — (A~ a)r =0,
and this yields then in (94). The polynomiak? + = — 1
has a zero of first order at = 7. Hence witha as in (94)
we see from(n + a)?p? + (n + a)p — 1 = O(n~2) that
(n+a)p = 7+0O(n~2), and this yields: = 7(n+a+O0(n~1).
[ ]

(100)
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By elementary considerations

o(n+7)
-
= 1 (14 O(n 2
()T 00 )
2
-
= - 1+0(n?
e Ol ) — g+ 00 )
TeT (y—a)T — %72 72
= 1 1+0 . 103
R )0 ). (103)
Then lettingy = +A and
a(A) = (4A +3)7 4+ 2A — 17
2(27 + 1)
3r+2A -1
a(=4) = 227+ 1) (104)
in accordance with Proposition 9, it follows that
TeT
o(n+A8) = an—A) = Z-(a(-2) - a(a)
+(A = a(A)7 + (A +a(-A)r) + O(?)
TeT 27°A 5
2o 1 o). (105)

Finally, it follows easily from72 + 7 = 1 that 73(7 + 47)
27 + 1.

E. Proof of Proposition 5

Sinceos > 0 is fixed, it follows from (see the proof of
Theorem 2)
TE

. n+A
Omax < 0p = —— 1+ ——— <
T+ A < N+ A> n+A
that o, < o Wheny is large enough. Then by Theorem 1
Ao —1
Mm+A+Drd—n—A

T

(106)

maxf =0(n+A) =

Ho
N+ A+ 1o+ A
1 1

Tt A+11Y

— (107)
(M+A+1)po

wherey is the unique positive real root of y(1 + )74 =

_o. We shall show that
is

(n+A+1)po = Ino, (108)
N+ A+ 1D =In(n+A) +O(nln(n + A)), (109)

asn — oo, uniformly in o € [e, M|, wheree > 0 and M > ¢
are fixed. To show (108), we note fromy(1 + pp)"*> = o
that

(T]+A)/L() Z (T]+A) 1H(1+M()> :th'*lIl[L(). (110)

po(1 4 po)™™A > pd*ST and solnpy <

Next o

Now we proceed to prove Theorem 2(ii). We use the resujiﬁ Ino. Therefore

of Proposition 9. Thus

o(n+7) =pl+p)"t,

- n+a+0n1) - 77+a(1 +0m™%).

(101)
(102)

I

n+ A
- o= _JdT=
n+A+1 n+A+1
and (108) follows. As to (109), we first observe from (63) that
o decreases in wheno > 0 is fixed. Hencel = lim,,—, o o

(n+A)po > Ino— Ino, (111)
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exists, and it follows fromug(1 + po)"*2 = o that L = 0. Hence, whenr > 1, the series in (117) is alternating, with
Thus, o decreases to 0 ag — oo. Then, from (110) we terms decreasing monotonically to 0 in modulus and has a
get that(n + A)ug increases tao asn — co. All this holds positive first term. Hence

uniformly in o € [e, M]: Since u increases inv, the right-

1 1
hand side of (110) is bounded below bye —In pg(c = M). (x+ 5) In(1+ E> >1, x>1 (120)
Now takern, > 0 such that(n + A)uy > o whenn > 7, and _ _ o
¢ <o < M. Then frompuo(1 + p10)"+2 = o we have Takingz =n+ A+ 1/2in (120), it is seen that
1
(n+A)In(1+ o) =Ino —Inpg (7}+A+1)1n<1+m) > 1, (121)
< In(n+ A)po —Inpg <In(n+ A) (112)
and so, from (116} < (7 + A+ 3)7', as required. =
whenn > 7y ande < o < M. Hence, whem > 1, We now proceed to prove Theorem 3. We want to show that
In(n + A) 0(o, 5*(0)) is increasing ino > 0. For ¢ > omax We have
Ho < exp {ﬂ} - by Theorem 1 thap3*(c) = n + A, and it readily follows
9 from Corollary 1 and (74) thaf(c, 5*(0)) is increasing in
In(n+A) In(n+ A) >
=2 o (HEE2) ), (113) 0 2 Omac
n+A n+A Let o < omax, and observe that
where theO holds uniformly inc € [e, M]. Then, by (110), d . a9, . dg*
—[0(8"(0),0)] = 5 (8"(0),0)—(0)
In(n + A) do ap do
M+ Ay >Ino—1In <exp [7} — 1> a0, . a0, .
n+ A + (7 (0),0) = o (8" (0),0). (122)
~ o — (B2 <1+0 (L"+A)>) i
n+ A n+ A Here it has been used that
= In(n+ A) ~ Inln(y + &) T 0) =0, 0 & [Omin, O]
In(n+ A)
1 —1T =) 114 00 .
* “”O( N A ) (114) 558 (0)1.0) =0, 0 € [owin o (129

with O holding uniformly ino € [, M] and n > 1. Letn —A<B<n+Aandseth =5 +A—fel0,2A]
From (113) and (114) we get (108) uniformly ine [e, M]. Rewriting (17), we have ’

(Mo — 1)Ag° (1 + po)7?

F. Proof of Theorem 3 0(B,0) = = , 124
. (8,9) (B+DXo =B Buo+po+1 (124)
Recall thatyo = Ao — 1. The proof of Theorem 3 requires
the following result. and we compute
Lemma 1. If %(5 o) = Q(M)
( 3 ) do 0o \ Bpo + o + 1
N+A+1+————)In(1+pu) =1, (115) d p(l4p)° Apo
= — (00— == . 125
AR 3G e @ a29)
then we have th A+1/2)74 .
we have thato < (n+A+1/2) Since by (74),24(8,0) > 0, we have that
Proof: When po satisfies (115), we have that
(m+A+1)In(1+ po) < 1. (116) o dp \Bu+p+ 1/ lp=pe ~
Now, for z > 1, we have that We compute
1 1 11 1 1 d /p(l+p)~°
Nn(l+ ) =a(-— ==+ —=— — +... S (A2 TH
(x+2)n( er) :C(x 2m2+3m3 4x4+ ) du(ﬂququl)
1 1 1 1 51
T oy T 12 T gl = U (1= )= 81+ B 127
20 du Gic &; 1 (BIHMH)Q( (1=8p—01+p)p?), (127)
=1+ Z(—l)”(n 1 o) (117) so (126) can be rewritten as
n=2
00
We have Gg (B:0)> 06 60+ A + (6~ 1p| _ <1 (128)
( L _ i) = ( L _ i) o= i, (118) Thus we have to verify the second member of (128) for
n+l  2n/ln=2 ntl 2n/ln=s 12 the special case that = 5*(0). Wheno < o, We have
and B*(c) = n— A, 6 = 2A, and the second member of (128)
d 1 1\ (n+1)2—2n2 turns into
%(n +1 %)  2n2(n+41)2 <0, n=3. (119) 2A7Iﬂg +(2A = 1po < 1. (129)



Now 1o increases i € [0, oumin], and SRAnu3+(2A—1) o

is maximal wheno = o.,;,. Hence, it suffices to check the

second member of (128) for the case that [omin, Omax]-
Whené < 1, we have fromuy < (n+ A +1/2)~! that

I+
(n+A+1/2)2

<1 (130)

(1 + B)ug + (8 — Do <
n+A+1

T (mt+A+1/2)?

Whend > 1, the functiony > 0+ 6(1 + B)u? + (6 — 1)u is

increasing, and so, from Lemma 1, usiig=n + A — 4, we
get

1
51+5’/L2+ O0—Dpug< (6 —1)———
( ) 0 ( )0 ( )n A %
) A -0 -——;L———Q 131
+ +A+1 .

Setn+ A +1/2 = A. We have to check whether
S(A+ % —0)+(6—1)A < A% (132)
The left-hand side of (132) equals
1
— 52 42(442)5—-A
0 +2(A+ )8
1 1
- —(5—(A+Z))2—A+(A+Z)2
1 1,2
o (6—-(A+7)) (133)

and this is less thar? since A > 1/2 > 1/8.

1
42t
=A 2A+
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