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Balancing exposed and hidden nodes in linear
wireless networks

P.M. van de Ven, A.J.E.M. Janssen,Fellow, IEEE and J.S.H. van Leeuwaarden

Abstract—Wireless networks equipped with the CSMA pro-
tocol are subject to collisions due to interference. For a given
interference range we investigate the tradeoff between collisions
(hidden nodes) and unused capacity (exposed nodes). We show
that the sensing range that maximizes throughput critically
depends on the activation rate of nodes. For infinite line networks,
we prove the existence of a threshold: When the activation rate
is below this threshold the optimal sensing range is small (to
maximize spatial reuse). When the activation rate is above the
threshold the optimal sensing range is just large enough to
preclude all collisions. Simulations suggest that this threshold
policy extends to more complex linear and non-linear topologies.

Index Terms—Carrier-sensing range, collisions, exposed nodes,
hidden nodes, Markov processes, random-access, throughput,
wireless networks

I. I NTRODUCTION

Carrier sense multiple-access (CSMA) type protocols form
a popular class of medium access protocols for wireless net-
works. The first CSMA protocol was introduced by Kleinrock
and Tobagi [16] in 1975, and has seen many incarnations
since, including the widely used 802.11 standard. In this paper
we provide an asymptotic analysis of large wireless networks
operating under CSMA, in the presence of collisions.

CSMA is a randomized protocol that allows nodes to
access the medium in a distributed manner. The absence of
a centralized scheduler creates more flexibility and allowsfor
the deployment of larger networks. An early example of such
a randomized procedure is the ALOHA protocol [1], which
forces nodes to wait for some random backoff period before
starting a transmission, in order to reduce the likelihood of
nearby nodes transmitting simultaneously. The latter event
would cause the signals to interfere with each other, and may
result in a collision that renders the transmissions useless.
CSMA improves upon ALOHA by letting nodessensetheir
surroundings to detect the presence of other transmitting
nodes. If a node detects at least one active (i.e. transmitting)
node within its sensing range, its backoff timer is frozen,
deferring the countdown until the channel is sensed clear.
Using this mechanism, collisions can be further reduced.

A key performance measure in wireless networks is through-
put, which we define as the average number of successful
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transmissions per unit of time. We investigate the relation
between the sensing range and the throughput. The effect
of the sensing range can be understood as follows. A small
sensing range allows for more simultaneous transmissions,but
is less effective in reducing collisions. On the other hand,
a large sensing range admits fewer transmissions, but also
mitigates interference. The main contribution of this paper is
the examination of this tradeoff in relation to its effect onthe
throughput.

The network is characterized by the sensing range and the
interference range. A node can only initiate a new transmis-
sion when all nodes within its sensing range are inactive.
This transmission is successful when all nodes within the
interference range of the destination node are inactive, and
fails otherwise. The network performance suffers from two
complementary issues: hidden nodes and exposed nodes (see
[16]). Hidden nodes are nodes located outside the sensing
range of the transmitter and are therefore not detected by
the carrier-sensing mechanism. Hidden nodes cause collisions
as they are within the receiver’s interference range. Exposed
nodes are nodes located outside the receiver’s interference
range but inside the sender’s sensing range. So despite being
harmless to the transmission, exposed nodes are nevertheless
blocked. As the sensing range grows, the number of hidden
nodes decreases, and the number of exposed nodes increases.

In recent years the performance issues caused by hidden
and exposed nodes have been extensively studied in research
literature. Various studies look modifying the CSMA algorithm
to eliminate either hidden or exposed nodes, for example
by using separate control channels [20], through busy tone
signals [12], [19] or by modifying and temporarily disabling
the carrier-sensing mechanism [13]. However, no such ap-
proach is successful in simultaneously eliminating hiddenand
exposed nodes, and solving either issue may exacerbate the
other. In general, eliminating both hidden and exposed nodes
is considered to be a very difficult problem [13].

Thus, rather than modifying the CSMA algorithm, we want
to balance hidden and exposed nodes by carefully choosing
the sensing range. The problem of finding the sensing range
that maximizes throughput has received considerable attention
in recent years [11], [17], [18], [27], [29], [30]. Althoughthese
works each consider a distinct physical-layer and MAC-layer
model, all treat exposed and hidden nodes in a similar manner.
That is, they assume for each transmission the existence of a
hidden (exposed) node area such that this transmission will
collide (be blocked) if any node in this area is active. Rather
than analyzing a fixed network structure, hidden and exposed
node events are then approximated by assuming a randomized
topology and computing the probability of an active hidden
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or exposed node by multiplying the size of these areas by the
node density, and assuming that nodes operate independently
from each other.

This approach ignores both the network structure and com-
plex interactions between nodes in a random-access network,
and provides only a crude approximation of the carrier-sensing
tradeoff. In the present paper we consider a fixed network
topology, and propose a model that does take into account
the node interactions, by keeping track of the activity of the
nodes over time. Careful analysis of the resulting Markov
chain model allows us to demonstrate that the optimal sensing
range in fact depends on the activation rate of the nodes.

The classical model for such interaction in wireless net-
works is developed in Boorstyn and Kershenbaum [5]. This
model is a special instance of a loss network [15], and has been
used in recent years to study throughput-optimality [4], [14],
[21], [23] and fairness [8], [9], [25], [26] in a setting without
collisions. The stability region for large wireless networks with
collisions was investigated in [6].

In the spirit of [5], we model the network as a continuous-
time Markov process with interaction between the nodes, so
that nodes within a certain distance of an active node are
silenced, just as in CSMA. Such interaction is referred to in
statistical physics ashard-core interaction. Typical for such
models is the existence of a Gibbs measure that describes
the stationary distribution. This Gibbs measure is normalized
by the partition function, which involves a computationally
cumbersome summation over all possible configurations. A
substantial ingredient of this paper is to characterize and
approximate the partition function. We shall consider the
network, and thus the partition function, in the asymptotic
regime where the number of nodes in the network tends
to infinity. For such infinite line networks we are able to
obtain structural results on the joint effect of hidden nodes
and exposed nodes.We determine analytically the throughput-
optimal sensing range that achieves the best tradeoff between
reducing hidden nodes and preventing exposed nodes.

We propose a novel model for evaluating the effect of
exposed and hidden nodes on throughput. In contrast to
existing such models we keep track of node activity over time,
and capture the effect of higher-order node interactions on
network performance. This model reveals various surprising
results that cannot be derived in the existing simplified models;
our main findings are as follows:

• The throughput-optimal sensing rangeβ∗ depends on the
activation rateσ. Theβ∗ takes values in some bounded
interval, and increases withσ;

• For regular networks, the transition fromβ∗ small toβ∗

large is very sudden;
• The network topology and transmission distance have a

significant impact onβ∗.
The remainder of this paper is structured as follows. In

Section II we introduce the model, and derive some auxiliary
results. Section III discusses the main results on the carrier-
sensing tradeoff. In Section IV we perform a detailed study of
the partition function. In Section V we validate the analytical
results for the line network by simulation, and we investigate
networks with more general topologies. In Section VI we

present the proofs of those results that are not already proved
in earlier sections.

II. M ODEL DESCRIPTION

We consider a linear array of2n+1 nodes, and we denote
the set of all nodes byN = {−n, . . . , n}. We fix the
transmission distance∆, and assume that whenever a node
activates, it transmits a single packet to either the node∆
hops to its right (with probabilityψ) or to the node∆ hops
to its left (with probability 1 − ψ). To accommodate this,
we introduce (pure destination) nodesn + 1, . . . , n + ∆ and
−(n + 1), . . . ,−(n + ∆), which receive packets, but do not
transmit packets themselves. The case∆ = 1 corresponds to
nearest-neighbor transmissions, where nodes can only transmit
packets over a single hop. For∆ ≥ 2, nodes are allowed
to skip their immediate neighbors. As will be shown in
Proposition 2, the throughput is insensitive to the parameter
ψ. We assume that all nodes are saturated, meaning that they
have an infinite supply of packets available for transmission.

After each transmission nodes enter a backoff period,
meaning that they will remain inactive for some time. The
length of the backoff period is assumed to be exponentially
distributed with mean1/σ. We assume all nodes to have
the same sensing rangeβ, so that nodev is prohibited
from transmitting whenever at least one nodew for which
|v−w| ≤ β is active (i.e. transmitting), in which case we say
that nodev is blockedby nodew. So when a node finishes its
backoff period and it finds at least one node within distance
β active, it enters a new backoff period. When a node finds
all nodes within distanceβ inactive upon finishing backoff, it
starts a transmission. Transmissions last for an exponentially
distributed duration with unit mean. Under these assumptions,
the (2n+1)-dimensional process that describes the activity of
nodes is a continuous-time Markov process. Each state of the
Markov process is described by

ω = (ω−n, . . . , ωn) ∈ {0, 1}2n+1, (1)

whereωv = 1 when nodev is active, andωv = 0 otherwise.
Let Ω ⊆ {0, 1}2n+1 be the set of allfeasiblestates. Here we
call ω feasible if no two1’s in ω areβ positions or less apart,
i.e., ωvωw = 0 if 1 ≤ |v − w| ≤ β. Let ev denote the vector
with all zeros, except for a 1 at positionv. The Markov process
that describes the activity of nodes is then fully specified by
the state spaceΩ and the transition rates

r(ω, ω′) =







σ if ω′ = ω + ev,
1 if ω′ = ω − ev,
0 otherwise.

(2)

It is well known that this is a reversible Markov process (see
[5], [22]) with limiting distribution

π(ω) =

{

Z−1
2n+1

∏n
v=−n σ

ωv if ω is feasible,
0 otherwise,

(3)

with Z2n+1 the partition function or normalization constant
of the probability distributionπ. The partition function can be
defined recursively as (see [5], [22])

Zi =

{

1 + iσ i = 0, 1, . . . , β + 1,
Zi−1 + σZi−β−1 i ≥ β + 2.

(4)
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The sequence(Zi)
∞
i=0 is well studied. In fact, for a network

with i nodes,Zi represents the partition function, defined
as the summation of probability over all possible states.
Straightforward calculations show that the the generating
functionGZ(x) of Zi can be written as (see e.g. Pinksy and
Yemini [22])

GZ(x) =

∞
∑

i=0

Zix
i =

x− 1 + σxβ+1 − σx

(x− 1)(1− x− σxβ+1)
. (5)

Let λ0, . . . , λβ denote theβ + 1 distinct roots (see Proposi-
tion 8) of

λβ+1 − λβ − σ = 0. (6)

We denote byλ0 the unique positive real root for whichλ0 >
|λj |, j 6= 0 (see [22]). Applying partial fraction expansion to
(5) yields the following result (proved in Section VI):

Proposition 1. The partition functionZi is given by

Zi =

β
∑

j=0

cjλ
i
j , i = 0, 1, . . . , (7)

whereλj are the roots of(6), and

cj =
λβ+1
j

(β + 1)λj − β
. (8)

The proof of Proposition 1 is provided in Appendix VI,
along with the other proofs not given in the main text.

To model interference, we introduce an interference
rangeη ≥ ∆. A transmission succeeds if and only if at the
start of this transmission no nodes within distanceη of the
receiving node are already active. This type of interference is
referred to in the literature as theperfect capturecollision
model [5]. Note that neither (2) nor (3) depends onη, as
collisions have no impact on the dynamics of the system.
Using the sensing rangeβ and interference rangeη we can
define formally hidden nodes and exposed nodes. Consider a
transmission from nodev to nodew. Hidden nodes are then
defined as nodes that are outside the sensing range ofv, but
within the interference range ofw. Such nodes are not blocked
by the activity of nodev, but their proximity to nodew makes
the hidden nodes harmful to the transmission fromv to w.
Conversely, exposed nodes are those nodes that are within
the sensing range ofv, but outside the interference range
of w. Such nodes are blocked by an ongoing transmission
from v to w, despite the fact that they will not cause this
transmission to fail. Denote byHr (Hl) the set of hidden nodes
of transmissions from node 0 to node∆ (node -∆): all nodes
outside the sensing range of 0, but within the interference
range of the receiving node∆ (node -∆). By Er (El) we
denote the set of nodes to which this transmission is exposed,
so all nodes within the sensing range of 0, but outside the
interference range of the receiving node. For completenesswe
let Br (Bl) denote the set of all remaining nodes that block

transmissions from node0 to node∆ (node -∆). This yields:

Hr =
{

v ∈ N
∣

∣ |v| ≥ β + 1, |v −∆| ≤ η
}

,

Hl =
{

v ∈ N
∣

∣ |v| ≥ β + 1, |v +∆| ≤ η
}

,

Er =
{

v ∈ N
∣

∣ |v| ≤ β, |v −∆| ≥ η + 1
}

,

El =
{

v ∈ N
∣

∣ |v| ≤ β, |v +∆| ≥ η + 1
}

,

Br =
{

v ∈ N
∣

∣ |v| ≤ β, |v −∆| ≤ η
}

,

Bl =
{

v ∈ N
∣

∣ |v| ≤ β, |v +∆| ≤ η
}

.

So Er ∪ Br = El ∪ Bl =
{

v ∈ N
∣

∣ |v| ≤ β
}

. An example
with ∆ = 1 is given in Figure 1(a). Node 3 is a hidden node,
as it interferes with the transmission from node0 to node
1 (η = 2) despite the carrier-sensing mechanism (β = 1). In
Figure 1(b) node 0 is an exposed node to the transmission from
node 2 to node 3 because it would not interfere (η = 2) with
this transmission but is nevertheless silenced by the activity
of node 2 (β = 2).

-1 0 1 2 3 4

β
η

(a) Node 3 is a hidden node, and may
interfere with the transmission between
nodes 0 and 1.

-2 -1 0 1 2 3

βη

(b) Node 0 is an exposed node, unnecessarily
silenced by the transmission between nodes 2
and 3.

Fig. 1. Examples of hidden and exposed nodes.

We focus on node 0 (the node in the middle of the network)
and in particular its throughputθn(β, η, σ) defined as the
average number of successful transmissions per unit of time.

Proposition 2. The throughput of node 0 is given by

θn(β, η, σ) = σ
Zn−max{β,η−∆}Zn−max{β,η+∆}

Z2n+1
. (9)

Proof: Denote byθr (θl) the rate of successful transmis-
sion of node 0 to node∆ (node -∆ ), soθn(β, η, σ) = θr+θl.
The activation attempts to node∆ (node -∆ ) occur according
to a Poisson process with rateσψ (rate σ(1 − ψ)). We first
consider activation attempts towards node∆ . Whether an
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activation attempt is successful depends on the state of the
system when this attempt occurs. Define

A1 =
{

ω ∈ Ω
∣

∣ ∃v ∈ Br ∪ Er : ωv = 1
}

,

A2 =
{

ω ∈ Ω
∣

∣ ∀v ∈ Br ∪ Er : ωv = 0, ∃v ∈ Hr : ωv = 1
}

,

A3 =
{

ω ∈ Ω
∣

∣ ∀v ∈ Br ∪ Er ∪Hr : ωv = 0
}

.

When the system is in stateω ∈ A1, the attempt is blocked
and node 0 remains in its current state. When the system is in
a stateω ∈ A2, node 0 is not blocked so it activates. However,
at least one hidden node is active so the transmission fails and
does not contribute to the throughput. When the system is in
stateω ∈ A3, the perfect capture assumption guarantees a
successful transmission. It follows from the PASTA property
(cf. [2]) that the probability of an arbitrary activation attempt
resulting in a successful transmission is equal to the limiting
probability of the system being in a stateω ∈ A3. So the rate of
successful transmissions initialized (and thus the throughput)
is given by

θr = σψ
∑

ω∈A3

π(ω). (10)

From the definitions ofBr, Er andHr we see that

A3 =
{

ω ∈ Ω
∣

∣ ∀v ∈ (D1 ∪D2)
c : ωv = 0

}

, (11)

where

D1 = {−n, . . . ,−max{β, η −∆} − 1},
D2 = {max{β, η +∆} + 1, . . . , n}. (12)

Let ZD denote the partition function for a subset of nodes
D ⊆ N defined asZD =

∑

ω∈Ω, ∀v∈Dc:ωv=0

∏n
v=−n σ

ωv .
Then

θr = σψ
ZD1∪D2

ZN
. (13)

The model on the line has the property that by conditioning
on the activity of one of the nodes, its state space can be de-
composed, leading to two smaller instances of the same model
on the line. In particular, we know thatZD1∪D2 = ZD1ZD2

(see [5, Equation (15)]), so that

θr = σψ
ZD1ZD2

ZN

= σψ
Zn−max{β,η−∆}Zn−max{β,η+∆}

Z2n+1
, (14)

whereZi denotes the partition function of a network withi
consecutive nodes on a line. Similarly,

θl = σ(1− ψ)
Zn−max{β,η−∆}Zn−max{β,η+∆}

Z2n+1
. (15)

and (9) follows by addingθr andθl.

III. M AIN RESULTS

Our principal aim is to choose the sensing rangeβ so that
the throughputθn(β, η, σ) is maximized for a givenη andσ.
Define

β∗
n = argmax

β
θn(β, η, σ). (16)

Determiningβ∗
n corresponds to quantifying and optimizing

the tradeoff between preventing collisions through interference

(preventing hidden nodes by settingβ large) and allowing
harmless transmissions (preventing exposed nodes by setting
β small). We want to obtain structural insights in how to
chooseβ∗

n, and for this purpose the expressions forZi in
(7) andθn(β, η, σ) in (9) are too cumbersome. Therefore, we
investigate the throughput in the regime where the network
becomes large (n → ∞), so that (9) simplifies considerably,
allowing for more explicit analysis. The analytic results that
we obtain for the infinite network provide remarkably sharp
approximations for the finite network; see Section III-B. All
proofs that are not given in this section are provided in
Section VI.

We start by presenting the limiting expression for
θn(β, η, σ) as the size of the network becomes infinite:

Proposition 3. Let λ0 denote the unique positive real root of
(6). Then

θ(β, η, σ) = lim
n→∞

θn(β, η, σ) = σ
λ
β−f∆(β)
0

(β + 1)λ0 − β
, (17)

where

f∆(β) =







2η if 0 ≤ β ≤ η −∆,
η + β +∆ if η −∆ ≤ β ≤ η +∆,
2β if β ≥ η +∆.

(18)

Proof: From Rouché’s theorem (see De Bruijn [7]) it
readily follows thatλ0 > |λj | for j = 1, . . . , β, and so from
(7) we get

Zi = c0λ
i
0 (1 + o(1)) , i→ ∞. (19)

Hence

lim
n→∞

θn(β, η, σ)

= lim
n→∞

σ
c0λ

n−max{β,η−∆}
0 c0λ

n−max{β,η+∆}
0

c0λ
2n+1
0

= σc0λ
−max{β,η−∆}−max{β,η+∆}−1
0 , (20)

which, using (8) withj = 0, yields (18).
Now that we have the limiting expression for the throughput

in (17) we opt for an asymptotic analysis. That is, instead of
searching forβ∗

n, we search for its asymptotic counterpart

β∗ = argmax
β

θ(β, η, σ), (21)

where we henceforth considerθ as a function of the real
variableβ ≥ 0. In Section III-B we show that the errors|θn−θ|
and|β∗

n−β∗| become small, already for moderate values ofn.
Because we consider from here onwards the regimen → ∞,
all nodes have the same number of nodes within their sensing
range. This removes all boundary effects, and all nodes have
the same throughput, which is why just investigating node 0
is sufficient to investigate the entire network.

Proposition 4. β∗ ∈ [η −∆, η +∆].

The result of Proposition 4 can be understood as follows.
By increasingβ beyondη + ∆, no additional collisions are
prevented, but an increasing number of nodes is silenced.
On the other hand, the nodes that become unblocked when
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decreasingβ belowη−∆, cause collisions when they activate.
Although this result may seem intuitively clear, to the authors’
knowledge such a result has not been proved rigourously
(at least not in the present setting). Note that for all values
β ∈ [η −∆, η +∆], we can rewrite (17), using (6), as

θ(β, η, σ) = g(β) · (λ0(β))
β−η−∆

β + 1
(22)

with

g(β) =
λ0(β) − 1

λ0(β)− β
β+1

→ 1, β → ∞. (23)

We are now in the position to present our main result. While
we already know that the optimal sensing range is contained
in the interval[η−∆, η+∆], the next result is more specific.

Theorem 1. There exists a threshold interval[σmin, σmax]
such that

β∗ =

{

η −∆ if σ ≤ σmin,
η +∆ if σ ≥ σmax,

(24)

andβ∗ increases fromη−∆ to η+∆ whenσ increases from
σmin to σmax.

The proof of Theorem 1, see Section VI, follows from a
detailed study ofθ(β, η, σ) which involves implicit differenti-
ation with respect toβ (sinceλ0(β) is defined implicitly).

Theorem 1 can be interpreted as follows (see Figure 2).
When σ is large, nodes activate very quickly after finishing
their previous transmissions. When the system is in a max-
imal independent set, and if collisions are not ruled out, an
activating node suffers a collision almost surely. This explains
why for σ large, the optimal sensing range isβ = η + ∆,
preventing collisions completely. On the other hand, when
σ is small, collisions become rare, as few nodes are active
simultaneously. In this case, the throughput is best servedby
increasing the spatial reuse, that is, decreasing the sensing
range (up toη − ∆). This explains the result of Theorem 1
for σ small.

Fig. 2. The optimal sensing rangeβ∗ as a function ofσ.

Note that Theorem 1 does not give the exact values ofσmin

andσmax. Instead, we give below an estimate of the location
and width of the threshold interval.

Theorem 2. Let κ = τ
η+∆ with τ = (

√
5− 1)/2.

(i) The threshold interval is bounded as

[σmin, σmax] ⊆ [κ(1 + κ)η−∆, κ(1 + κ)η+∆]. (25)

(ii) The width of the threshold interval is asymptotically given
as

σmax − σmin ∼ 2eτ∆

7+ 4τ

(

1

η + 1

)2

as η → ∞. (26)

Here we say thatf(η) ∼ g(η) if f(η)/g(η) → 1 as
η → ∞. From Theorem 2(ii) we see that the width of the
threshold interval isO(η−2). Therefore, the interval width
decreases rapidly as a function ofη, and we can speak of an
almost immediate transition from one regime (β∗ = η − ∆)
to the other (β∗ = η + ∆). As a by-product of the proof of
Theorem 2(ii) we obtain sharp approximations forσmin and
σmax, see (93)-(94):

σ̂min = µ̂−(1 + µ̂−)
η−∆, σ̂max = µ̂+(1 + µ̂+)

η+∆, (27)

with µ̂± = τ/(η + α±) andα± = ((2∆+ 3± 2∆)τ + 2∆−
1)/2(2τ + 1).

So far we have maximized the throughput overβ, while
assumingσ to be fixed. We now assumeσ is bounded as
0 < σ < σ1 for some constantσ1, and consider the joint
optimization problem of finding the(σ, β)-pair that solves

(σ, β)∗ = argmax
β,0<σ<σ1

θ(β, η, σ). (28)

There is the following result.

Theorem 3. The solution to the joint optimization prob-
lem (28) is given by

(σ, β)∗ = (σ1, β
∗(σ1)). (29)

So according to Theorem 3, the throughput is maximized by
settingσ as large as possible, and choosing the corresponding
optimal value ofβ.

A. Throughput limiting behavior

We now consider some limiting regimes for which we can
make more explicit statements about the throughput. From
Theorem 2 we can already see that the threshold interval
moves in the direction of zero asη becomes large which
implies thatβ∗ = η + ∆ for small values ofσ. The next
result shows that in the regime whereη becomes large, the
maximum throughput tends to zero.

Proposition 5. Let σ > 0 be fixed. Asη → ∞,

max
β

θ(β, η, σ) =
1

η +∆+ 1

(

1 +O
(

1

ln(η +∆)

))

.

(30)

For β ≥ η + ∆ our model reduces to a model without
collisions that was studied extensively in [3], [5], [10], [22],
[25], [28]. In particular, one immediately obtains from (6)
and (17) the following result:

Corollary 1. Let β ≥ η +∆. Then

θ(β, η, σ) =
λ0 − 1

(β + 1)λ0 − β
. (31)

This result was also derived in [3], [10], [22], [28]. Note
that as the intended receiver is no longer relevant in the case
without collisions,∆ does not appear in (31).



6

From Proposition 7 and the proof of Proposition 5 it is
seen thatλ0 → ∞ as σ → ∞ and β is fixed, and that
β(λ0 − 1) → ∞ as β → ∞ and σ is fixed. Thus the
throughput is approximately1

β+1 when eitherσ or β is large.
This can be understood as follows. For largeσ, the high
activation rate allows for configurations close to the maximum-
size independent set: A configuration in which one out of every
β + 1 nodes in active. Forβ large, when a node deactivates,
a large number of neighboring nodes become eligible for
activation. The time until the first such node activates goes
to 0 whenβ increases.

Corollary 2. Let β < η +∆. Then

lim
σ→∞

θ(β, η, σ) = 0. (32)

Proof: From (45) withj = 0 it follows that

λ0(σ) = σ
1

1+β +O(1), σ → ∞. (33)

Substituting (33) into (17), and using thatf∆(β) > 2β when
β < η +∆, yields

θ(β, η, σ) =
σ(σ

1
1+β +O(1))β−f∆(β)

(β + 1)(σ
1

1+β +O(1)) − β

=
1

β + 1
σ

2β−f∆(β)

β+1 (1 + o(1)) → 0, σ → ∞, (34)

which gives (32).
Figure 3 shows the throughput plotted against the activation

rateσ for η = 7, ∆ = 1 and various values ofβ. Whenβ ≤ η,
the throughput gradually drops to 0, whereas forβ ≥ η + 1,
the throughput will eventually converge to the limit1/(β+1).
This confirms Corollaries 1 and 2.

Fig. 3. The throughputθ(β, η, σ) plotted againstσ for η = 7 and various
values ofβ.

B. Finite versus infinite line networks

We now look at the approximation error|θn − θ| and the
resulting error in the optimal sensing range. To investigate
the error we plotθn and θ in Figure 4, represented by the
dashed line and the solid line, respectively. All results for θn
were obtained by using (7) and (9) in combination with the
infinite-series expressions for the roots in Section IV. In this
section we restrict ourselves to the case∆ = 1, but we see
similar behavior for general∆.

We taken = 100 (201 nodes),η = 4, and we letβ increase
from 1 to 100. In Figure 4(a)σ = 0.25, and in Figure 4(b)

σ = 5. For β small the error|θn(β) − θ(β)| is negligible,
but the error increases asβ increases. This can be explained
by the observation that for largerβ, the number of roots
of (6) increases, as does the number of roots discarded by the
approximation. This phenomenon becomes more pronounced
for larger values ofσ. The non-monotone behavior ofθn is
caused by the fact that for finiten, the system is directed to
maximum-size independent sets of active nodes, in particular
for σ large, and these sets change dramatically withβ. The
most important observation is that the error|θn − θ| is small
for those values ofβ that lead to a large throughput. Figure 5
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Β
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0.07

0.08

(a) σ = 0.25

20 40 60 80 100
Β

0.02

0.04

0.06

0.08

0.10

0.12

(b) σ = 5

Fig. 4. The throughputθn (dashed) andθ (solid) plotted againstβ (with
n = 100).

is similar to Figure 4, but instead of fixingn and varyingβ, we
setβ = 16 and varyn. In Figure 5(a) we takeσ = 0.25 and in
Figure 5(b) we takeσ = 5. The accuracy of the approximation
increases withn.

0 20 40 60 80 100
n

0.02

0.03

0.04

0.05

(a) σ = 0.25

0 20 40 60 80 100
n

0.02

0.04

0.06

0.08

0.10

(b) σ = 5

Fig. 5. The throughputθn (dashed) andθ (solid) plotted againstn (with
β = 16).

Figure 6 shows the optimal sensing range plotted againstσ,
for η = 5. Each of the Figures 6(a)-6(d) shows the optimal
rangeβ∗

n(σ) for finite n. We takeη = 5 for all figures, and
let σ increase from 0.15 to 0.19. The vertical lines indicate
the approximations of the threshold interval from (27), and
we see that these are sharp. The optimal sensing rangeβ∗ for
n → ∞ behaves as predicted by Theorem 1, jumping from
η− 1 before the threshold interval, toη+1 after this interval,
and β∗

n shows a similar pattern. We conclude thatn → ∞
provides a good approximation for the behavior of finite-sized
networks, already for small and moderate values ofn.

An alternative approach to studying the difference between
finite and infinite networks is to look at the rate at which
θn converges toθ. This rate is characterized by|λ1/λ0|, the
modulus of the ratio of the second-largest and largest root
of (6). Approximatingλ0 and λ1 using the termsl = 1, 2
from the expansion (45), we obtain forσ large

∣

∣

∣

λ1
λ0

∣

∣

∣ ≈ (1− 2r(1 − r)(1 − cosα))1/2, (35)
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(b) n = 20
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(d) n = 30

Fig. 6. The optimal sensing rangeβ∗

n (dashed) andβ∗ (solid) plotted against
σ around the threshold interval for various values ofn andη = 5.

where
r =

1

(β + 1)σ1/(β+1)
, α =

2π

β + 1
. (36)

The case withσ small generally shows better convergence,
as illustrated in Figure 5. Here a similar approximation canbe
obtained using (37) and (38).

IV. PARTITION FUNCTION ROOTS

In this section we study the rootsλ0, . . . , λβ of (6) in more
detail. In particular, we derive exact infinite-series expressions
for the roots that are used in this paper both for numerical
purposes (in Section V) and to prove Corollary 2. These
roots are essential in Section III-B, where the finite and
infinite networks are compared. Our main tool will be the
Lagrange inversion theorem (see [7]), and depending on the
value ofσ, this gives two different infinite-series expressions.
Let (x)n = Γ(x+ n)/Γ(x) denote the Pochhammer symbol.

Proposition 6. For small σ > 0,

λ0(σ) = 1 +

∞
∑

l=1

(−1)l−1(βl)l−1

l!
σl, (37)

λj(σ) =
∞
∑

l=1

(l/β)l−1

l!
wl

j , j = 1, 2, . . . , β, (38)

where wj = σ1/βe2πı(j−1/2)/β and ı =
√
−1. The series

expansions in(37) and (38) converge for

0 ≤ σ ≤ ββ

(β + 1)β+1
=: ξ(β), (39)

and diverge otherwise.

Proof: We first consider the casej = 0. Setµ0 = λ0−1,
so µ0 satisfiesµ0(1 + µ0)

β = σ. Hence for small values of
|σ| we have by Lagrange’s inversion theorem

µ0 =

∞
∑

l=1

1

l!

(

d

dµ

)l−1
[

(

µ

µ(1 + µ)β

)l
]

µ=0

σl

=

∞
∑

l=1

(−1)l−1(βl)l−1

l!
σl. (40)

Next we consider the case thatj = 1, . . . , β. We now write
(6) as

λβ(1− λ) = −σ, λ(1− λ)1/β = wj , (41)

where
wj = σ1/βe2πı(j−1/2)/β . (42)

Then we get for|wj | sufficiently small

λj =

∞
∑

l=1

1

l!

(

d

dλ

)l−1
[

(

λ

λ(1 − λ)1/β

)l
]

λ=0

wl
j

=

∞
∑

l=1

(l/β)l−1

l!
wl

j . (43)

The radii of convergence of the series in (40) and (43) are
easily obtained from the asymptotics

Γ(x+ 1) = xx+1/2e−x
√
2π(1 +O(x−1)), x→ ∞, (44)

of theΓ-function, used to examine the Pochhammer quantities
(x)n = Γ(x + n)/Γ(x) and the factorialsl! = Γ(l + 1) that
occur in both series. This yields the result that both series
converge when|σ| ≤ ξ(β) and diverge for|σ| > ξ(β). When
|σ| = ξ(β) the terms in either series areO(l−3/2).

Proposition 7. For large σ > 0,

λj(σ) =

(

∞
∑

l=1

(

−l
β+1

)

l−1

l!
v−l
j

)−1

, j = 0, 1, . . . , β, (45)

wherevj = σ1/(β+1)e2πıj/(β+1). The series expansion in(45)
converges for

σ ≥ ξ(β), (46)

and diverges otherwise, whereξ(β) is given in(39).

Proof: We can treat the casesj = 0 and j = 1, . . . , β
simultaneously now. We write (6) in the form

1

λ

(

1− 1

λ

)
−1
β+1

=

(

1

σ

)
1

β+1

= v−1, (47)

where we let

v−1 = v−1
j =

(

1

σ

)
1

β+1

e−2πı j
β+1 , j = 0, 1, . . . , β (48)

with σ− 1
β+1 > 0 in (48). We get for sufficiently largeσ from

Lagrange’s inversion theorem (withu = 1/λ) that

1

λj
=

∞
∑

l=1

1

l!

(

d

du

)l−1
[

(

u

u(1− u)−1/(β+1)

)l
]

u=0

v−l
j

=

∞
∑

l=1

( −l
β + 1

)

l−1

v−l
j

l!
. (49)

The Pochhammer quantity( −l
β+1)l−1 vanishes if and only if

l = 1, 2, . . . is a multiple ofβ+1. The radius of convergence
of the series in (49) is again determined by the asymptotics
of theΓ-function in (44). Here it must also be used that

Γ(−J) = −1

Γ(J + 1)

π

sinπJ
, J > 0. (50)
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It follows that the series in (49) is convergent when|σ| ≥ ξ(β)
and divergent when|σ| < ξ(β). When |σ| = ξ(β) the terms
in the series areO(l−3/2).

Figure 7 shows the roots of (6) drawn in the complexλ-
plane forβ = 4. Each heavy solid line corresponds to a root
as a function ofσ, and the dots represent the threshold|σ| =
ξ(β). The light solid straight line and the dashed straight line
illustrate the leading behavior of each root asσ ↓ 0 or σ → ∞
according to Propositions 6 and 7, respectively. The dashed
curve encircling the origin0 and the point1 is the image of
v ∈ C with |v| = σ1/(β+1), σ = ξ(β), under the mapping
given by the reciprocal of the right-hand side of (45) withvj
replaced byv.

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Fig. 7. The roots ofλβ+1+λβ = σ as functions ofσ in (37), (38) and (45),
for β = 4.

V. D ISCUSSION AND OUTLOOK

The distinguishing feature of this paper is the presence of
node interaction when making the tradeoff between hidden
nodes and exposed nodes. In order to get a handle on the
throughput function (and hence the partition function) we
studied the wireless network in the asymptotic regime of
infinitely many nodes. This resulted in a tractable limiting
expression for the throughput of node zero (and hence of any
other node) that allowed us to prove the following three results:

(i) To optimize the throughput, one should always choose a
sensing rangeβ that is close to the interference rangeη, and
in fact the optimal sensing range is contained in the interval
[η −∆, η +∆] (see Proposition 4).

(ii) The sensing rangeβ∗ that optimizes the throughput
equalsη −∆ for less aggressive nodes (smallσ) andη +∆
for aggressive nodes (largeσ). In fact, we were able to show
the existence of a threshold interval forσ that distinguishes
these two regimes (Theorem 1). This important result provides
(partial) justification for the frequently made assumptionthat
no collisions occur. Indeed, one key take away is that ifσ is
large enough, ruling out all collisions by settingβ = η + ∆
is optimal.

(iii) In case theσ can take any value0 ≤ σ ≤ σ1, the
pair (σ, β)∗ that jointly maximizes the throughput is given
by (σ1, β

∗(σ1)). So the optimal setting is to choose theσ as
large as possible, and then to select the sensing range that
maximizes throughput for this particularσ-value.

We have further shown that the threshold interval is in
many cases small, which implies that one can speak of an
almost immediate transition from one regime (β∗ = η − ∆)
to the other (β∗ = η + ∆). We have argued that, when the
aggressiveness of the nodes is large enough, the system no
longer gains from the potential benefits of more flexibility
(small β), and just settles for the situation with no collisions.

We shall now discuss two remaining issues. In Section V-A
we consider the case of random transmission distance, and in
Section V-B we investigate whether the notions of two regimes
and a critical threshold carry over to more general topologies.

A. Random transmission distance

We now relax the assumption that packets are always sent
to nodes at distance∆, and instead allow for transmissions
towards any node within some transmission rangeD ≥ 1. We
assume that a transmission is intended for a node at distance
∆ with probability a∆, ∆ = 1, . . . , D. By conditioning on
the transmission distance and following the arguments from
the proof of Proposition 2, the throughputθ̂n in this case may
be written as

θ̂n(β, η, σ) =
D
∑

∆=1

a∆σ
Zn−max{β,η−∆}Zn−max{β,η+∆}

Z2n+1
,

(51)
with Zi the partition function (7), as before.

The choice for sensing rangêβn that maximizes (51) be-
haves markedly different from the fixed-range case. Consider
for example a network withn = 15, η = 6 and D = 2
(so the transmission range is either 1 or 2). We numerically
compute thêβn as a function ofσ for a1 = 0.1 anda2 = 0.9
(Figure 8(a)) and fora1 = 0.7 and a2 = 0.3 (Figure 8(b)).
The optimal sensing range no longer consists of two regimes
separated by a threshold interval, and we see thatβ̂n does not
necessarily approachη+D = 8 whenσ is large. This can be
explained by the observation that, forσ large, the contribution
to the throughput by transmissions over a distance of at least
β− η will approach 0, since the network is so densely packet
that all such transmission will suffer a collision. However,
transmissions over a smaller distance will remain successful,
so depending on the choice of thea∆, it might be beneficial
to choose a sensing range that is smaller thanη+D, even for
σ → ∞.

Analogous to Proposition 3, when the network becomes
large we can once more use the asymptotic in (7), and we
may write

θ̂(β, η, σ) = lim
n→∞

θ̂n(β, η, σ) =

D
∑

∆=1

a∆θ∆(β, η, σ), (52)

with

θ∆(β, η, σ) = σ
λ
β−f∆(β)
0

(β + 1)λ0 − β
. (53)
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(a) ξ1 = 0.1 andξ2 = 0.9
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(b) ξ1 = 0.7 and ξ2 = 0.3

Fig. 8. The impact of the sensing range as a function ofσ, for η = 6, D = 2
andn = 15.

This asymptotic throughput function may have several station-
ary points as a function ofβ, as is illustrated in Figure 9. This
makes the issue of finding an optimalβ∗(σ) more complicated
than in the case of a fixed transmission range.

Although each of the individual termsθ∆ in (52) has a
unique stationary point, there is no intuitive explanationwhy
uniqueness does not necessarily hold when multiple terms are
combined. It is worth noting that the existence of multiple
stationary points appears rare, and that the counterexample
for uniqueness in Figure 9 relies on the careful choice for the
coefficientsa1 anda2.

θ̂(β) − θ̂(8)

(a) σ = 0.204

θ̂(β) − θ̂(8)

(b) σ = 0.205

Fig. 9. θ̂(β, η, σ)− θ̂(8, η, σ) plotted againstβ ∈ [7, 8], for η = 6, ∆ = 2,
a1 = 0.132, a2 = 0.868 and various values ofσ.

B. General topologies

In order to investigate topologies beyond linear networks we
require a more general description of the model. In addition
to nodes we also introduce links connecting two nodes, repre-
senting the possibility of transmissions taking place between
these nodes. For two nodes to be able to transmit data, we
require them to be at most within (Euclidian) distanced of
each other, and we assume that links are formed between all
nodes within distanced. Each node has activation rateσ, and
the destination of a transmission is chosen uniformly amongall
links originating from the activating node. The sensing rangeβ
and interference rangeη are also defined using Euclidian
distance.

Our numerical experiments consist of discrete-event simu-
lations of the dynamics described in Section II, generalized to
arbitrary network topologies. While for infinite line networks
it suffices to maximize the throughput of just node 0 (due to
symmetry), our objective for general networks is to maximize
the average per-node throughput. First, we apply this objective
to a 16-node linear network with nodes at unit distance and
d = 1, so nodes only transmit to direct neighbors. Figure 10
shows the optimal sensing rangeβ∗ as a function ofσ, for

η = 2 andη = 4. We see thatβ∗ behaves similar to the optimal
sensing range for finite linear networks observed in Sec-
tion III-B, which suggests that using the average throughput as
an objective is a natural extension of the throughput of node
0. Most importantly, we observe the anticipated dependence
of β∗ on σ, and a very narrow critical interval between the
regimesβ∗ small andβ∗ large.

0.0 0.1 0.2 0.3 0.4 0.5
Σ
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Β*

(a) η = 2

0.0 0.1 0.2 0.3 0.4 0.5
Σ

1
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3

4

5
Β*

(b) η = 4

Fig. 10. The throughput-average optimal sensing range for a16-node linear
network.

Next we consider16 nodes placed on a4 × 4 grid at unit
distance from each other. We setd = 1 and η = 1, so each
node is connected with up to 4 links, and transmissions are
potentially interfered with by activity of the direct neighbors
of the receiving node, see Figure 11(a). Figure 11(b) shows
the optimal sensing rangeβ∗ plotted againstσ. Similar to
our analytical results for the linear network we observe that
σ has a significant impact on the optimal sensing range: The
β∗ is increasing inσ. The intuition for this is similar to that
for linear networks provided in Section III. Note that the two
optimal regimes are once again separated by a narrow critical
interval.

(a) A 4× 4 grid network.

0.00 0.02 0.04 0.06 0.08 0.10
Σ

1

2

3

Β*

(b) The optimal sensing rangeβ∗ plotted
againstσ.

Fig. 11. A grid network and its optimal sensing range.

Finally, we obtain by simulation the optimal sensing range
for two randomly generated networks. Each network is created
by placing 16 nodes uniformly at random in a unit square. We
assume a transmission range ofd = 0.2 and interference range
η = 0.4. Figure 12 shows the topologies of both networks
under consideration: The vertices correspond to the nodes and
two nodes share an edge if they are within transmission range
d = 0.2. We let the sensing range vary fromβ = 0 to β = 0.5
in small increments, and simulate for eachβ the throughput
as a function ofσ. Figure 13 shows the average per-node
throughput plotted againstσ, for various values ofβ, and in
Figure 14 we plot the optimal sensing rangeβ∗ obtained from
the simulations.
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(a) Network 1 (b) Network 2

Fig. 12. Two heterogeneous network topologies.

The two irregular networks shown in Figure 12 have very
distinct structures, and as expected the behavior and perfor-
mance of CSMA differs significantly between these networks.
Compare for example the difference in throughput, and the fact
that the impact of the sensing range is smaller for network
2. However, both networks also show striking similarities,
and behave largely as predicted by our analytical results for
linear networks. For instance, we see that forβ small, the
throughput drops asσ increases due to the higher number
of collisions. Moreover, the optimal sensing rangeβ∗ is
an increasing function ofσ. Note that for these particular
networks the existence of various optimal regimes separated
by critical intervals is less pronounced. In general, the tradeoff
for individual nodes in an irregular network is more complex
than in a linear network due to the node heterogeneity, and
raises many interesting questions for future research.

β=0.5

β=0.25

β=0

(a) Network 1

β=0.5

β=0.25

β=0

(b) Network 2

Fig. 13. The throughput for various values ofβ.
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(a) Network 1

0.0 0.1 0.2 0.3 0.4 0.5
Σ

0.1

0.2

0.3

0.4

0.5

Β*

(b) Network 2

Fig. 14. The optimal sensing range plotted againstσ.

C. Future work

Wireless networks equipped with CSMA on complex to-
pologies form highly relevant objects for further study. In
particular, we have raised the question whether a threshold
interval for the activation rateσ exists, which says that the

optimal sensing ranges equalsβL for σ below the interval,
and βU for σ above the interval. For the two examples in
Section V-B there is indeed such a threshold interval, but a
more thorough study is needed.

Obtaining numerical and analytical results for complex
topologies with many nodes is challenging. For one thing, the
state space no longer decomposes (as with the line network),
so that the calculation of the partition function becomes more
involved. In determining the stationary distribution, andhence
the throughput of nodes, the brute-force method would be
to sum over all possible configurations, but that will become
computationally cumbersome, already for moderate instances
of the network. Alternative approaches would be to use limit
theorems, for instance for highly dense networks with many
nodes. We conjecture that in such networks we would again
find that the optimal sensing range is increasing rather than
constant in the activation rate.

VI. REMAINING PROOFS

A. Proof of Proposition 1

We write the generating function from (5) as

Z(x, σ) =
P (x)

S(x)
, (54)

where

P (x) = 1 + σ
xβ+1 − x

x− 1
, S(x) = 1− x− σxβ+1. (55)

It is shown in [22] that the equationS(x) = 0 has β + 1
roots xj , j = 0, 1, . . . , β, and exactly one of them,x0 is
real and positive, while|xj | > x0, j = 1, . . . , β. To prove
Proposition 1 we first need to establish that these roots are
distinct.

Proposition 8. The roots ofS(x) = 0 are distinct.

Proof: WhenS(x) = S′(x) = 0, we have

1− x− σxβ+1 = 0 = −1− σ(β + 1)xβ . (56)

This implies thatx = 1 + 1
β > 1 and so thatσ = 1−x

xβ+1 < 0.
However,σ is non-negative.

Now we proceed with the proof of Proposition 1. Letλj =
1/xj so thatλ = λj satisfies (6). Using that all zeros ofS are
distinct, we have forZ(x, σ) the partial fraction expansion

Z(x, σ) =

β
∑

j=0

P (xj)

S′(xj)

1

x− xj
. (57)

Now

P (xj)

S′(xj)
=

1 + σ
xβ+1
j

−xj

xj−1

−1− (β + 1)σxβj
=

−x−β
j

1 + (β + 1)σxβj

=
−x−β

j

1 + (β + 1)
1−xj

xj

=
−λβj

(β + 1)λj − β
. (58)

Here it has been used that
1

1− xj
=

−1

σxβ+1
j

, σxβj =
1− xj
xj

. (59)
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Then for |x| < x0 we have

Z(x, σ) =

β
∑

j=0

P (xj)

S′(xj)

∞
∑

i=0

−xi
xi+1
j

=

∞
∑

i=0

xi





β
∑

j=0

λβ+1
j

(β + 1)λj − β
λij



 , (60)

as required.

B. Proof of Proposition 4

As introduced earlier,

µ0 = λ0 − 1. (61)

Thenµ0 depends onβ andσ, we haveµ0 > 0, and

µ0(1 + µ0)
β = σ. (62)

By implicit differentiation with respect toβ, we get from (62)
that

∂µ0

∂β
=

−µ0(1 + µ0) ln(1 + µ0)

1 + µ0 + βµ0
. (63)

In particular, bothµ0 andλ0 decrease as a function ofβ > 0.
Consider the case that0 ≤ β ≤ η − 1. Using λβ0 = σ

λ0−1
we get

θ(β, η, σ) = σ2 λ−2η
0

(λ0 − 1)((β + 1)λ0 − β)

= σ2 λ−2η
0

µ0(1 + µ0 + βµ0)
. (64)

Now λ−2η
0 increases as a function ofβ, and we shall show

thatµ0(1+µ0+βµ0) decreases inβ > 0. We have from (63)
that

∂

∂β
[µ0(1 + µ0 + βµ0)] =

∂

∂β
[βµ2

0 + µ0 + µ2
0]

= µ2
0 −

1 + 2(1 + β)µ0

1 + µ0 + βµ0
µ0(1 + µ0) ln(1 + µ0)

≤ µ0(µ0 − (1 + µ0) ln(1 + µ0)) < 0, (65)

where the last inequality follows fromx ln x > x− 1, x > 1.
We conclude thatθ increases as a function ofβ ∈ (0, η − 1].

Next we consider the case thatβ ≥ η+1. Fromλβ0 = σ
λ0−1

we get

θ(β, η, σ) = σ
λ−β
0

(β + 1)λ0 − β
=

λ0 − 1

(β + 1)λ0 − β

=
µ0

1 + µ0 + βµ0
. (66)

Now

∂

∂β

(

µ0

1 + µ0 + βµ0

)

=

∂µ0

∂β − µ2
0

(1 + µ0 + βµ0)2
< 0, (67)

see (63), and soθ decreases as a function ofβ ≥ η+1. Since
θ depends continuously onβ > 0, the result follows.

C. Proof of Theorem 1

The proof of the result as stated in Theorem 1 requires
expanding several other results. We considerβ ∈ [η−∆, η+∆]
so that

θ(β, η, σ) = σ
λ−η−∆
0

(β + 1)λ0 − β
= σ

(1 + µ0)
−η−∆

1 + µ0 + βµ0
. (68)

From (63) it follows from a straightforward but somewhat
lengthy computation that

∂

∂β
[θ(β, η, σ)] =

−σµ0(1 + µ0)
−η−∆

(1 + µ0 + βµ0)2

×
(

1− (η +∆+ 1 +
β

1 + µ0 + βµ0
) ln(1 + µ0)

)

. (69)

Let

F (β, σ) = (η +∆+ 1 +
β

1 + µ0 + βµ0
) ln(1 + µ0). (70)

Then we have forβ ∈ [η −∆, η +∆] that

F (β, σ) > 1 ⇒ θ increases strictly at β, (71)

F (β, σ) < 1 ⇒ θ decreases strictly at β. (72)

We analyzeF (β, σ) in some detail, especially for values of
β, σ such thatF (β, σ) = 1. We recall here thatµ0 = µ0(β, σ)
is a function ofβ andσ as well.

We fix β > 0, and we compute

∂

∂σ
F (β, σ) =

[

η +∆

µ0 + 1
+

1 + β

1 + µ0 + βµ0

− β(1 + β) ln(1 + µ0)

(1 + µ0 + βµ0)2

]

∂µ0

∂σ
. (73)

We get from (62) by implicit differentiation that

∂µ0

∂σ
=

µ0(1 + µ0)

σ(1 + µ0 + βµ0)
> 0. (74)

Furthermore, it is seen from (62) thatµ0(β, σ) → 0 asσ ↓ 0
and thatµ0(β, σ) → ∞ asσ → ∞. Hence,µ0(β, σ) increases
from 0 to∞ asσ increases from 0 to∞. Moreover,

η +∆

µ0 + 1
> 0, 1 >

β ln(1 + µ0)

1 + µ0 + βµ0
. (75)

It follows from (74) and (75) that ∂∂σF (β, σ) > 0. Then,
from (70) and from the fact thatµ0 increases from 0 to∞
asσ increases from 0 to∞, we have thatF (β, σ) increases
from 0 to∞ asσ increases from 0 to∞. Therefore, for any
β > 0, there is a uniqueσ = σ(β) such that

F (β, σ) = F (β, σ(β)) = 1. (76)

We shall next show thatσ(β) increases inβ ∈ [η−∆, η+∆].
By implicit differentiation in (76), we have forβ ∈ [η−∆, η+
∆]

0 =
d

dβ
[F (β, σ(β))] =Fβ(β, σ(β))

+ σ′(β)Fσ(β, σ(β)), (77)

where Fβ and Fσ denote the respective partial derivatives
(andσ′(η ±∆) is the left and right derivative for+ and−,
respectively). We already know thatFσ > 0, and we shall
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show now thatFβ(β, σ(β)) < 0. To that end, we compute,
using definition (70) ofF and (63) that

∂

∂β
[F (β, σ)]

= − ln(1 + µ0)
[

(η +∆+ 1 +
β

1 + µ0 + βµ0
)

× µ0

1 + µ0 + βµ0
−

1 + µ0 − β(1 + β)∂µ0

∂β

(1 + µ0 + βµ0)2

]

. (78)

Next, from (70) and (76) we have that

µ0 ≥ ln(1 + µ0) =
1

η +∆+ 1 + β
1+µ0+βµ0

, (79)

and so
∂F

∂β
(β, σ(β)) ≤ − ln(1 + µ0)

×
[

1

1 + µ0 + βµ0
−

1 + µ0 − β(1 + β)∂µ0

∂β

(1 + µ0 + βµ0)2

]

σ=σ(β)

=
−β ln(1 + µ0)

(1 + µ0 + βµ0)2

[

µ0 + (1 + β)
∂µ0

∂β

]

σ=σ(β)

=
−µ0β ln(1 + µ0)

(1 + µ0 + βµ0)2

×
[

1− (1 + β)
(1 + µ0) ln(1 + µ0)

1 + µ0 + βµ0

]

σ=σ(β)

, (80)

where (63) has been used once more. Finally, from (70)
and (76),

(1 + β)
(1 + µ0) ln(1 + µ0)

1 + µ0 + βµ0

∣

∣

∣

σ=σ(β)

=
(1 + β)(1 + µ0)

(η +∆+ 1)(1 + µ0 + βµ0) + β

∣

∣

∣

σ=σ(β)
< 1, (81)

since0 < β ≤ η+∆ andµ0 > 0. Hence,Fβ(β, σ(β)) < 0 as
required. It now follows from (77) and fromFσ(β, σ(β)) > 0
that σ′(β) > 0 whenβ ∈ [η −∆, η +∆].

We have now shown thatσ(β) increases inβ ∈ [η−∆, η+
∆]. Next we let

σmin := σ(η −∆) < σ(η +∆) =: σmax. (82)

For σ ∈ [σmin, σmax] there is defined the inverse function
β(σ) ∈ [η − ∆, η + ∆] that increases inσ. It follows then
from

F (β(σ), σ) = 1, Fβ(β(σ), σ) < 0 (83)

and (69)-(72) thatθ(β, η, σ) is maximal atβ = β(σ) when
σ ∈ [σmin, σmax].

We shall now complete the proof of Theorem 1. Letβ ∈
[σmin, σmax], and assume thatσ ≤ σmin. Then σ < σ(β)
and soF (β, σ) < F (β, σ(β)) = 1 sinceF increases inσ.
Hence,θ strictly decreases atβ. Similarly, θ strictly increases
at β ∈ (η − ∆, η + ∆) when σ ≥ σmax. It follows that θ
strictly decreases inβ ∈ [η −∆, η +∆] whenσ ≤ σmin and
thatθ strictly increases inβ ∈ [η−∆, η+∆] whenσ ≥ σmax.
Finally, whenσ ∈ (σmin, σmax), we have that

F (η −∆, σ) > F (η −∆, σmin)

= 1 = F (η +∆, σmax) > F (η +∆, σ), (84)

showing thatθ strictly increases atβ = η − ∆ and strictly
decreases atβ = η + ∆, and assumes its maximum atβ =
β(σ).

D. Proof of Theorem 2

We shall show below that

(η +∆+ 1 +
η −∆

1 + (η −∆+ 1)κ
) ln(1 + κ) < 1

< (η +∆+ 1 +
η +∆

1 + (η +∆+ 1)κ
) ln(1 + κ) (85)

whereκ = τ/(η+∆). Assuming this, we recall that (for fixed
β > 0) µ0 strictly increases inσ and vice versa. When now

σ− = κ(1 + κ)η−∆, (86)

thenκ = µ0(β = η−∆, σ−) and we have thatF (η−∆, σ−) <
1. Soσ− < σmin sinceF is increasing inσ. Similarly, when

σ+ = κ(1 + κ)η+∆, (87)

we have thatκ = µ0(β = η+∆, σ+) and then from (85) that
F (η +∆, σ+) > 1 and soσ+ > σmax.

This proves Theorem 2(i). It remains to show (85). As to
the first inequality in (85) we have

1− (η +∆+ 1 +
η −∆

1 + (η −∆+ 1)κ
) ln(1 + κ)

> 1− (η +∆+ 1 +
η − 1

1 + (η −∆+ 1)κ
)κ

=
1

1 + (η −∆+ 1)κ
(1 − (η +∆)κ− η(η +∆+ 1)κ2)

>
1

1 + (η −∆+ 1)κ

× (1− (η +∆)κ− ((η +∆)κ)2) = 0 (88)

since1 − τ − τ2 = 0 and (η + ∆)κ = τ . As to the second
inequality of (85) we have

1− (η +∆+ 1 +
η +∆

1 + (η +∆+ 1)κ
) ln(1 + κ)

< 1− (η +∆+ 1 +
η +∆

1 + (η +∆+ 1)κ
)(κ− 1

2
κ2)

=
1

1 + (η +∆+ 1)κ

(

1− (η +∆)κ− ((η +∆)κ)2−

κ2(η +∆+ 1/2− 1

2
(η +∆+ 1)2κ)

)

. (89)

As before

1− (η +∆)κ− ((η +∆)κ)2 = 0 (90)

and

η +∆+
1

2
− 1

2
(η +∆+ 1)2κ

= η +∆+
1

2
− (η +∆+ 1)2

2(η +∆)
τ. (91)

With ξ = η +∆− 1, the right-hand side of (91) becomes

ξ +
3

2
− (ξ + 2)2

2(ξ + 1)
τ, (92)
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and this is positive sinceτ = 1
2 (
√
5− 1) < 3

4 andξ > 0. This
shows the second inequality in (85).

We next prove Theorem 2(ii), and for this we need the
following result:

Proposition 9. With β = η + γ where−∆ ≤ γ ≤ ∆,

σ(β) = µ(1 + µ)η+γ , (93)

where

µ =
τ

η + α+O(η−1)
,

α =
(2∆ + 3 + 2γ)τ + 2∆− 1

2(2τ + 1)
, (94)

and theO holds uniformly inγ ∈ [−∆,∆].

Proof: We haveσ(β) = µ(1+µ)β whereµ is the unique
solution of the equation

(η +∆+ 1 +
β

1 + (1 + β)µ
) ln(1 + µ) = 1. (95)

We know from the proof of Theorem 2(i) thatµ = O(η−1).
Multiplying (95) by 1 + (1 + β)µ and expanding

ln(1 + µ) = µ− 1

2
µ2 +O(µ3), (96)

we get

(ηβ +
1

2
η + (∆ +

1

2
)β +

1

2
∆+

1

2
)µ2 + (η +∆)µ− 1

=
1

2
(η +∆+ 1)(β + 1)µ3 +O(η−2). (97)

Next let α ∈ R be independent ofη and useβ = η + γ to
write

ηβ +
1

2
η + (∆ +

1

2
)β +

1

2
∆ +

1

2
= (η + α)2

+ (∆ + 1 + γ − 2α)η + (∆ +
1

2
)γ +

1

2
∆+

1

2
− α2. (98)

Together withη +∆ = η + α+∆− α, we obtain

(η + α)2µ2 + (η + α)µ− 1 =
1

2
(η +∆+ 1)(η + γ + 1)µ3

− (∆− α)µ+O(η−2)− ((∆ + 1 + γ − 2α)η

+ (∆ +
1

2
)γ +

1

2
∆ +

1

2
− α2)µ2. (99)

We now takeα such that the whole second term in (99) is
O(η−2). Using thatµ = τ

η +O(η−2), this leads to

1

2
τ3 − (∆ + 1 + γ − 2α)τ2 − (∆− α)τ = 0, (100)

and this yields theα in (94). The polynomialx2 + x − 1
has a zero of first order atx = τ . Hence withα as in (94)
we see from(η + α)2µ2 + (η + α)µ − 1 = O(η−2) that
(η+α)µ = τ+O(η−2), and this yieldsµ = τ(η+α+O(η−1).

Now we proceed to prove Theorem 2(ii). We use the result
of Proposition 9. Thus

σ(η + γ) = µ(1 + µ)η+γ , (101)

µ =
τ

η + α+O(η−1)
=

τ

η + α
(1 +O(η−2)). (102)

By elementary considerations

σ(η + γ)

=
τ

η + α
(1 +

τ

η + α
)η+γ(1 +O(η−2))

=
τ

η + α
exp[(η + γ)(

τ

η + α
− τ2

2(η + α)
)](1 +O(η−2))

=
τeτ

η + α
(1 +

(γ − α)τ − 1
2τ

2

η
)(1 +O(η−2)). (103)

Then lettingγ = ±∆ and

α(∆) =
(4∆+ 3)τ + 2∆− 1

2(2τ + 1)
,

α(−∆) =
3τ + 2∆− 1

2(2τ + 1)
(104)

in accordance with Proposition 9, it follows that

σ(η +∆)− σ(η −∆) =
τeτ

η2

(

α(−∆)− α(∆)

+ (∆− α(∆))τ + (∆ + α(−∆))τ
)

+O(η−3)

=
τeτ

η2
2τ2∆

2τ + 1
+O(η−3). (105)

Finally, it follows easily fromτ2 + τ = 1 that τ3(7 + 4τ) =
2τ + 1.

E. Proof of Proposition 5

Since σ > 0 is fixed, it follows from (see the proof of
Theorem 2)

σmax < σ+ =
τ

η +∆

(

1 +
τ

η +∆

)η+∆

<
τeτ

η +∆
(106)

thatσmax < σ whenη is large enough. Then by Theorem 1

max θ = θ(η +∆) =
λ0 − 1

(η +∆+ 1)λ0 − η −∆

=
µ0

(η +∆+ 1)µ0 +∆

=
1

η +∆+ 1

1

1 + 1
(η+∆+1)µ0

, (107)

whereµ0 is the unique positive realµ root ofµ(1+µ)η+∆ =
σ. We shall show that

(η +∆+ 1)µ0 ≥ lnσ, (108)

(η +∆+ 1)µ0 = ln(η +∆) +O(ln ln(η +∆)), (109)

asη → ∞, uniformly in σ ∈ [ǫ,M ], whereǫ > 0 andM > ǫ
are fixed. To show (108), we note fromµ0(1 + µ0)

η+∆ = σ
that

(η +∆)µ0 ≥ (η +∆) ln(1 + µ0) = ln σ − lnµ0. (110)

Next σ = µ0(1 + µ0)
η+∆ ≥ µη+∆+1

0 , and so lnµ0 ≤
1

η+∆+1 lnσ. Therefore

(η+∆)µ0 ≥ lnσ− 1

η +∆+ 1
lnσ =

η +∆

η +∆+ 1
lnσ, (111)

and (108) follows. As to (109), we first observe from (63) that
µ0 decreases inη whenσ > 0 is fixed. HenceL = limη→∞ µ0
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exists, and it follows fromµ0(1 + µ0)
η+∆ = σ that L = 0.

Thus, µ0 decreases to 0 asη → ∞. Then, from (110) we
get that(η +∆)µ0 increases to∞ asη → ∞. All this holds
uniformly in σ ∈ [ǫ,M ]: Sinceµ0 increases inσ, the right-
hand side of (110) is bounded below byln ǫ− lnµ0(σ =M).
Now takeη0 > 0 such that(η +∆)µ0 ≥ σ whenη ≥ η0 and
ǫ ≤ σ ≤M . Then fromµ0(1 + µ0)

η+∆ = σ we have

(η +∆) ln(1 + µ0) = lnσ − lnµ0

≤ ln(η +∆)µ0 − lnµ0 ≤ ln(η +∆) (112)

whenη ≥ η0 andǫ ≤ σ ≤M . Hence, whenη ≥ η0,

µ0 ≤ exp

[

ln(η +∆)

η +∆

]

− 1

=
ln(η +∆)

η +∆
+O

((

ln(η +∆)

η +∆

)2)

, (113)

where theO holds uniformly inσ ∈ [ǫ,M ]. Then, by (110),

(η +∆)µ0 ≥ lnσ − ln

(

exp

[

ln(η +∆)

η +∆

]

− 1

)

= lnσ − ln(
ln(η +∆)

η +∆

(

1 +O
(

ln(η +∆)

η +∆

))

= ln(η +∆)− ln ln(η +∆)

+ lnσ +O
(

ln(η +∆)

η +∆

)

, (114)

with O holding uniformly in σ ∈ [ǫ,M ] and η ≥ η0.
From (113) and (114) we get (108) uniformly inσ ∈ [ǫ,M ].

F. Proof of Theorem 3

Recall thatµ0 = λ0 − 1. The proof of Theorem 3 requires
the following result.

Lemma 1. If
(

η +∆+ 1 +
β

1 + (β + 1)µ0

)

ln(1 + µ0) = 1, (115)

then we have thatµ0 < (η +∆+ 1/2)−1.

Proof: Whenµ0 satisfies (115), we have that

(η +∆+ 1) ln(1 + µ0) < 1. (116)

Now, for x ≥ 1, we have that

(x+
1

2
) ln(1 +

1

x
) = x

( 1

x
− 1

2x2
+

1

3x3
− 1

4x4
+ . . .

)

+
1

2x
− 1

4x2
+

1

6x3
− 1

8x4
+ . . .

= 1 +
∞
∑

n=2

(−1)n(
1

n+ 1
− 1

2n
)
1

xn
. (117)

We have
( 1

n+ 1
− 1

2n

)∣

∣

∣

n=2
=
( 1

n+ 1
− 1

2n

)∣

∣

∣

n=3
=

1

12
, (118)

and

d

dn

( 1

n+ 1
− 1

2n

)

=
(n+ 1)2 − 2n2

2n2(n+ 1)2
< 0, n ≥ 3. (119)

Hence, whenx ≥ 1, the series in (117) is alternating, with
terms decreasing monotonically to 0 in modulus and has a
positive first term. Hence

(x+
1

2
) ln(1 +

1

x
) > 1, x ≥ 1 (120)

Takingx = η +∆+ 1/2 in (120), it is seen that

(η +∆+ 1) ln
(

1 +
1

η +∆+ 1/2

)

> 1, (121)

and so, from (116),µ0 < (η +∆+ 1
2 )

−1, as required.
We now proceed to prove Theorem 3. We want to show that

θ(σ, β∗(σ)) is increasing inσ > 0. For σ ≥ σmax we have
by Theorem 1 thatβ∗(σ) = η + ∆, and it readily follows
from Corollary 1 and (74) thatθ(σ, β∗(σ)) is increasing in
σ ≥ σmax.

Let σ ≤ σmax, and observe that

d

dσ
[θ(β∗(σ), σ)] =

∂θ

∂β
(β∗(σ), σ)

dβ∗

dσ
(σ)

+
∂θ

∂σ
(β∗(σ), σ) =

∂θ

∂σ
(β∗(σ), σ). (122)

Here it has been used that

dβ∗

dσ
(σ) = 0, σ 6∈ [σmin, σmax];

∂θ

∂β
(β∗(σ), σ) = 0, σ ∈ [σmin, σmax]. (123)

Let η − ∆ ≤ β ≤ η + ∆ and setδ = η + ∆ − β ∈ [0, 2∆].
Rewriting (17), we have

θ(β, σ) =
(λ0 − 1)λ−δ

0

(β + 1)λ0 − β
=
µ0(1 + µ0)

−δ

βµ0 + µ0 + 1
, (124)

and we compute

∂θ

∂σ
(β, σ) =

∂

∂σ

(µ0(1 + µ0)
−δ

βµ0 + µ0 + 1

)

=
d

dµ

(µ(1 + µ)−δ

βµ+ µ+ 1

)∣

∣

∣

µ=µ0

∂µ0

∂σ
(β, σ). (125)

Since by (74),∂µ0

∂σ (β, σ) > 0, we have that

∂θ

∂σ
(β, σ) > 0 ⇔ d

dµ

(µ(1 + µ)−δ

βµ+ µ+ 1

)∣

∣

∣

µ=µ0

> 0. (126)

We compute

d

dµ

(µ(1 + µ)−δ

βµ+ µ+ 1

)

=
(1 + µ)−δ−1

(βµ+ µ+ 1)2
(

1 + (1− δ)µ− δ(1 + β)µ2
)

, (127)

so (126) can be rewritten as

∂θ

∂σ
(β, σ) > 0 ⇔ δ(1 + β)µ2 + (δ − 1)µ

∣

∣

∣

µ=µ0

< 1. (128)

Thus we have to verify the second member of (128) for
the special case thatβ = β∗(σ). Whenσ ≤ σmin, we have
β∗(σ) = η − ∆, δ = 2∆, and the second member of (128)
turns into

2∆ηµ2
0 + (2∆− 1)µ0 < 1. (129)
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Nowµ0 increases inσ ∈ [0, σmin], and so2∆ηµ2
0+(2∆−1)µ0

is maximal whenσ = σmin. Hence, it suffices to check the
second member of (128) for the case thatσ ∈ [σmin, σmax].

Whenδ ≤ 1, we have fromµ0 < (η +∆+ 1/2)−1 that

δ(1 + β)µ2
0 + (δ − 1)µ0 ≤ 1 + β

(η +∆+ 1/2)2

≤ η +∆+ 1

(η +∆+ 1/2)2
< 1. (130)

Whenδ > 1, the functionµ > 0 7→ δ(1 + β)µ2 + (δ − 1)µ is
increasing, and so, from Lemma 1, usingβ = η +∆− δ, we
get

δ(1 + β)µ2
0 + (δ − 1)µ0 < (δ − 1)

1

η +∆+ 1
2

+ δ(η +∆+ 1− δ)
( 1

η +∆+ 1
2

)2

. (131)

Setη +∆+ 1/2 = A. We have to check whether

δ(A+
1

2
− δ) + (δ − 1)A < A2. (132)

The left-hand side of (132) equals

− δ2 + 2
(

A+
1

4

)

δ −A

= −
(

δ −
(

A+
1

4

))2 −A+
(

A+
1

4

)2

= A2 − 1

2
A+

1

16
−
(

δ −
(

A+
1

4

))2
, (133)

and this is less thanA2 sinceA ≥ 1/2 > 1/8.
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