13,988 research outputs found

    Sampling Balanced Forests of Grids in Polynomial Time

    Full text link
    We prove that a polynomial fraction of the set of kk-component forests in the m×nm \times n grid graph have equal numbers of vertices in each component, for any constant kk. This resolves a conjecture of Charikar, Liu, Liu, and Vuong, and establishes the first provably polynomial-time algorithm for (exactly or approximately) sampling balanced grid graph partitions according to the spanning tree distribution, which weights each kk-partition according to the product, across its kk pieces, of the number of spanning trees of each piece. Our result follows from a careful analysis of the probability a uniformly random spanning tree of the grid can be cut into balanced pieces. Beyond grids, we show that for a broad family of lattice-like graphs, we achieve balance up to any multiplicative (1±ε)(1 \pm \varepsilon) constant with constant probability, and up to an additive constant with polynomial probability. More generally, we show that, with constant probability, components derived from uniform spanning trees can approximate any given partition of a planar region specified by Jordan curves. These results imply polynomial time algorithms for sampling approximately balanced tree-weighted partitions for lattice-like graphs. Our results have applications to understanding political districtings, where there is an underlying graph of indivisible geographic units that must be partitioned into kk population-balanced connected subgraphs. In this setting, tree-weighted partitions have interesting geometric properties, and this has stimulated significant effort to develop methods to sample them

    Laplacian coefficients of unicyclic graphs with the number of leaves and girth

    Full text link
    Let GG be a graph of order nn and let L(G,λ)=∑k=0n(−1)kck(G)λn−k\mathcal{L}(G,\lambda)=\sum_{k=0}^n (-1)^{k}c_{k}(G)\lambda^{n-k} be the characteristic polynomial of its Laplacian matrix. Motivated by Ili\'{c} and Ili\'{c}'s conjecture [A. Ili\'{c}, M. Ili\'{c}, Laplacian coefficients of trees with given number of leaves or vertices of degree two, Linear Algebra and its Applications 431(2009)2195-2202.] on all extremal graphs which minimize all the Laplacian coefficients in the set Un,l\mathcal{U}_{n,l} of all nn-vertex unicyclic graphs with the number of leaves ll, we investigate properties of the minimal elements in the partial set (Un,lg,⪯)(\mathcal{U}_{n,l}^g, \preceq) of the Laplacian coefficients, where Un,lg\mathcal{U}_{n,l}^g denote the set of nn-vertex unicyclic graphs with the number of leaves ll and girth gg. These results are used to disprove their conjecture. Moreover, the graphs with minimum Laplacian-like energy in Un,lg\mathcal{U}_{n,l}^g are also studied.Comment: 19 page, 4figure

    Fast and Deterministic Approximations for k-Cut

    Get PDF
    In an undirected graph, a k-cut is a set of edges whose removal breaks the graph into at least k connected components. The minimum weight k-cut can be computed in n^O(k) time, but when k is treated as part of the input, computing the minimum weight k-cut is NP-Hard [Goldschmidt and Hochbaum, 1994]. For poly(m,n,k)-time algorithms, the best possible approximation factor is essentially 2 under the small set expansion hypothesis [Manurangsi, 2017]. Saran and Vazirani [1995] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed via O(k) minimum cuts, which implies a O~(km) randomized running time via the nearly linear time randomized min-cut algorithm of Karger [2000]. Nagamochi and Kamidoi [2007] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed deterministically in O(mn + n^2 log n) time. These results prompt two basic questions. The first concerns the role of randomization. Is there a deterministic algorithm for 2-approximate k-cuts matching the randomized running time of O~(km)? The second question qualitatively compares minimum cut to 2-approximate minimum k-cut. Can 2-approximate k-cuts be computed as fast as the minimum cut - in O~(m) randomized time? We give a deterministic approximation algorithm that computes (2 + eps)-minimum k-cuts in O(m log^3 n / eps^2) time, via a (1 + eps)-approximation for an LP relaxation of k-cut

    Generic method for bijections between blossoming trees and planar maps

    Full text link
    This article presents a unified bijective scheme between planar maps and blossoming trees, where a blossoming tree is defined as a spanning tree of the map decorated with some dangling half-edges that enable to reconstruct its faces. Our method generalizes a previous construction of Bernardi by loosening its conditions of applications so as to include annular maps, that is maps embedded in the plane with a root face different from the outer face. The bijective construction presented here relies deeply on the theory of \alpha-orientations introduced by Felsner, and in particular on the existence of minimal and accessible orientations. Since most of the families of maps can be characterized by such orientations, our generic bijective method is proved to capture as special cases all previously known bijections involving blossoming trees: for example Eulerian maps, m-Eulerian maps, non separable maps and simple triangulations and quadrangulations of a k-gon. Moreover, it also permits to obtain new bijective constructions for bipolar orientations and d-angulations of girth d of a k-gon. As for applications, each specialization of the construction translates into enumerative by-products, either via a closed formula or via a recursive computational scheme. Besides, for every family of maps described in the paper, the construction can be implemented in linear time. It yields thus an effective way to encode and generate planar maps. In a recent work, Bernardi and Fusy introduced another unified bijective scheme, we adopt here a different strategy which allows us to capture different bijections. These two approaches should be seen as two complementary ways of unifying bijections between planar maps and decorated trees.Comment: 45 pages, comments welcom

    Failure Localization in Power Systems via Tree Partitions

    Get PDF
    Cascading failures in power systems propagate non-locally, making the control and mitigation of outages extremely hard. In this work, we use the emerging concept of the tree partition of transmission networks to provide an analytical characterization of line failure localizability in transmission systems. Our results rigorously establish the well perceived intuition in power community that failures cannot cross bridges, and reveal a finer-grained concept that encodes more precise information on failure propagations within tree-partition regions. Specifically, when a non-bridge line is tripped, the impact of this failure only propagates within well-defined components, which we refer to as cells, of the tree partition defined by the bridges. In contrast, when a bridge line is tripped, the impact of this failure propagates globally across the network, affecting the power flow on all remaining transmission lines. This characterization suggests that it is possible to improve the system robustness by temporarily switching off certain transmission lines, so as to create more, smaller components in the tree partition; thus spatially localizing line failures and making the grid less vulnerable to large-scale outages. We illustrate this approach using the IEEE 118-bus test system and demonstrate that switching off a negligible portion of transmission lines allows the impact of line failures to be significantly more localized without substantial changes in line congestion

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    Linial arrangements and local binary search trees

    Full text link
    We study the set of NBC sets (no broken circuit sets) of the Linial arrangement and deduce a constructive bijection to the set of local binary search trees. We then generalize this construction to two families of Linial type arrangements for which the bijections are with some kk-ary labelled trees that we introduce for this purpose.Comment: 13 pages, 1 figure. arXiv admin note: text overlap with arXiv:1403.257
    • …
    corecore