809 research outputs found

    State-of-the-art and gaps for deep learning on limited training data in remote sensing

    Full text link
    Deep learning usually requires big data, with respect to both volume and variety. However, most remote sensing applications only have limited training data, of which a small subset is labeled. Herein, we review three state-of-the-art approaches in deep learning to combat this challenge. The first topic is transfer learning, in which some aspects of one domain, e.g., features, are transferred to another domain. The next is unsupervised learning, e.g., autoencoders, which operate on unlabeled data. The last is generative adversarial networks, which can generate realistic looking data that can fool the likes of both a deep learning network and human. The aim of this article is to raise awareness of this dilemma, to direct the reader to existing work and to highlight current gaps that need solving.Comment: arXiv admin note: text overlap with arXiv:1709.0030

    Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks

    Full text link
    Semantic labeling (or pixel-level land-cover classification) in ultra-high resolution imagery (< 10cm) requires statistical models able to learn high level concepts from spatial data, with large appearance variations. Convolutional Neural Networks (CNNs) achieve this goal by learning discriminatively a hierarchy of representations of increasing abstraction. In this paper we present a CNN-based system relying on an downsample-then-upsample architecture. Specifically, it first learns a rough spatial map of high-level representations by means of convolutions and then learns to upsample them back to the original resolution by deconvolutions. By doing so, the CNN learns to densely label every pixel at the original resolution of the image. This results in many advantages, including i) state-of-the-art numerical accuracy, ii) improved geometric accuracy of predictions and iii) high efficiency at inference time. We test the proposed system on the Vaihingen and Potsdam sub-decimeter resolution datasets, involving semantic labeling of aerial images of 9cm and 5cm resolution, respectively. These datasets are composed by many large and fully annotated tiles allowing an unbiased evaluation of models making use of spatial information. We do so by comparing two standard CNN architectures to the proposed one: standard patch classification, prediction of local label patches by employing only convolutions and full patch labeling by employing deconvolutions. All the systems compare favorably or outperform a state-of-the-art baseline relying on superpixels and powerful appearance descriptors. The proposed full patch labeling CNN outperforms these models by a large margin, also showing a very appealing inference time.Comment: Accepted in IEEE Transactions on Geoscience and Remote Sensing, 201

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Sparse Signal Models for Data Augmentation in Deep Learning ATR

    Full text link
    Automatic Target Recognition (ATR) algorithms classify a given Synthetic Aperture Radar (SAR) image into one of the known target classes using a set of training images available for each class. Recently, learning methods have shown to achieve state-of-the-art classification accuracy if abundant training data is available, sampled uniformly over the classes, and their poses. In this paper, we consider the task of ATR with a limited set of training images. We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm, such as a Convolutional neural network (CNN). The proposed data augmentation method employs a limited persistence sparse modeling approach, capitalizing on commonly observed characteristics of wide-angle synthetic aperture radar (SAR) imagery. Specifically, we exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting. Using this estimated model, we synthesize new images at poses and sub-pixel translations not available in the given data to augment CNN's training data. The experimental results show that for the training data starved region, the proposed method provides a significant gain in the resulting ATR algorithm's generalization performance.Comment: 12 pages, 5 figures, to be submitted to IEEE Transactions on Geoscience and Remote Sensin

    Multimodal analysis for object classification and event detection

    Get PDF
    corecore