15,801 research outputs found

    Beyond backscattering: Optical neuroimaging by BRAD

    Full text link
    Optical coherence tomography (OCT) is a powerful technology for rapid volumetric imaging in biomedicine. The bright field imaging approach of conventional OCT systems is based on the detection of directly backscattered light, thereby waiving the wealth of information contained in the angular scattering distribution. Here we demonstrate that the unique features of few-mode fibers (FMF) enable simultaneous bright and dark field (BRAD) imaging for OCT. As backscattered light is picked up by the different modes of a FMF depending upon the angular scattering pattern, we obtain access to the directional scattering signatures of different tissues by decoupling illumination and detection paths. We exploit the distinct modal propagation properties of the FMF in concert with the long coherence lengths provided by modern wavelength-swept lasers to achieve multiplexing of the different modal responses into a combined OCT tomogram. We demonstrate BRAD sensing for distinguishing differently sized microparticles and showcase the performance of BRAD-OCT imaging with enhanced contrast for ex vivo tumorous tissue in glioblastoma and neuritic plaques in Alzheimer's disease

    A Balanced Tree Approach to Construction of Length-Compatible Polar Codes

    Full text link
    From the perspective of tree, we design a length-flexible coding scheme. For an arbitrary code length, we first construct a balanced binary tree (BBT) where the root node represents a transmitted codeword, the leaf nodes represent either active bits or frozen bits, and a parent node is related to its child nodes by a length-adaptive (U+V|V) operation. Both the encoding and the successive cancellation (SC)-based decoding can be implemented over the constructed coding tree. For code construction, we propose a signal-to-noise ratio (SNR)-dependent method and two SNR-independent methods, all of which evaluate the reliabilities of leaf nodes and then select the most reliable leaf nodes as the active nodes. Numerical results demonstrate that our proposed codes can have comparable performance to the 5G polar codes. To reduce the decoding latency, we propose a partitioned successive cancellation (PSC)-based decoding algorithm, which can be implemented over a sub-tree obtained by pruning the coding tree. Numerical results show that the PSC-based decoding can achieve similar performance to the conventional SC-based decoding.Comment: 30 pages, 10 figure

    MDI-QKD: Continuous- versus discrete-variables at metropolitan distances

    Get PDF
    In a comment, Xu, Curty, Qi, Qian, and Lo claimed that discrete-variable (DV) measurement device independent (MDI) quantum key distribution (QKD) would compete with its continuous-variable (CV) counterpart at metropolitan distances. Actually, Xu et al.'s analysis supports exactly the opposite by showing that the experimental rate of our CV protocol (achieved with practical room-temperature devices) remains one order of magnitude higher than their purely-numerical and over-optimistic extrapolation for qubits, based on nearly-ideal parameters and cryogenic detectors (unsuitable solutions for a realistic metropolitan network, which is expected to run on cheap room-temperature devices, potentially even mobile). The experimental rate of our protocol (expressed as bits per relay use) is confirmed to be two-three orders of magnitude higher than the rate of any realistic simulation of practical DV-MDI-QKD over short-medium distances. Of course this does not mean that DV-MDI-QKD networks should not be investigated or built, but increasing their rate is a non-trivial practical problem clearly beyond the analysis of Xu et al. Finally, in order to clarify the facts, we also refute a series of incorrect arguments against CV-MDI-QKD and, more generally, CV-QKD, which were made by Xu et al. with the goal of supporting their thesis.Comment: Updated reply to Xu, Curty, Qi, Qian and Lo (arXiv:1506.04819), including a point-to-point rebuttal of their new "Appendix E: Addendum

    Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Get PDF
    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case
    • …
    corecore