3 research outputs found

    Bag-of-Colors for Biomedical Document Image Classification

    Get PDF
    The number of biomedical publications has increased noticeably in the last 30 years. Clinicians and medical researchers regularly have unmet information needs but require more time for searching than is usually available to find publications relevant to a clinical situation. The techniques described in this article are used to classify images from the biomedical open access literature into categories, which can potentially reduce the search time. Only the visual information of the images is used to classify images based on a benchmark database of ImageCLEF 2011 created for the task of image classification and image retrieval. We evaluate particularly the importance of color in addition to the frequently used texture and grey level features. Results show that bags–of–colors in combination with the Scale Invariant Feature Transform (SIFT) provide an image representation allowing to improve the classification quality. Accuracy improved from 69.75% of the best system in ImageCLEF 2011 using visual information, only, to 72.5% of the system described in this paper. The results highlight the importance of color for the classification of biomedical images

    The Parallel Distributed Image Search Engine (ParaDISE)

    Get PDF
    Image retrieval is a complex task that differs according to the context and the user requirements in any specific field, for example in a medical environment. Search by text is often not possible or optimal and retrieval by the visual content does not always succeed in modelling high-level concepts that a user is looking for. Modern image retrieval techniques consists of multiple steps and aim to retrieve information from large–scale datasets and not only based on global image appearance but local features and if possible in a connection between visual features and text or semantics. This paper presents the Parallel Distributed Image Search Engine (ParaDISE), an image retrieval system that combines visual search with text–based retrieval and that is available as open source and free of charge. The main design concepts of ParaDISE are flexibility, expandability, scalability and interoperability. These concepts constitute the system, able to be used both in real–world applications and as an image retrieval research platform. Apart from the architecture and the implementation of the system, two use cases are described, an application of ParaDISE in retrieval of images from the medical literature and a visual feature evaluation for medical image retrieval. Future steps include the creation of an open source community that will contribute and expand this platform based on the existing parts

    Shangri-La: a medical case-based retrieval tool

    Get PDF
    Large amounts of medical visual data are produced in hospitals daily and made available continuously via publications in the scientific literature, representing the medical knowledge. However, it is not always easy to find the desired information and in clinical routine the time to fulfil an information need is often very limited. Information retrieval systems are a useful tool to provide access to these documents/images in the biomedical literature related to information needs of medical professionals. Shangri–La is a medical retrieval system that can potentially help clinicians to make decisions on difficult cases. It retrieves articles from the biomedical literature when querying a case description and attached images. The system is based on a multimodal retrieval approach with a focus on the integration of visual information connected to text. The approach includes a query–adaptive multimodal fusion criterion that analyses if visual features are suitable to be fused with text for the retrieval. Furthermore, image modality information is integrated in the retrieval step. The approach is evaluated using the ImageCLEFmed 2013 medical retrieval benchmark and can thus be compared to other approaches. Results show that the final approach outperforms the best multimodal approach submitted to ImageCLEFmed 2013
    corecore