3,588 research outputs found

    Packing bag-of-features

    Get PDF
    One of the main limitations of image search based on bag-of-features is the memory usage per image. Only a few million images can be handled on a single machine in reasonable response time. In this paper, we first evaluate how the memory usage is reduced by using lossless index compression. We then propose an approximate representation of bag-of-features obtained by projecting the corresponding histogram onto a set of pre-defined sparse projection functions, producing several image descriptors. Coupled with a proper indexing structure, an image is represented by a few hundred bytes. A distance expectation criterion is then used to rank the images. Our method is at least one order of magnitude faster than standard bag-of-features while providing excellent search quality. 1

    Towards Pose-Invariant 2D Face Classification for Surveillance

    Get PDF
    A key problem for "face in the crowd" recognition from existing surveillance cameras in public spaces (such as mass transit centres) is the issue of pose mismatches between probe and gallery faces. In addition to accuracy, scalability is also important, necessarily limiting the complexity of face classification algorithms. In this paper we evaluate recent approaches to the recognition of faces at relatively large pose angles from a gallery of frontal images and propose novel adaptations as well as modifications. Specifically, we compare and contrast the accuracy, robustness and speed of an Active Appearance Model (AAM) based method (where realistic frontal faces are synthesized from non-frontal probe faces) against bag-of-features methods (which are local feature approaches based on block Discrete Cosine Transforms and Gaussian Mixture Models). We show a novel approach where the AAM based technique is sped up by directly obtaining pose-robust features, allowing the omission of the computationally expensive and artefact producing image synthesis step. Additionally, we adapt a histogram-based bag-of-features technique to face classification and contrast its properties to a previously proposed direct bag-of-features method. We also show that the two bag-of-features approaches can be considerably sped up, without a loss in classification accuracy, via an approximation of the exponential function. Experiments on the FERET and PIE databases suggest that the bag-of-features techniques generally attain better performance, with significantly lower computational loads. The histogram-based bag-of-features technique is capable of achieving an average recognition accuracy of 89% for pose angles of around 25 degrees

    Bag-of-Features Image Indexing and Classification in Microsoft SQL Server Relational Database

    Full text link
    This paper presents a novel relational database architecture aimed to visual objects classification and retrieval. The framework is based on the bag-of-features image representation model combined with the Support Vector Machine classification and is integrated in a Microsoft SQL Server database.Comment: 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), Gdynia, Poland, 24-26 June 201

    Relation Bag-of-Features for Symbol Retrieval

    Get PDF
    International audienceIn this paper, we address a new scheme for symbol retrieval based on relation bag-of-features (BOFs) which are computed between the extracted visual primitives. Our feature consists of pairwise spatial relations from all possible combina tions of individual visual primitives. The key characteristic of the overall process is to use topological information to guide directional relations. Consequently, directional relation matching takes place only with those candidates having similar topological configurations. A comprehensive study is made by using two different datasets. Experimental tests provide interesting results by establishing user-friendly symbol retrieval application
    • …
    corecore