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Abstract. A key problem for “face in the crowd” recognition from
existing surveillance cameras in public spaces (such as mass transit
centres) is the issue of pose mismatches between probe and gallery
faces. In addition to accuracy, scalability is also important, necessarily
limiting the complexity of face classification algorithms. In this paper
we evaluate recent approaches to the recognition of faces at relatively
large pose angles from a gallery of frontal images and propose novel
adaptations as well as modifications. Specifically, we compare and
contrast the accuracy, robustness and speed of an Active Appearance
Model (AAM) based method (where realistic frontal faces are synthesized
from non-frontal probe faces) against bag-of-features methods (which are
local feature approaches based on block Discrete Cosine Transforms and
Gaussian Mixture Models). We show a novel approach where the AAM
based technique is sped up by directly obtaining pose-robust features,
allowing the omission of the computationally expensive and artefact
producing image synthesis step. Additionally, we adapt a histogram-based
bag-of-features technique to face classification and contrast its properties
to a previously proposed direct bag-of-features method. We also show
that the two bag-of-features approaches can be considerably sped
up, without a loss in classification accuracy, via an approximation
of the exponential function. Experiments on the FERET and PIE
databases suggest that the bag-of-features techniques generally attain
better performance, with significantly lower computational loads. The
histogram-based bag-of-features technique is capable of achieving an
average recognition accuracy of 89% for pose angles of around 25 degrees.

1 Introduction

In the 21st century, international usage and interest in Closed-Circuit Television
(CCTV) for surveillance of public spaces is growing at an unprecedented pace
in response to global terrorism. A similar escalation of the installed CCTV base
occurred in London late last century in response to the continual bombings linked
to the conflict in Northern Ireland. Based on the number of CCTV cameras on
Putney High Street, it is “guesstimated” [1] that there are around 500,000 CCTV
cameras in the London area and 4,000,000 cameras in the UK. This suggests that
?
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in the UK there is approximately one camera for every 14 people. However, whilst
it is relatively easy, albeit expensive, to install increasing numbers of cameras, it
is quite another issue to adequately monitor the video feeds with security guards.
Hence, the trend has been to record the CCTV feeds without monitoring and to
use the video merely for a forensic, or reactive, response to crime and terrorism,
often detected by other means.

In minor crimes such as assault and robbery, surveillance video is very
effective in helping to find and successfully prosecute perpetrators. Thus one
would expect that surveillance video would act as a deterrent to crime. Recently
the immense cost of successful terrorist attacks on soft targets such as mass
transport systems has indicated that forensic analysis of video after the event is
simply not adequate. Indeed, in the case of suicide bombings there is simply no
possibility of prosecution after the event and thus no deterrent effect. A pressing
need is emerging to monitor all surveillance cameras in an attempt to detect
events and persons-of-interest.

The problem is that human monitoring requires a large number of personnel,
resulting in high ongoing costs and questionable reliability due to the attention
span of humans decreasing rapidly when performing such tedious tasks. A
solution may be found in advanced surveillance systems employing computer
monitoring of all video feeds, delivering the alerts to human responders for
triage. Indeed such systems may assist in maintaining the high level of vigilance
required over many years to detect the rare events associated with terrorism — a
well-designed computer system is never caught “off guard”. A key technology for
prevention of crime and terrorism is the reliable detection of persons-of-interest
through face recognition.

While automatic face recognition of cooperative subjects has achieved good
results in controlled applications such as passport control, CCTV conditions are
considerably more challenging. Nuisance factors such as varying illumination,
expression, and pose can greatly affect recognition performance. According to
Phillips et al . head pose is believed to be the hardest factor to model [2]. In
mass transport systems, surveillance cameras are often mounted in the ceiling
in places such as railway platforms and passenger trains. Since the subjects are
generally not posing for the camera, it is rare to obtain a true frontal face image.
As it is infeasible to consider remounting all the cameras (in our case more than
6000) to improve face recognition performance, any practical system must have
effective pose compensation or be specifically designed to handle pose variations.
Examples of real life CCTV conditions are shown in Figure 1.

A further complication is that we generally only have one frontal gallery
image of each person of interest (e.g. a passport photograph or a mugshot). In
addition to robustness and accuracy, scalability and fast performance are also
of prime importance for surveillance. A face recognition system should be able
to handle large volumes of people (e.g. peak hour at a railway station), possibly
processing hundreds of video streams. While it is possible to setup elaborate
parallel computation machines, there are always cost considerations limiting the
number of CPUs available for processing. In this context, a face recognition



algorithm should be able to run in real-time or better, which necessarily limits
complexity.

Previous approaches to addressing pose variation include the synthesis of
new images at previously unseen views [3, 4], direct synthesis of face model
parameters [5] and local feature based representations [6–8]. We note in passing
that while true 3D based approaches in theory allow face matching at various
poses, current 3D sensing hardware has too many limitations [9], including cost
and range. Moreover unlike 2D recognition, 3D technology cannot be retrofitted
to existing surveillance systems.

In [4], Active Appearance Models (AAMs) were used to model each face,
detecting the pose through a correlation model. A frontal image could then
be synthesized directly from a single non-frontal image without the need to
explicitly generate a 3D head model. While the AAM-based face synthesis
allowed considerable improvements in recognition accuracy, the synthesized faces
have residual artefacts which may affect recognition performance.

In [5], a “bag of features” approach was shown to perform well in the presence
of pose variations. It is based on dividing the face into overlapping uniform-sized
blocks, analysing each block with the Discrete Cosine Transform (DCT) and
modelling the resultant set of features via a Gaussian Mixture Model (GMM).
The robustness to pose change was attributed to an effective insensitivity to the
topology of the face. We shall refer to this method as the direct bag-of-features.

Inspired by text classification techniques from the fields of natural language
processing and information retrieval, alternative forms of the “bag of features”
approach are used for image categorisation in [10–12]. Rather than directly
calculating the likelihood as in [5], histograms of occurrences of “visual words”
(also known as “keypoints”) are first built, followed by histogram comparison.
We shall refer to this approach as the histogram-based bag-of-features.

This paper has four main aims: (i) To evaluate the effectiveness of a novel
modification of the AAM-based method, where we explicitly remove the effect of
pose from the face model, creating pose-robust features. The modification allows
the use of the model’s parameters directly for classification, thereby skipping

Fig. 1. Examples of typical non-frontality of faces in surveillance conditions.



the computationally intensive and artefact producing image synthesis step.
(ii) To adapt the histogram-based bag-of-features approach to face classification
and contrast its properties to the direct bag-of-features method. (iii) To
evaluate the extent of speedup possible in both bag-of-features approaches
via an approximation of the exp() function, and whether such approximation
affects recognition accuracy. (iv) To compare the performance, robustness and
speed of AAM based and bag-of-features based methods in the context of face
classification under pose variations.

As we are currently in the process of creating a suitable dataset for
face classification in CCTV conditions (part of a separately funded project),
the experiments reported in this paper instead use the FERET and PIE
datasets [13, 14].

The paper is structured as follows. In Section 2 we overview the AAM-based
synthesis technique and present the modified form. In Section 3 we overview
the two bag-of-features methods. Section 4 is devoted to an evaluation of the
techniques on the FERET and PIE datasets. Concluding remarks and further
avenues of research are given in Section 5.

2 ASMs and AAMs

In this section we describe face modelling based on deformable models
popularised by Cootes et al., namely Active Shape Models (ASMs) [15] and
Active Appearance Models (AAMs) [16]. We first provide a brief description of
the two models, followed by pose estimation via a correlation model and finally
frontal view synthesis. We also show that the synthesis step can be omitted by
directly removing the effect of the pose from the model of the face, resulting in
(theoretically) pose independent features.

2.1 Face Modelling

Let us describe a face by a set of N landmark points, where the location of
each point is tuple (x, y). A face can hence be represented by a 2N dimensional
vector:

f = [ x1, x2, · · · , xN , y1, y2, · · · , yN ]T . (1)

In ASM, a face shape is represented by:

f = f + Psbs (2)

where f is the mean face vector, Ps is a matrix containing the k eigenvectors
with largest eigenvalues (of a training dataset), and bs is a weight vector. In a
similar manner, the texture variations can be represented by:

g = g + Pgbg (3)

where g is the mean appearance vector, Pg is a matrix describing the texture
variations learned from training sets, and bg is the texture weighting vector.



The shape and appearance parameters bs and bg can be used to describe the
shape and appearance of any face. As there are correlations between the shape
and appearance of the same person, let us first represent both aspects as:

b =
[
Wsbs

bg

]
=

[
WsPT

s (f − f)
PT

g (g − g)

]
(4)

where Ws is a diagonal matrix which represents the change between shape and
texture. Through Principal Component Analysis (PCA) [17] we can represent
b as:

b = Pcc (5)

where Pc are eigenvectors, c is a vector of appearance parameters controlling
both shape and texture of the model, and b can be shown to have zero mean.
Shape f and texture g can then be represented by:

f = f + Qsc (6)
g = g + Qgc (7)

where

Qs = PsW−1
s Pcs (8)

Qg = PgPcg (9)

In the above, Qs and Qg are matrices describing the shape and texture
variations, while Pcs and Pcg are shape and texture components of Pc

respectively, i.e.:

Pc =
[
Pcs

Pcg

]
(10)

The process of “interpretation” of faces is hence comprised of finding a set of
model parameters which contain information about the shape, orientation, scale,
position, and texture.

2.2 Pose Estimation

Following [18], let us assume that the model parameter c is approximately related
to the viewing angle, θ, by a correlation model:

c ≈ c0 + cc cos(θ) + cs sin(θ) (11)

where c0, cc and cs are vectors which are learned from the training data. (Here
we consider only head turning. Head nodding can be dealt with in a similar
way).

For each face from a training set Ω, indicated by superscript [i] with
associated pose θ[i], we perform an AAM search to find the best fitting model
parameters c[i]. The parameters c0, cc and cs can be learned via regression



from
“
c[i]

”
i∈1,··· ,|Ω|

and
“h

1, cos(θ[i]), sin(θ[i])
i”

i∈1,··· ,|Ω|
, where |Ω| indicates the

cardinality of Ω.
Given a new face image with parameters c[new ], we can estimate its

orientation as follows. We first rearrange c[new ] = c0 + cc cos(θ[new ]) +
cs sin(θ[new ]) to:

c[new ] − c0 = [ cc cs ]
[

cos(θ[new ]) sin(θ[new ])
]T

. (12)

Let R−1
c be the left pseudo-inverse of the matrix [ cc cs ]. Eqn. (12) can then

be rewritten as:

R−1
c

(
c[new ] − c0

)
=

[
cos(θ[new ]) sin(θ[new ])

]T

. (13)

Let [ xα yα ] = R−1
c

(
c[new ] − c0

)
. Then the best estimate of the orientation is

θ[new ] = tan−1 (yα/xα). Note that the estimation of θ[new ] may not be accurate
due to land mark annotation errors or regression learning errors.

2.3 Frontal View Synthesis

After the estimation of θ[new ], we can use the model to synthesize frontal face
views. Let cres be the residual vector which is not explained by the correlation
model:

cres = c[new ] −
(
c0 + cc cos(θ[new ]) + cs sin(θ[new ])

)
(14)

To reconstruct at an alternate angle, θ[alt], we can add the residual vector to the
mean face for that angle:

c[alt] = cres +
(
c0 + cc cos(θ[alt]) + cs sin(θ[alt])

)
(15)

To synthesize the frontal view face, θ[alt] is set to zero. Eqn. (15) hence simplifies
to:

c[alt] = cres + c0 + cc (16)

Based on Eqns. (6) and (7), the shape and texture for the frontal view can then
be calculated by:

f [alt] = f + Qsc[alt] (17)
g[alt] = g + Qgc[alt] (18)

Examples of synthesized faces are shown in Fig. 2. Each synthesized face can then
be processed via the standard Principal Component Analysis (PCA) technique
to produce features which are used for classification [4].



Fig. 2. Top row: frontal view and its AAM-based synthesized representation. Bottom
row: non-frontal view as well as its AAM-based synthesized representation at its original
angle and θ[alt] = 0 (i.e. synthesized frontal view).

2.4 Direct Pose-Robust Features

The bracketed term in Eqn. (14) can be interpreted as the mean face for angle
θ[new ]. The difference between c[new ] (which represents the given face at the
estimated angle θ[new ]) and the bracketed term can hence be interpreted as
removing the effect of the angle, resulting in a (theoretically) pose independent
representation. As such, cres can be used directly for classification, providing
considerable computational savings — the process of face synthesis and PCA
feature extraction is omitted. Because of this, we’re avoiding the introduction of
imaging artefacts (due to synthesis) and information loss caused by PCA-based
feature extraction. As such, the pose-robust features should represent the faces
more accurately, leading to better discrimination performance. We shall refer to
this approach as the pose-robust features method.

3 Bag-of-Features Approaches

In this section we describe two local feature based approaches, with both
approaches sharing a block based feature extraction method summarised in
Section 3.1. Both methods use Gaussian Mixture Models (GMMs) to model
distributions of features, but they differ in how the GMMs are applied. In the
first approach (direct bag-of-features, Section 3.2) the likelihood of a given face
belonging to a specific person is calculated directly using that person’s model.
In the second approach (histogram-based bag-of-features, Section 3.3), a generic
model (not specific to any person), representing “face words”, is used to build
histograms which are then compared for recognition purposes. In Section 3.4 we
describe how both techniques can be sped up.



3.1 Feature Extraction and Illumination Normalisation

The face is described as a set of feature vectors, X = {x1,x2, · · · ,xN}, which are
obtained by dividing the face into small, uniformly sized, overlapping blocks and
decomposing each block3 via the 2D DCT [21]. Typically the first 15 to 21 DCT
coefficients are retained (as they contain the vast majority of discriminatory
information), except for the 0-th coefficient which is the most affected by
illumination changes [6].

To achieve enhanced robustness to illumination variations, we have
incorporated additional processing prior to 2D DCT decomposition. Assuming
the illumination model for each pixel to be p̂(x,y) = b+c·p(x,y), where p(x,y) is the
“uncorrupted” pixel at location (x, y), b is a bias and c a multiplier (indicating
the contrast), removing the 0-th DCT coefficient only corrects for the bias. To
achieve robustness to contrast variations, the set of pixels within each block is
normalised to have zero mean and unit variance.

3.2 Bag-of-Features with Direct Likelihood Evaluation

By assuming the vectors are independent and identically distributed (i.i.d.), the
likelihood of X belonging to person i is found with:

P (X|λ[i]) =

NY
n=1

P (xn|λ[i]) =

NY
n=1

GX
g=1

w[i]
g N

“
xn|µ[i]

g ,Σ[i]
g

”
(19)

where N (x|µ,Σ) = (2π)-
d
2 |Σ|−

1
2 exp

˘
− 1

2
(x− µ)T Σ-1(x− µ)

¯
is a multi-variate

Gaussian function [17], while λ[i] = {w[i]
g , µ

[i]
g ,Σ

[i]
g }G

g=1 is the set of parameters
for person i. The convex combination of Gaussians, with mixing coefficients wg,
is typically referred to as a Gaussian Mixture Model (GMM). Its parameters are
optimised via the Expectation Maximisation algorithm [17].

Due to the vectors being treated as i.i.d., information about the topology
of the face is in effect lost. While at first this may seem counter-productive,
the loss of topology in conjunction with overlapping blocks provides a useful
characteristic: the precise location of face parts is no longer required. Previous
research has suggested that the method is effective for face classification while
being robust to imperfect face detection as well as a certain amount of in-plane
and out-of-plane rotations [6, 22, 5].

The robustness to pose variations can be attributed to the explicit allowance
for movement of face areas, when comparing face images of a particular person
at various poses. Furthermore, significant changes of a particular face component
(e.g. the nose) due to pose variations affect only the subset of face areas that
cover this particular component.

3 While in this work we used the 2D DCT for describing each block (or patch), it is
possible to use other descriptors, for example SIFT [19] or Gabor wavelets [20].



3.3 Bag-of-Features with Histogram Matching

The technique presented in this section is an adaptation of the “visual words”
method used in image categorisation [10–12]. First, a training set of faces is
used to build a generic model (not specific to any person). This generic model
represents a dictionary of “face words” — the mean of each Gaussian can be
thought of as a particular “face word”. Once a set of feature vectors for a given
face is obtained, a probabilistic histogram of the occurrences of the “face words”
is built:

hX =
1
N

[
N∑

i=1

w1p1 (xi)∑G
g=1 wgpg (xi)

,

N∑
i=1

w2p2 (xi)∑G
g=1 wgpg (xi)

, · · · ,

N∑
i=1

wGpG (xi)∑G
g=1 wgpg (xi)

]

where wg is the weight for Gaussian g and pg (x) is the probability of vector x
according to Gaussian g.

Comparison of two faces is then accomplished by comparing their
corresponding histograms. This can be done by the so-called χ2 distance
metric [23], or the simpler approach of summation of absolute differences [24]:

d (hA,hB) =
∑G

g=1

∣∣∣h[g]
A − h

[g]
B

∣∣∣ (20)

where h
[g]
A is the g-th element of hA. As preliminary experiments suggested that

there was little difference in performance between the two metrics, we’ve elected
to use the latter one.

Note that like in the direct method presented in the previous section,
information about the topology of the face is lost. However, the direct
method requires that the set of features from a given probe face is processed
using all models of the persons in the gallery. As such, the amount of
processing can quickly become prohibitive as the gallery grows4. In contrast, the
histogram-based approach requires the set of features to be processed using only
one model, potentially providing savings in terms of storage and computational
effort.

Another advantage of the histogram-based approach is that the face similarity
measurement, via Eqn. (20), is symmetric. This is not the case for the direct
approach, as the representation of probe and gallery faces differs — a probe
face is represented by a set of features, while a gallery face is represented by
a model of features (the model, in this case, can be thought of as a compact
approximation of the set of features from the gallery face).

3.4 Speedup via Approximation

In practice the time taken by the 2D DCT feature extraction stage is negligible
and hence the bulk of processing in the above two approaches is heavily
4 For example, assuming each model has 32 Gaussians, going through a gallery of

1000 people would require evaluating 32000 Gaussians. Assuming 784 vectors are
extracted from each face, the number of exp() evaluations is around 25 million.



concentrated in the evaluation of the exp() function. As such, a considerable
speedup can be achieved through the use of a fast approximation of this
function [25]. A brief overview follows: rather than using a lookup table,
the approximation is accomplished by exploiting the structure and encoding
of a standard (IEEE-754) floating-point representation. The given argument
is transformed and injected as an integer into the first 32 bits of the 64
bit representation. Reading the resulting floating point number provides the
approximation. Experiments in Section 4 indicate that the approximation does
not affect recognition accuracy.

4 Experiments

As mentioned in the introduction, we are currently in the process of creating
a suitable dataset for face classification in CCTV conditions. As such, in these
experiments we instead used subsets of the PIE dataset [14] (using faces at
−22.5o, 0o and +22.5o) as well as the FERET dataset [13] (using faces at −25o,
−15o, 0o, +15o and +25o).

To train the AAM based approach, we first pooled face images from 40
FERET individuals at −15o, 0o, +15o. Each face image was labelled with 58
points around the salient features (the eyes, mouth, nose, eyebrows and chin).
The resulting model was used to automatically find the facial features (via
an AAM search) for the remainder of the FERET subset. A new dataset was
formed, consisting of 305 images from 61 persons with successful AAM search
results. This dataset was used to train the correlation model and evaluate the
performances of all presented algorithms. In a similar manner, a new dataset
was formed from the PIE subset, consisting of images for 53 persons.

For the synthesis based approach, the last stage (PCA based feature
extraction from synthesized images) produced 36 dimensional vectors. The PCA
subsystem was trained as per [4]. The pose-robust features approach produced
43 dimensional vectors for each face. For both of the AAM-based techniques,
Mahalanobis distance was used for classification [17].

For the bag-of-features approaches, in a similar manner to [5], we used face
images with a size of 64×64 pixels, blocks with a size of 8×8 pixels and an overlap
of 6 pixels. This resulted in 784 feature vectors per face. The number of retained
DCT coefficients was set to 15 (resulting in 14 dimensional feature vectors, as
the 0-th coefficient was discarded). The faces were normalised in size so that the
distance between the eyes was 32 pixels and the eyes were in approximately the
same positions in all images.

For the direct bag-of-features approach, the number of Gaussians per model
was set to 32. Preliminary experiments indicated that accuracy for faces at
around 25o peaked at 32 Gaussians, while using more than 32 Gaussians provided
little gain in accuracy at the expense of longer processing times.

For the histogram-based bag-of-features method, the number of Gaussians
for the generic model was set to 1024, following the same reasoning as above.



Method
Pose

−25o −15o +15o +25o

PCA 23.0 54.0 49.0 36.0

Synthesis + PCA 50.0 71.0 67.4 42.0

pose-robust features 85.6 88.2 88.1 66.8

Direct bag-of-features 83.6 93.4 100.0 72.1

Histogram bag-of-features 83.6 100.0 96.7 73.7

Table 1. Recognition performance on the FERET pose subset.

Method
Pose

−22.5o +22.5o

PCA 13.0 8.0

Synthesis + PCA 60.0 56.0

pose-robust features 83.3 80.6

Direct bag-of-features 100.0 90.6

Histogram bag-of-features 100.0 100.0

Table 2. Recognition performance on PIE.

The generic model (representing “face words”) was trained on FERET ba data
(frontal faces), excluding the 61 persons described earlier.

Tables 1 and 2 show the recognition rates on the FERET and PIE
datasets, respectively. The AAM-derived pose-robust features approach obtains
performance which is considerably better than the circuitous approach based
on image synthesis. However, the two bag-of-features methods generally obtain
better performance on both FERET and PIE, with the histogram-based
approach obtaining the best overall performance. Averaging across the high
pose angles (±25o on FERET and ±22.5o on PIE), the histogram-based method
achieves an average accuracy of 89%.

Table 3 shows the time taken to classify one probe face by the presented
techniques (except for PCA). The experiments were performed on a Pentium-M
machine running at 1.5 GHz. All methods were implemented in C++. The time
taken is divided into two components: (1) one-off cost per probe face, and (2)
comparison of one probe face with one gallery face.

The one-off cost is the time required to convert a given face into a format
which will be used for matching. For the synthesis approach this involves an AAM
search, image synthesis and PCA based feature extraction. For the pose-robust
features method, in contrast, this effectively involves only an AAM search. For
the bag-of-features approaches, the one-off cost is the 2D DCT feature extraction,
with the histogram-based approach additionally requiring the generation of the
“face words” histogram.

The second component, for the case of the direct bag-of-features method,
involves calculating the likelihood using Eqn. (19), while for the histogram-based



Method
Approximate time taken (sec)

One-off cost Comparison of one probe
per probe face face with one gallery face

Synthesis + PCA 1.493 < 0.001

pose-robust features 0.978 < 0.001

Direct bag-of-features 0.006 0.006

Histogram bag-of-features 0.141 < 0.001

Table 3. Average time taken for two stages of processing: (1) conversion of a probe face
from image to format used for matching (one-off cost per probe face), (2) comparison
of one probe face with one gallery face, after conversion.

approach this involves just the sum of absolute differences between two
histograms (Eqn. (20)). For the two AAM-based methods, the second component
is the time taken to evaluate the Mahalanobis distance.

As expected, the pose-robust features approach has a speed advantage over
the synthesis based approach, being about 50% faster. However, both of the
bag-of-features methods are many times faster, in terms of the first component
— the histogram-based approach is about 7 times faster than the pose-robust
features method. While the one-off cost for the direct bag-of-features approach
is much lower than for the histogram-based method, the time required for the
second component (comparison of faces after conversion) is considerably higher,
and might be a limiting factor when dealing with a large set of gallery faces (i.e.
a scalability issue).

When using the fast approximation of the exp() function, the time required
by the histogram-based method (in the first component) is reduced by
approximately 30% to 0.096, with no loss in recognition accuracy. This makes
it over 10 times faster than the pose-robust features method and over 15 times
faster than the synthesis based technique. In a similar vein, the time taken by
the second component of the direct bag-of-features approach is also reduced by
approximately 30%, with no loss in recognition accuracy.

5 Conclusions and Further Avenues

In this paper we have made several contributions. We proposed a novel approach
to Active Appearance Model based face classification, where pose-robust
features are obtained without the computationally expensive image synthesis
step. Furthermore, we’ve adapted a histogram-based bag-of-features technique
(previously employed in image categorisation) to face classification, and
contrasted its properties to a previously proposed direct bag-of-features method.
We have also shown that the two bag-of-features approaches, both based on
Gaussian Mixture Models, can be considerably sped up without a loss in
classification accuracy via an approximation of the exponential function.

In the context of pose mismatches between probe and gallery faces,
experiments on the FERET and PIE databases suggest that while there is merit



in the AAM based methods, the bag-of-features techniques generally attain
better performance, with the histogram-based method achieving an average
recognition rate of 89% for pose angles of around 25 degrees. Furthermore, the
bag-of-features approaches are considerably faster, with the histogram-based
method (using the fast exp() function) being over 10 times quicker than the
pose-robust features method.

We note that apart from pose variations, imperfect face localisation [22] is
also an important issue in a real life surveillance system. Imperfect localisations
result in translations as well as scale changes, which adversely affect recognition
performance. To that end, we are currently extending the histogram-based
bag-of-features approach to also deal with scale variations.

6 Acknowledgements

This project is supported by a grant from the Australian Government
Department of the Prime Minister and Cabinet. NICTA is funded by the
Australian Government’s Backing Australia’s Ability initiative, in part through
the Australian Research Council. The authors thank Abbas Bigdeli, Shaokang
Chen and Erik Berglund for useful suggestions.

References

1. McCahill, M., Norris, C.: Urbaneye: CCTV in London. Centre for Criminology
and Criminal Justice, University of Hull, UK (2002)

2. Phillips, P., Grother, P., Micheals, R., Blackburn, D., Tabassi, E., Bone, M.: Face
recognition vendor test 2002. In: Proc. Analysis and Modeling of Faces and
Gestures. (2003) 44

3. Blanz, V., Grother, P., Phillips, P., Vetter, T.: Face recognition based on frontal
views generated from non-frontal images. In: Proc. IEEE Int. Conf. Computer
Vision and Pattern Recognition. Volume 2. (2005) 454–461

4. Shan, T., Lovell, B., Chen, S.: Face recognition robust to head pose from one
sample image. In: Proc. 18th Int. Conf. Pattern Recognition (ICPR). Volume 1.
(2006) 515–518

5. Sanderson, C., Bengio, S., Gao, Y.: On transforming statistical models for
non-frontal face verification. Pattern Recognition 39 (2006) 288–302

6. Cardinaux, F., Sanderson, C., Bengio, S.: User authentication via adapted
statistical models of face images. IEEE Trans. Signal Processing 54 (2006) 361–373

7. Lucey, S., Chen, T.: Learning patch dependencies for improved pose mismatched
face verification. In: IEEE Conf. Computer Vision and Pattern Recognition.
Volume 1. (2006) 909–915

8. Wiskott, L., Fellous, J., Kuiger, N., Malsburg, C.V.: Face recognition by elastic
bunch graph matching. IEEE Trans. Pattern Analysis and Machine Intelligence
19 (1997) 775–779

9. Bowyer, K., Chang, K., Flynn., P.: A survey of approaches and challenges in 3D and
multi-modal 3D+2D face recognition. Computer Vision and Image Understanding
101 (2006) 1–15



10. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual cetegorization
with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision
(in conjunction with ECCV’04). (2004)

11. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching
in videos. In: Proc. 9th International Conference on Computer Vision (ICCV).
Volume 2. (2003) 1470–1477

12. Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image
classification. In: European Conference on Computer Vision (ECCV), Part IV,
Lecture Notes in Computer Science (LNCS). Volume 3954. (2006) 490–503

13. Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology
for face-recognition algorithms. IEEE Trans. Pattern Analysis and Machine
Intelligence 22 (2000) 1090–1104

14. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database.
IEEE. Trans. Pattern Analysis and Machine Intelligence 25 (2003) 1615–1618

15. Cootes, T., Taylor, C.: Active shape models - ‘smart snakes’. In: Proc. British
Machine Vision Conference. (1992) 267–275

16. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Trans.
Pattern Analysis and Machine Intelligence 23 (2001) 681–685

17. Duda, R., Hart, P., Stork, D.: Pattern Classification. 2nd edn. Wiley (2001)
18. Cootes, T., Walker, K., Taylor, C.: View-based active appearance models. In: Proc.

4th IEEE International Conference on Automatic Face and Gesture Recognition.
(2000) 227–232

19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision 60 (2004) 91–110

20. Lee, T.S.: Image representation using 2D Gabor wavelets. IEEE Trans. Pattern
Analysis and Machine Intelligence 18 (1996) 959–971

21. Gonzales, R., Woods, R.: Digital Image Processing. Addison-Wesley (1992)
22. Rodriguez, Y., Cardinaux, F., Bengio, S., Mariethoz, J.: Measuring the

performance of face localization systems. Image and Vision Computing 24 (2006)
882–893

23. Wallraven, C., Caputo, B., Graf, A.: Recognition with local features: the kernel
recipe. In: Proc. 9th International Conference on Computer Vision (ICCV).
Volume 1. (2003) 257–264

24. Kadir, T., Brady, M.: Saliency, scale and image description. International Journal
of Computer Vision 45 (2001) 83–105

25. Schraudolph, N.: A fast, compact approximation of the exponential function.
Neural Computation 11 (1999) 853–862


