1,013 research outputs found

    Measuring the Deformation of a Flat Die by Applying a Laser Beam on a Reflecting Surface

    Get PDF
    The design of extrusion dies depends on the experience of the designer. After the die has been manufactured, it is tested during an extrusion process and machined several times until it works properly. The die is designed by a trial and error method which is expensive interms of time consumption and the amount of scrap. Research is going on to replace the trial pressing with finite element simulations that concentrate on material and tool analysis. In order to validate the tool simulations, an experiment is required for measuring the deformation of the die. Measuring the deformation of the die is faced with two main obstacles: high temperature and little free space. To overcome these obstacles a method is tried, which works by applying a laser beam on a reflecting surface. This cheap method is simple, robust and gives good results. This paper describes measuring the deformation of a flat die used to extrude a single U shape profile. In addition, finite element calculation of the die is performed. Finally, a comparison is performed between experimental and numerical results

    The effect of weather and climate on siphonic rainwater drainage system operation

    Get PDF
    This thesis establishes important siphonic rainwater outlet loss coefficients which may be incorporated into a mathematical model capable of accurately simulating such networks. The siphonic rainwater drainage system principally operates under sub-atmospheric pressures based upon the potential energy of the disposable head, resulting in depressurization and full-bore flow. These abilities generate many beneficial characteristics, but when in operation the system will be influenced by physical and external conditions, in particular, those introduced when flow pathways are compromised by detritus accumulation at outlets. Appropriate siphonic outlet loss coefficients have been established from changes in pressure in the discharge pipe and gutter depths as a product of partial blockages at the outlet due to either detritus or percentage coverage barriers. These coefficients were derived from analysis of laboratory data informed by photographic and weather station data established from two major site investigations. Utilising these new loss coefficients allows accurate consequences of particular rainfall events to be predicted using a version of ROOFNET- a Method of Characteristics based simulation model. From this, a rainfall intensity simulated with outlet blockage has produced results similar to those recorded from site.Engineering and Physical Sciences Research Council(EPSRC) EP/F038143/

    Analysis of GRACE range-rate residuals with focus on KBR instrument system noise

    Get PDF
    We investigate the post-fit range-rate residuals after the gravity field parameter estimation from the inter-satellite ranging data of the gravity recovery and climate experiment (GRACE) satellite mission. Of particular interest is the high-frequency spectrum (f gt 20 MHz) which is dominated by the microwave ranging system noise. Such analysis is carried out to understand the yet unsolved discrepancy between the predicted baseline errors and the observed ones. The analysis consists of two parts. First, we present the effects in the signal-to-noise ratio (SNRs) of the k-band ranging system. The SNRs are also affected by the moon intrusions into the star cameras field of view and magnetic torque rod currents in addition to the effects presented by Harvey et al. [2016]. Second, we analyze the range-rate residuals to study the effects of the KBR system noise. The range-rate residuals are dominated by the non-stationary errors in the high-frequency observations. These high-frequency errors in the range-rate residuals are found to be dependent on the temperature and effects of sun intrusion into the star cameras field of view reflected in the SNRs of the K-band phase observations

    Design And Assessment Of Compact Optical Systems Towards Special Effects Imaging

    Get PDF
    A main challenge in the field of special effects is to create special effects in real time in a way that the user can preview the effect before taking the actual picture or movie sequence. There are many techniques currently used to create computer-simulated special effects, however current techniques in computer graphics do not provide the option for the creation of real-time texture synthesis. Thus, while computer graphics is a powerful tool in the field of special effects, it is neither portable nor does it provide work in real-time capabilities. Real-time special effects may, however, be created optically. Such approach will provide not only real-time image processing at the speed of light but also a preview option allowing the user or the artist to preview the effect on various parts of the object in order to optimize the outcome. The work presented in this dissertation was inspired by the idea of optically created special effects, such as painterly effects, encoded in images captured by photographic or motion picture cameras. As part of the presented work, compact relay optics was assessed, developed, and a working prototype was built. It was concluded that even though compact relay optics can be achieved, further push for compactness and cost-effectiveness was impossible in the paradigm of bulk macro-optics systems. Thus, a paradigm for imaging with multi-aperture micro-optics was proposed and demonstrated for the first time, which constitutes one of the key contributions of this work. This new paradigm was further extended to the most general case of magnifying multi-aperture micro-optical systems. Such paradigm allows an extreme reduction in size of the imaging optics by a factor of about 10 and a reduction in weight by a factor of about 500. Furthermore, an experimental quantification of the feasibility of optically created special effects was completed, and consequently raytracing software was developed, which was later commercialized by SmARTLens(TM). While the art forms created via raytracing were powerful, they did not predict all effects acquired experimentally. Thus, finally, as key contribution of this work, the principles of scalar diffraction theory were applied to optical imaging of extended objects under quasi-monochromatic incoherent illumination in order to provide a path to more accurately model the proposed optical imaging process for special effects obtained in the hardware. The existing theoretical framework was generalized to non-paraxial in- and out-of-focus imaging and results were obtained to verify the generalized framework. In the generalized non-paraxial framework, even the most complex linear systems, without any assumptions for shift invariance, can be modeled and analyzed

    WALOP-South: A Four Camera One Shot Imaging Polarimeter for PASIPHAE Survey. Paper I -- Optical Design

    Get PDF
    The WALOP-South instrument will be mounted on the 1 m SAAO telescope in South Africa as part of the PASIPHAE program to carry out a linear imaging polarization survey of the Galactic polar regions in the optical band. Designed to achieve polarimetric sensitivity of 0.05 %0.05~\% across a 35×3535\times35 arcminute field of view, it will be capable of measuring the Stokes parameters I, q and u in a single exposure in the SDSS-r broadband and narrowband filters between 0.5 μm0.7 μm0.5~{\mu}m - 0.7~{\mu}m. For each measurement, four images of the full field corresponding to linear polarization angles of 0 deg, 45 deg, 90 deg and 135 deg in the instrument coordinate system will be created on four detectors from which the Stokes parameters can be found using differential photometry. In designing the optical system, major challenges included correcting for the dispersion introduced by large split angle Wollaston Prisms used as analysers as well as other aberrations from the entire field to obtain imaging quality PSF at the detector. We present the optical design of the WALOP-South instrument which overcomes these challenges and delivers near seeing limited PSFs for the entire field of view.Comment: 31 pages, 18 Figures and 8 Tables. Accepted in the Journal of Astronomical Telescopes, Instruments, and System

    The Mars Science Laboratory record of optical depth measurements via solar imaging

    Get PDF
    Acknowledgments We are grateful to the teams that developed, landed, and operated Curiosity on Mars, allowing for the present study. The research was conducted partly at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). MTL was supported via sub-contract 18-1187 from Malin Space Science Systems, Inc. SDG was supported by the MSL Participating Scientist program. JMB was supported by MSL Participating Scientist Grant 80NSSC22K0657. AV-R was supported by the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM). M-PZ was supported by grant PID2019-104205GB-C21 funded by MCIN/AEI/10.13039/501100011033. JM-T was supported by UK Space Agency projects ST/W00190X/1 and ST/V00610X/1.Peer reviewedPostprin

    Building Performance Simulation and Characterisation of Adaptive Facades:

    Get PDF
    The book “Performance Simulation and Characterisation of Adaptive Facades” responds to the need of providing a general framework, standardised and recognised methods and tools to evaluate the performance of adaptive facades in a quantitative way, by means of numerical and experimental methods, in different domains of interest. This book represents the main outcome of the activities of the Working Group 2 of the COST Action TU1403 Adaptive Façades Network, “Components performance and characterisation methods”, by integrating in one publication the main deliverables of WG2 described in the Memorandum of Understanding: D 2.1. Report on current adaptive facades modelling techniques; D 2.4. Report on the validation of developed simulation tools and models; D 2.5. Report on the developed experimental procedures. These are extended by additional sections regarding structural aspects and key performance indicators for adaptive façade systems. This book is a comprehensive review of different areas of research on adaptive façade systems and provides both general and specific knowledge about numerical and experimental research methods in this field. The fast pace at which building technologies and materials develop, is slowly but constantly followed by the development of numerical and experimental methods and tools to quantify their performance. Therefore this book focuses primarily on general methods and requirements, in an attempt to provide a coherent picture of current and near future possibilities to simulate and characterise the performance of adaptive facades in different domains, which could remain relevant in the coming years. In addition, specific know-how on selected cases is also presented, as a way to clarify and apply the more general approaches and methods described. The present book is published to support practitioners, researchers and students who are interested in designing, researching, and integrating adaptive façade systems in buildings. It targets both the academic and the not-academic sectors, and intends to contribute positively to an increased market penetration of adaptive façade systems, components and materials, aimed at rationalising energy and material resources while achieving a high standard of indoor environmental quality, health and safety in the built environment
    corecore