781 research outputs found

    An efficient and private RFID authentication protocol supporting ownership transfer

    Get PDF
    Radio Frequency IDentification (RFID) systems are getting pervasively deployed in many daily life applications. But this increased usage of RFID systems brings some serious problems together, security and privacy. In some applications, ownership transfer of RFID labels is sine qua non need. Specifically, the owner of RFID tag might be required to change several times during its lifetime. Besides, after ownership transfer, the authentication protocol should also prevent the old owner to trace the tags and disallow the new owner to trace old transactions of the tags. On the other hand, while achieving privacy and security concerns, the computation complexity should be considered. In order to resolve these issues, numerous authentication protocols have been proposed in the literature. Many of them failed and their computation load on the server side is very high. Motivated by this need, we propose an RFID mutual authentication protocol to provide ownership transfer. In our protocol, the server needs only a constant-time complexity for identification when the tag and server are synchronized. In case of ownership transfer, our protocol preserves both old and new owners’ privacy. Our protocol is backward untraceable against a strong adversary who compromise tag, and also forward untraceable under an assumption

    Efficient and Low-Cost RFID Authentication Schemes

    Get PDF
    Security in passive resource-constrained Radio Frequency Identification (RFID) tags is of much interest nowadays. Resistance against illegal tracking, cloning, timing, and replay attacks are necessary for a secure RFID authentication scheme. Reader authentication is also necessary to thwart any illegal attempt to read the tags. With an objective to design a secure and low-cost RFID authentication protocol, Gene Tsudik proposed a timestamp-based protocol using symmetric keys, named YA-TRAP*. Although YA-TRAP* achieves its target security properties, it is susceptible to timing attacks, where the timestamp to be sent by the reader to the tag can be freely selected by an adversary. Moreover, in YA-TRAP*, reader authentication is not provided, and a tag can become inoperative after exceeding its pre-stored threshold timestamp value. In this paper, we propose two mutual RFID authentication protocols that aim to improve YA-TRAP* by preventing timing attack, and by providing reader authentication. Also, a tag is allowed to refresh its pre-stored threshold value in our protocols, so that it does not become inoperative after exceeding the threshold. Our protocols also achieve other security properties like forward security, resistance against cloning, replay, and tracking attacks. Moreover, the computation and communication costs are kept as low as possible for the tags. It is important to keep the communication cost as low as possible when many tags are authenticated in batch-mode. By introducing aggregate function for the reader-to-server communication, the communication cost is reduced. We also discuss different possible applications of our protocols. Our protocols thus capture more security properties and more efficiency than YA-TRAP*. Finally, we show that our protocols can be implemented using the current standard low-cost RFID infrastructures.Comment: 21 pages, Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), Vol 2, No 3, pp. 4-25, 201

    A Cloud-based RFID Authentication Protocol with Insecure Communication Channels

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Radio Frequency Identification (RFID) has becomea widespread technology to automatically identify objects and withthe development of cloud computing, cloud-based RFID systemsattract more research these days. Several cloud-based RFIDauthentication protocols have been proposed to address privacyand security properties in the environment where the cloudprovider is untrusted therefore the tag’s data are encrypted andanonymously stored in the cloud database. However, most of thecloud-based RFID authentication protocols assume securecommunication channels between the reader and the cloud server.To protect data transmission between the reader and the cloudserver without any help from a third party, this paper proposes acloud-based RFID authentication protocol with insecurecommunication channels (cloud-RAPIC) between the reader and the cloud server. The cloud-RAPIC protocol preserves tag privacyeven when the tag does not update its identification. The cloudRAPIC protocol has been analyzed using the UPriv model andAVISPA verification tool which have proved that the protocolpreserves tag privacy and protects data secrecy

    The Study on Secure RFID Authentication and Access Control

    Get PDF

    Tag Ownership Transfer in Radio Frequency Identification Systems: A Survey of Existing Protocols and Open Challenges

    Get PDF
    Radio frequency identification (RFID) is a modern approach to identify and track several assets at once in a supply chain environment. In many RFID applications, tagged items are frequently transferred from one owner to another. Thus, there is a need for secure ownership transfer (OT) protocols that can perform the transfer while, at the same time, protect the privacy of owners. Several protocols have been proposed in an attempt to fulfill this requirement. In this paper, we provide a comprehensive and systematic review of the RFID OT protocols that appeared over the years of 2005-2018. In addition, we compare these protocols based on the security goals which involve their support of OT properties and their resistance to attacks. From the presented comparison, we draw attention to the open issues in this field and provide suggestions for the direction that future research should follow. Furthermore, we suggest a set of guidelines to be considered in the design of new protocols. To the best of our knowledge, this is the first comprehensive survey that reviews the available OT protocols from the early start up to the current state of the art

    SLEC: A Novel Serverless RFID Authentication Protocol Based on Elliptic Curve Cryptography

    Get PDF
    Radio Frequency Identification (RFID) is one of the leading technologies in the Internet of Things (IoT) to create an efficient and reliable system to securely identify objects in many environments such as business, health, and manufacturing areas. Since the RFID server, reader, and tag communicate via insecure channels, mutual authentication between the reader and the tag is necessary for secure communication. The central database server supports the authentication of the reader and the tag by storing and managing the network data. Recent lightweight RFID authentication protocols have been proposed to satisfy the security features of RFID communication. A serverless RFID system is a new promising solution to alternate the central database for mobile RFID models. In this model, the reader and the tag perform the mutual authentication without the support of the central database server. However, many security challenges arise from implementing the lightweight RFID authentication protocols in the serverless RFID network. We propose a new robust serverless RFID authentication protocol based on the Elliptic Curve Cryptography (ECC) to prevent the security attacks on the network and maintain the confidentiality and the privacy of the authentication messages and tag information and location. While most of the current protocols assume a secure channel in the setup phase to transmit the communication data, we consider in our protocol an insecure setup phase between the server, reader, and tag to ensure that the data can be renewed from any checkpoint server along with the route of the mobile RFID network. Thus, we implemented the elliptic curve cryptography in the setup phase (renewal phase) to transmit and store the data and the public key of the server to any reader or tag so that the latter can perform the mutual authentication successfully. The proposed model is compared under the classification of the serverless model in term of computation cost and security resistance
    corecore