513 research outputs found

    Artificial Tune of Fuel Ratio: Design a Novel SISO Fuzzy Backstepping Adaptive Variable Structure Control

    Get PDF
    This paper examines single input single output (SISO) chattering free variable structure control (VSC) which controller coefficient is on-line tuned by fuzzy backstepping algorithm. VSC methodology is selected as a framework to construct the control law and address the stability and robustness of the close loop system based on Lyapunove formulation. The main goal is to guarantee acceptable fuel ratio result and adjust. The proposed approach effectively combines the design technique from variable structure controller is based on Lyapunov and fuzzy estimator to estimate the nonlinearity of undefined system dynamic in backstepping controller. The input represents the function between variable structure function, error and the rate of error. The outputs represent fuel ratio, respectively. The fuzzy backstepping methodology is on-line tune the variable structure function based on adaptive methodology. The performance of the SISO VSC which controller coefficient is on-line tuned by fuzzy backstepping algorithm (FBSAVSC) is validated through comparison with VSC and proposed method. Simulation results signify good performance of trajectory in presence of uncertainty torque load. DOI:http://dx.doi.org/10.11591/ijece.v3i2.209

    Performance Investigations of an Improved Backstepping Operational space Position Tracking Control of a Mobile Manipulator

    Get PDF
    This article implies an improved backstepping control technique for the operational-space position tracking of a kinematically redundant mobile manipulator. The mobile manipulator thought-out for the analysis has a vehicle base with four mecanum wheels and a serial manipulator arm with three rotary actuated joints. The recommended motion controller provides a safeguard against the system dynamic variations owing to the parameter uncertainties, unmodelled system dynamics and unknown exterior disturbances. The Lyapunov’s direct method assists in designing and authenticating the system’s closed-loop stability and tracking ability of the suggested control strategy. The feasibility, effectiveness and robustness of the recommended controller are demonstrated and investigated numerically with the help of computer based simulations. The mathematical model used for the computer-based simulations is derived based on a real-time mobile manipulator and the derived model is further verified with an inbuilt gazebo model in a robot operating system (ROS) environment. In addition, the proposed scheme is verified on an in-house fabricated mobile manipulator system. Further, the recommended controller performance is correlated with the conventional backstepping control design in both computer-based simulations and in real-time experiments

    Development of Novel Compound Controllers to Reduce Chattering of Sliding Mode Control

    Get PDF
    The robotics and dynamic systems constantly encountered with disturbances such as micro electro mechanical systems (MEMS) gyroscope under disturbances result in mechanical coupling terms between two axes, friction forces in exoskeleton robot joints, and unmodelled dynamics of robot manipulator. Sliding mode control (SMC) is a robust controller. The main drawback of the sliding mode controller is that it produces high-frequency control signals, which leads to chattering. The research objective is to reduce chattering, improve robustness, and increase trajectory tracking of SMC. In this research, we developed controllers for three different dynamic systems: (i) MEMS, (ii) an Exoskeleton type robot, and (iii) a 2 DOF robot manipulator. We proposed three sliding mode control methods such as robust sliding mode control (RSMC), new sliding mode control (NSMC), and fractional sliding mode control (FSMC). These controllers were applied on MEMS gyroscope, Exoskeleton robot, and robot manipulator. The performance of the three proposed sliding mode controllers was compared with conventional sliding mode control (CSMC). The simulation results verified that FSMC exhibits better performance in chattering reduction, faster convergence, finite-time convergence, robustness, and trajectory tracking compared to RSMC, CSMC, and NSFC. Also, the tracking performance of NSMC was compared with CSMC experimentally, which demonstrated better performance of the NSMC controller

    Nonlinear control for Two-Link flexible manipulator

    Get PDF
    Recently the use of robot manipulators has been increasing in many applications such as medical applications, automobile, construction, manufacturing, military, space, etc. However, current rigid manipulators have high inertia and use actuators with large energy consumption. Moreover, rigid manipulators are slow and have low payload-to arm-mass ratios because link deformation is not allowed. The main advantages of flexible manipulators over rigid manipulators are light in weight, higher speed of operation, larger workspace, smaller actuator, lower energy consumption and lower cost. However, there is no adequate closed-form solutions exist for flexible manipulators. This is mainly because flexible dynamics are modeled with partial differential equations, which give rise to infinite dimensional dynamical systems that are, in general, not possible to represent exactly or efficiently on a computer which makes modeling a challenging task. In addition, if flexibility nature wasn\u27t considered, there will be calculation errors in the calculated torque requirement for the motors and in the calculated position of the end-effecter. As for the control task, it is considered as a complex task since flexible manipulators are non-minimum phase system, under-actuated system and Multi-Input/Multi-Output (MIMO) nonlinear system. This thesis focuses on the development of dynamic formulation model and three control techniques aiming to achieve accurate position control and improving dynamic stability for Two-Link Flexible Manipulators (TLFMs). LQR controller is designed based on the linearized model of the TLFM; however, it is applied on both linearized and nonlinear models. In addition to LQR, Backstepping and Sliding mode controllers are designed as nonlinear control approaches and applied on both the nonlinear model of the TLFM and the physical system. The three developed control techniques are tested through simulation based on the developed dynamic formulation model using MATLAB/SIMULINK. Stability and performance analysis were conducted and tuned to obtain the best results. Then, the performance and stability results obtained through simulation are compared. Finally, the developed control techniques were implemented and analyzed on the 2-DOF Serial Flexible Link Robot experimental system from Quanser and the results are illustrated and compared with that obtained through simulation

    Trajectory Tracking Control Design for Dual-Arm Robots Using Dynamic Surface Controller

    Get PDF
    This paper presents a dynamic surface controller (DSC) for dual-arm robots (DAR) tracking desired trajectories. The DSC algorithm is based on backstepping technique and multiple sliding surface control principle, but with an important addition. In the design of DSC, low-pass filters are included which prevent the complexity in computing due to the “explosion of terms”, i.e. the number of terms in the control law rapidly gets out of hand. Therefore, a controller constructed from this algorithm is simulated on a four degrees of freedom (DOF) dual-arm robot with a complex kinetic dynamic model. Moreover, the stability of the control system is proved by using Lyapunov theory. The simulation results show the effectiveness of the controller which provide precise tracking performance of the manipulator

    Design New Online Tuning Intelligent Chattering Free Fuzzy Compensator

    Full text link
    corecore