4 research outputs found

    Compensação de atrito no controle de sistemas mecânicos: uma abordagem utilizando estratégias inteligentes

    Get PDF
    Friction can be found in almost all mechanical systems. In many cases, however, it is undesirable and has to be minimized and/or compensated. Besides of speeding up the wear of its components, friction is strongly associated with the nonlinear behavior of a mechanical system. It should also be noted that when the system has to be controlled, friction hampers the achievement of an efficient control law, due to its nonlinear feature and the issues related to the development of a mathematical model that accurately describes it. In this context, based on an adaptive sliding mode control approach, this work presents the development of a friction identification/control strategy. In addition to the ability to compensate for friction, the proposed control scheme an also cope with other unmodeled dynamics. The proposed strategy is able to identify the dynamics of the plant as well as its variation due to changes in friction characteristics. Moreover, the proposed scheme can also indicate the precise moment that friction’s variation occurs. The following contributions should be highlighted: (i) the introduction of a unifying approach, capable of combining different algorithms of computational intelligence; (ii) the development of a new adaptation scheme that reduces the computational complexity of the adjustment method; (iii) an index related to friction variation, which is based on the real-time evaluation of the approximate model of the system; (iv) an intelligent sliding mode controller that does not require prior knowledge of the dynamics of the plant and can retain its performance even when there are significant changes in operating conditions. The stability of the proposed intelligent controller is demonstrated by means of a Lyapunov-like analysis. The efficacy of the designed control scheme is evaluated by means of both numerical and experimental studies with electro-hydraulic actuated system.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)O atrito está presente em praticamente todos os tipos de sistemas mecânicos. Em muitos casos, porém, ele é indesejável e precisa ser minimizado e/ou compensado. Além de acelerar o desgaste de seus componentes, o atrito está fortemente associado ao comportamento não-linear de um sistema mecânico. Deve-se ainda ressaltar que, quando o sistema precisa ser controlado, o atrito dificulta a obtenção de um controlador eficiente, em virtude de sua característica não-linear e da dificuldade de se obter um modelo matemático que o descreva com exatidão. Neste contexto, este trabalho apresenta o desenvolvimento de uma estratégia de controle e identificação do atrito, bem como demais dinâmicas não modeladas, baseada na técnica de controle por modo deslizante adaptativo. A estratégia proposta identifica a dinâmica do sistema, bem como sua variação quando ocorrem modificações das características do atrito. O método apresentado também possibilita indicar o momento que ocorreu a variação deste atrito. Destaca-se como contribuições principais: (i) a apresentação de uma abordagem unificadora, capaz de combinar diferentes algoritmos provenientes da área de inteligência computacional; (ii) a apresentação de uma nova estratégia para redução da complexidade do método de ajuste; (iii) um indicador da variação do atrito, baseado na análise em tempo real do modelo aproximado do sistema; (iv) um controlador inteligente por modo deslizante que não requer conhecimento prévio da dinâmica do sistema a ser controlado, e que mantém a sua performance mesmo quando há a alterações significativas do sistema em tempo real. A dedução da estabilidade do controlador é demonstrada através da teoria de estabilidade de Lyapunov. Sua viabilidade é demonstrada através de resultados numéricos e experimentais obtidos utilizando como exemplo de estudo um atuador eletro-hidráulico

    Controle em cascata de um atuador hidráulico utilizando redes neurais

    Get PDF
    No presente trabalho, é realizada a modelagem e identificação de um serovoposicionador hidráulico de uma bancada de testes. As expressões analíticas tradicionalmente utilizadas em uma estratégia em cascata aplicada ao controle de trajetória de posição são obtidas. A estratégia em questão utiliza, conjuntamente, a linearização por realimentação como lei de controle do subsistema hidráulico e a lei de controle de Slotine e Li no subsistema mecânico. Com base na mesma estratégia, um controlador em cascata neural é proposto. Em tal controlador, a função analítica que representa o mapa inverso, presente na linearização por realimentação, e a função de compensação de atrito utilizada na lei de Slotine e Li são substituídas por funções constituidas por meio de redes neurais de perceptrons de múltiplas camadas. Essas redes neurais têm como entradas os estados do sistema e também a temperatura do fluido hidráulico. O novo controlador é apresentado em uma versão onde as redes neurais são aplicadas sem modificações on-line e em outra, onde são apresentadas leis de controle adaptativo para as mesmas. A prova de estabilidade do sistema em malha fechada é apresentada em ambos os casos. Resultados experimentais do controle de seguimento de trajetórias de posição em diferentes temperaturas do fluido hidráulico são apresentados. Esses resultados demonstram a maior efetividade do controlador proposto em relação aos controladores clássicos PID e PID+feefforward e ao controlador em cascata com funções analíticas fixas. Os experimentos são realizados em duas situações: quando não ocorrem variações paramétricas importantes no sistema, onde é utilizado o controlador em cascata neural fixo e quando ocorrem essas variações, onde se utiliza o controlador em cascata neural adaptativo.In this work, the modeling and identification of a hydraulic actuator testing setup are performed and the analytical expressions that are used in a cascade control strategy applyied in a position trajectory tracking control are designed. Such cascade strategy uses the feedback linearization control law in the hydraulical subsystem and the Slotine and Li control law in the mechanical one. Based on this cascade strategy, a neural cascade controller is proposed, for which the analytical function used as inversion set in the feedback linearization control law and the friction function compensation of the Slotine and Li control law are replaced by multi layer perceptrons neural networks where the inputs are the states of the system and the hydraulic fluid temperature. The novel controller is introduced in two different aproachs: the first one where the neural networks do not have on-line modifications and the second one where adaptive control laws are proposed. For both of them the stability proof of the closed-loop system is presented. Experimental results about some position tracking controls performed in different fluid temperature are showed. The results show that the novel controller is more efective than the classical PID, PID+feedforward and the traditional analytical cascade controller. The experiments are performed in two different setups: considering the system without importants parametric variations where is applied the non adaptive cascade neural controller and in the presence of parametric variations where is applied the adaptive cascade neural controller

    Smart Flow Control Processes in Micro Scale

    Get PDF
    In recent years, microfluidic devices with a large surface-to-volume ratio have witnessed rapid development, allowing them to be successfully utilized in many engineering applications. A smart control process has been proposed for many years, while many new innovations and enabling technologies have been developed for smart flow control, especially concerning “smart flow control” at the microscale. This Special Issue aims to highlight the current research trends related to this topic, presenting a collection of 33 papers from leading scholars in this field. Among these include studies and demonstrations of flow characteristics in pumps or valves as well as dynamic performance in roiling mill systems or jet systems to the optimal design of special components in smart control systems
    corecore