16 research outputs found

    Backdoors to Normality for Disjunctive Logic Programs

    Full text link
    Over the last two decades, propositional satisfiability (SAT) has become one of the most successful and widely applied techniques for the solution of NP-complete problems. The aim of this paper is to investigate theoretically how Sat can be utilized for the efficient solution of problems that are harder than NP or co-NP. In particular, we consider the fundamental reasoning problems in propositional disjunctive answer set programming (ASP), Brave Reasoning and Skeptical Reasoning, which ask whether a given atom is contained in at least one or in all answer sets, respectively. Both problems are located at the second level of the Polynomial Hierarchy and thus assumed to be harder than NP or co-NP. One cannot transform these two reasoning problems into SAT in polynomial time, unless the Polynomial Hierarchy collapses. We show that certain structural aspects of disjunctive logic programs can be utilized to break through this complexity barrier, using new techniques from Parameterized Complexity. In particular, we exhibit transformations from Brave and Skeptical Reasoning to SAT that run in time O(2^k n^2) where k is a structural parameter of the instance and n the input size. In other words, the reduction is fixed-parameter tractable for parameter k. As the parameter k we take the size of a smallest backdoor with respect to the class of normal (i.e., disjunction-free) programs. Such a backdoor is a set of atoms that when deleted makes the program normal. In consequence, the combinatorial explosion, which is expected when transforming a problem from the second level of the Polynomial Hierarchy to the first level, can now be confined to the parameter k, while the running time of the reduction is polynomial in the input size n, where the order of the polynomial is independent of k.Comment: A short version will appear in the Proceedings of the Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI'13). A preliminary version of the paper was presented on the workshop Answer Set Programming and Other Computing Paradigms (ASPOCP 2012), 5th International Workshop, September 4, 2012, Budapest, Hungar

    Answer Set Solving with Bounded Treewidth Revisited

    Full text link
    Parameterized algorithms are a way to solve hard problems more efficiently, given that a specific parameter of the input is small. In this paper, we apply this idea to the field of answer set programming (ASP). To this end, we propose two kinds of graph representations of programs to exploit their treewidth as a parameter. Treewidth roughly measures to which extent the internal structure of a program resembles a tree. Our main contribution is the design of parameterized dynamic programming algorithms, which run in linear time if the treewidth and weights of the given program are bounded. Compared to previous work, our algorithms handle the full syntax of ASP. Finally, we report on an empirical evaluation that shows good runtime behaviour for benchmark instances of low treewidth, especially for counting answer sets.Comment: This paper extends and updates a paper that has been presented on the workshop TAASP'16 (arXiv:1612.07601). We provide a higher detail level, full proofs and more example

    A Paraconsistent ASP-like Language with Tractable Model Generation

    Full text link
    Answer Set Programming (ASP) is nowadays a dominant rule-based knowledge representation tool. Though existing ASP variants enjoy efficient implementations, generating an answer set remains intractable. The goal of this research is to define a new \asp-like rule language, 4SP, with tractable model generation. The language combines ideas of ASP and a paraconsistent rule language 4QL. Though 4SP shares the syntax of \asp and for each program all its answer sets are among 4SP models, the new language differs from ASP in its logical foundations, the intended methodology of its use and complexity of computing models. As we show in the paper, 4QL can be seen as a paraconsistent counterpart of ASP programs stratified with respect to default negation. Although model generation of well-supported models for 4QL programs is tractable, dropping stratification makes both 4QL and ASP intractable. To retain tractability while allowing non-stratified programs, in 4SP we introduce trial expressions interlacing programs with hypotheses as to the truth values of default negations. This allows us to develop a~model generation algorithm with deterministic polynomial time complexity. We also show relationships among 4SP, ASP and 4QL

    Guarantees and Limits of Preprocessing in Constraint Satisfaction and Reasoning

    Full text link
    We present a first theoretical analysis of the power of polynomial-time preprocessing for important combinatorial problems from various areas in AI. We consider problems from Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic and Bayesian Reasoning under structural restrictions. All these problems involve two tasks: (i) identifying the structure in the input as required by the restriction, and (ii) using the identified structure to solve the reasoning task efficiently. We show that for most of the considered problems, task (i) admits a polynomial-time preprocessing to a problem kernel whose size is polynomial in a structural problem parameter of the input, in contrast to task (ii) which does not admit such a reduction to a problem kernel of polynomial size, subject to a complexity theoretic assumption. As a notable exception we show that the consistency problem for the AtMost-NValue constraint admits a polynomial kernel consisting of a quadratic number of variables and domain values. Our results provide a firm worst-case guarantees and theoretical boundaries for the performance of polynomial-time preprocessing algorithms for the considered problems.Comment: arXiv admin note: substantial text overlap with arXiv:1104.2541, arXiv:1104.556

    Treewidth-Aware Complexity in ASP: Not all Positive Cycles are Equally Hard

    Full text link
    It is well-know that deciding consistency for normal answer set programs (ASP) is NP-complete, thus, as hard as the satisfaction problem for classical propositional logic (SAT). The best algorithms to solve these problems take exponential time in the worst case. The exponential time hypothesis (ETH) implies that this result is tight for SAT, that is, SAT cannot be solved in subexponential time. This immediately establishes that the result is also tight for the consistency problem for ASP. However, accounting for the treewidth of the problem, the consistency problem for ASP is slightly harder than SAT: while SAT can be solved by an algorithm that runs in exponential time in the treewidth k, it was recently shown that ASP requires exponential time in k \cdot log(k). This extra cost is due checking that there are no self-supported true atoms due to positive cycles in the program. In this paper, we refine the above result and show that the consistency problem for ASP can be solved in exponential time in k \cdot log({\lambda}) where {\lambda} is the minimum between the treewidth and the size of the largest strongly-connected component in the positive dependency graph of the program. We provide a dynamic programming algorithm that solves the problem and a treewidth-aware reduction from ASP to SAT that adhere to the above limit

    Lower Bounds for QBFs of Bounded Treewidth

    Full text link
    The problem of deciding the validity (QSAT) of quantified Boolean formulas (QBF) is a vivid research area in both theory and practice. In the field of parameterized algorithmics, the well-studied graph measure treewidth turned out to be a successful parameter. A well-known result by Chen in parameterized complexity is that QSAT when parameterized by the treewidth of the primal graph of the input formula together with the quantifier depth of the formula is fixed-parameter tractable. More precisely, the runtime of such an algorithm is polynomial in the formula size and exponential in the treewidth, where the exponential function in the treewidth is a tower, whose height is the quantifier depth. A natural question is whether one can significantly improve these results and decrease the tower while assuming the Exponential Time Hypothesis (ETH). In the last years, there has been a growing interest in the quest of establishing lower bounds under ETH, showing mostly problem-specific lower bounds up to the third level of the polynomial hierarchy. Still, an important question is to settle this as general as possible and to cover the whole polynomial hierarchy. In this work, we show lower bounds based on the ETH for arbitrary QBFs parameterized by treewidth (and quantifier depth). More formally, we establish lower bounds for QSAT and treewidth, namely, that under ETH there cannot be an algorithm that solves QSAT of quantifier depth i in runtime significantly better than i-fold exponential in the treewidth and polynomial in the input size. In doing so, we provide a versatile reduction technique to compress treewidth that encodes the essence of dynamic programming on arbitrary tree decompositions. Further, we describe a general methodology for a more fine-grained analysis of problems parameterized by treewidth that are at higher levels of the polynomial hierarchy
    corecore