234 research outputs found

    Lecture 01: Scalable Solvers: Universals and Innovations

    Get PDF
    As simulation and analytics enter the exascale era, numerical algorithms, particularly implicit solvers that couple vast numbers of degrees of freedom, must span a widening gap between ambitious applications and austere architectures to support them. We present fifteen universals for researchers in scalable solvers: imperatives from computer architecture that scalable solvers must respect, strategies towards achieving them that are currently well established, and additional strategies currently being developed for an effective and efficient exascale software ecosystem. We consider recent generalizations of what it means to “solve” a computational problem, which suggest that we have often been “oversolving” them at the smaller scales of the past because we could afford to do so. We present innovations that allow to approach lin-log complexity in storage and operation count in many important algorithmic kernels and thus create an opportunity for full applications with optimal scalability

    Stable Sparse Orthogonal Factorization of Ill-Conditioned Banded Matrices for Parallel Computing

    Get PDF
    Sequential and parallel algorithms based on the LU factorization or the QR factorization have been intensely studied and widely used in the problems of computation with large-scale ill-conditioned banded matrices. Great concerns on existing methods include ill-conditioning, sparsity of factor matrices, computational complexity, and scalability. In this dissertation, we study a sparse orthogonal factorization of a banded matrix motivated by parallel computing. Specifically, we develop a process to factorize a banded matrix as a product of a sparse orthogonal matrix and a sparse matrix which can be transformed to an upper triangular matrix by column permutations. We prove that the proposed process requires low complexity, and it is numerically stable, maintaining similar stability results as the modified Gram-Schmidt process. On this basis, we develop a parallel algorithm for the factorization in a distributed computing environment. Through an analysis of its performance, we show that the communication costs reach the theoretical least upper bounds, while its parallel complexity or speedup approaches the optimal bound. For an ill-conditioned banded system, we construct a sequential solver that breaks it down into small-scale underdetermined systems, which are solved by the proposed factorization with high accuracy. We also implement a parallel solver with strategies to treat the memory issue appearing in extra large-scale linear systems of size over one billion. Numerical experiments confirm the theoretical results derived in this thesis, and demonstrate the superior accuracy and scalability of the proposed solvers for ill-conditioned linear systems, comparing to the most commonly used direct solvers

    Open Problems in (Hyper)Graph Decomposition

    Full text link
    Large networks are useful in a wide range of applications. Sometimes problem instances are composed of billions of entities. Decomposing and analyzing these structures helps us gain new insights about our surroundings. Even if the final application concerns a different problem (such as traversal, finding paths, trees, and flows), decomposing large graphs is often an important subproblem for complexity reduction or parallelization. This report is a summary of discussions that happened at Dagstuhl seminar 23331 on "Recent Trends in Graph Decomposition" and presents currently open problems and future directions in the area of (hyper)graph decomposition

    Matrix Structure Exploitation in Generalized Eigenproblems Arising in Density Functional Theory

    Full text link
    In this short paper, the authors report a new computational approach in the context of Density Functional Theory (DFT). It is shown how it is possible to speed up the self-consistent cycle (iteration) characterizing one of the most well-known DFT implementations: FLAPW. Generating the Hamiltonian and overlap matrices and solving the associated generalized eigenproblems Ax=λBxAx = \lambda Bx constitute the two most time-consuming fractions of each iteration. Two promising directions, implementing the new methodology, are presented that will ultimately improve the performance of the generalized eigensolver and save computational time.Comment: To appear in the proceedings of 8th International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2010
    corecore