
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Mathematical Sciences Spring Lecture Series Mathematical Sciences

4-5-2021

Lecture 01: Scalable Solvers: Universals and Innovations Lecture 01: Scalable Solvers: Universals and Innovations

David Keyes
King Abdullah University of Science and Technology, david.keyes@kaust.edu.sa

Follow this and additional works at: https://scholarworks.uark.edu/mascsls

 Part of the Analysis Commons, Computer and Systems Architecture Commons, Data Storage Systems

Commons, Dynamical Systems Commons, Numerical Analysis and Computation Commons, Numerical

Analysis and Scientific Computing Commons, and the Ordinary Differential Equations and Applied

Dynamics Commons

Citation Citation
Keyes, D. (2021). Lecture 01: Scalable Solvers: Universals and Innovations. Mathematical Sciences Spring
Lecture Series. Retrieved from https://scholarworks.uark.edu/mascsls/2

This Video is brought to you for free and open access by the Mathematical Sciences at ScholarWorks@UARK. It
has been accepted for inclusion in Mathematical Sciences Spring Lecture Series by an authorized administrator of
ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/mascsls
https://scholarworks.uark.edu/masc
https://scholarworks.uark.edu/mascsls?utm_source=scholarworks.uark.edu%2Fmascsls%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=scholarworks.uark.edu%2Fmascsls%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.uark.edu%2Fmascsls%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.uark.edu%2Fmascsls%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.uark.edu%2Fmascsls%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/179?utm_source=scholarworks.uark.edu%2Fmascsls%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholarworks.uark.edu%2Fmascsls%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.uark.edu%2Fmascsls%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.uark.edu%2Fmascsls%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=scholarworks.uark.edu%2Fmascsls%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=scholarworks.uark.edu%2Fmascsls%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/mascsls/2?utm_source=scholarworks.uark.edu%2Fmascsls%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu

David Keyes
Extreme Computing Research Center

King Abdullah University of Science and Technology
5-9 April 2021

Lecture 1

Scalable Solvers:
Universals and Innovations

University of Arkansas Department of Mathematical Sciences

46th Spring Lecture Series

My goals for the series
n Recruit researchers to a “renaissance” in scalable solvers

§ set the stage of opportunity
§ introduce global leaders in core techniques as guest lecturers
§ introduce several “universals” that govern scalable computing into the

indefinite future
§ show some current algorithmic developments that relate to these

universals

n Provide motivation to grow the computational
mathematics community at our host institution

n Feature the research of young colleagues in KAUST’s
Extreme Computing Research Center

n Encourage gender diversity in the math sciences
n Celebrate the elegance and power of the math sciences

Structure of the series
n Traditional SLS structure

§ five principal lectures
§ ten guest lectures

n Plus a public outreach lecture
§ Harnessing the power of mathematics for HPC

n Plus a panel on Women in STEM
n A venerable tradition going back to 1977

§ An honor for us to be associated with the influential
mathematical scientists – pure, applied, statistical, and
computational – that have graced this series so far

§ Thanks to Professor Tulin Kaman for her vision, initiative,
persistence, and logistics

SLS weeklong schedule

A falcon flies to where the prey will be …

… rather than where it is

flying to where the
target will be

flying towards the target

C. H. Brighton,
et al., PNAS

(2017)

Let’s fly with the falcons…
to where computer architectures will be

Some “universals” of exascale computing

• Employ dynamic scheduling capabilities, e.g., dynamic runtime systems based DAGs
• Code to specialized “back-ends” while presenting high-level APIs to general users
• Exploit data sparsity to meet “curse of dimensionality” with “blessing of low rank”
• Process “on the fly” rather than storing all at once (esp. large dense matrices)
• Co-design algorithms with hardware, incl. computing in the network or in memory

Strategies in progress

• Exploit extra memory to reduce communication volume
• Perform extra flops to require fewer global operations
• Use high-order discretizations to manipulate fewer DOFs (w/more ops per DOF)
• Adapt floating point precision to output accuracy requirements
• Take more resilience into algorithm space, out of hardware/systems space

Strategies in practice

• Reside “high” on the memory hierarchy, close to the processing elements
• Rely on SIMD/SIMT-amenable batches of tasks at fine scale
• Reduce synchrony in frequency and/or span
• Reduce communication in number and/or volume of messages
• Exploit heterogeneity in processing, memory, and networking elements

Architectural imperatives

Timely appearance in CACM

Timely US interagency topic

https://nitrd.gov

Timely global topic

Key concepts:
§ “co-design” of architectures and applications
§ coordination of enabling software development

“Poster child” example:
§ Quantum Chromodynamics (QCD), the

application that led to IBM’s Blue Gene/L

https://www.exascale.org

Timely global topic (see lecture 5)

https://www.exascale.org/bdec

Exascale software agenda
n Emphasize heterogeneity and hierarchy

§ Heterogeneity is the new normal

§ Hierarchy is the key to efficient representation and access of big data

• Watch hardware opportunities
§ Processors: CPU, vector, GPU, TPU, FPGA, neuromorphic, quantum, …

§ Memories: cache, HBM, DRAM, NVRAM, …

§ Channels: copper, optical fiber, direct optical

n Think on two levels
§ High-level: how to find thresholds that amortize overheads for changing

devices (heterogeneity) or scales (hierarchy)

§ Low-level: how to express (vector extensions, CUDA, libraries for remote ops)

n Gain hands-on experience and integration
§ Ideally in a multidisciplinary team, so one’s specialized efforts are part of

something bigger that motivates and brings visibility and sponsorship

Exascale algorithmic opportunity
To “go big” and achieve the potential of emerging architectures
for scientific applications, we need implementations of fast
• linear and least squares solvers
• singular value and eigensolvers
• nonlinear solvers and optimizers
• integrators and sensitivity solvers
• stencil and tensor operators

that
n offer tunable accuracy-time-space tradeoffs
n exploit data sparsity
n exploit hierarchy of precisions
n may require more flops but complete earlier, thanks to more concurrency

or less communication or synchronization
n are energy efficient

Two computational universes exist side-by-side

c/o Instageeked.com
* Global indices *
do i {

do j {

for (i,j) in S do op
}

}

Flat Hierarchical
* Local indices *
for matrix blocks (k,l)

do i {

do j {
for (i,j) in Sk,l do op

}
}

Algorithms were once flat (Cholesky, 1910)

classical global triangular loop, O(n3)

A=LLT or A= RTR or A=LDLT

across columns
top to diag of right factor

inner prod length “i”

geodesic
least

squares
problem

Architectures were flat, as well (vN, 1945)

classical separation of ALU & memory

One hierarchy is not so bad…
As humans managing implementation complexity, we
would prefer:

! hierarchical algorithms on flat architectures

or even (suboptimally)
! flat algorithms on hierarchical architectures

… but two independent hierarchies may not match
n need to marshal irregular structures into uniform

batches and/or
n to feed dynamic runtime queues
n to best exploit hierarchical memory and heterogeneous

accelerators

Hierarchies may not perfectly match, but…
We go to exascale with the architectures we have,
not with the architectures we want!

! First exascale Gordon Bell Prize (2018) awarded on the
heterogeneous Summit system at ORNL (currently the #2
ranked system by HPL), with GPUs and Power9 cores

! A 4,000-node subset of Summit sustained 1.88 ExaOp/s of
mixed precision on a genome-wide association studies
(GWAS) application

! Majority of these operations are half-precision (16-bit
floating point) NVIDIA tensor-core matrix-matrix
multiplies, 64 FP FMADD operations per clock

Algorithmic philosophy
Algorithms must span a widening gulf …

A full employment program
for algorithm developers J

ambitious
applications

austere
architectures

adaptive
algorithms

Hierarchical
algorithms

GPU,
manycore

Must address the tension between
n highly uniform vector, matrix, and general SIMT operations

– prefer regularity and predictability
n hierarchical algorithms with tree-like data structures and

scale recurrence – possess irregularity and adaptability

Hierarchical algorithms and extreme scale

our target

è Billions of

of investment worldwide in open source and
commercial scientific software hangs in the balance
until our algorithmic infrastructure evolves to span
the architecture-applications gap

Required software
Model-related
! Geometric modelers
! Meshers
! Discretizers
! Partitioners
! Solvers / integrators
! Dynamic load balancers
! Discretization adaptors
! Data (de-)compressors
! Random no. generators
! Uncertainty quantifiers
! Graph & combinatorial

operators
! Subgridscale physics

machine learners

Development-related
u Build configurers
u Source-to-source

translators
u Compilers
u Simulators
u Message passers
u Debuggers
u Profilers

Production-related
u Dynamic resource

managers
u Dynamic performance

optimizers
u Authenticators
u I/O optimizers
u Visualizers
u Workflow controllers
u Data miners
u Fault monitors &

recoverers

High-end computers come
with little of this. Most is
contributed by the user

community.

in Cray LibSciin NVIDIA cuBLAS Aramco ExaWave

Our modest contributions at
https://github.com/ecrc

What will exascale algorithms look like?
n Attempt to start with algorithms as close as possible to

optimal asymptotic order, O(N logpN)
n Some such optimal (typically hierarchical!) algorithms

! Fast Fourier Transform (1960’s)
! Multigrid (1970’s)
! Fast Multipole (1980’s)
! Sparse Grids (1990’s)
! H matrices (2000’s)
! Randomized algorithms (2010’s)
! <What will you call your contribution?> (2020’s)

“With great computational power comes great
algorithmic responsibility.” – Longfei Gao

Flat, bulk
synchronous
generation

Energy-aware
generation

Some “universals” of exascale computing
• Reside “high” on the memory hierarchy, close to the processing elements
• Rely on SIMD/SIMT-amenable batches of tasks at fine scale
• Reduce synchrony in frequency and/or span
• Reduce communication in number and/or volume of messages
• Exploit heterogeneity in processing, memory, and networking elements

Architectural imperatives

Classical memory hierarchy

c/o K. Webb (2018)

Memory placement increasingly a user decision

c/o J. Ang et al (2014)

HPL Top 10 memory BW trends, 2010-2020

Fugaku

The last three #1 systems
TaihuLight (Nov 2017) B/F = 0.004

Summit (June 2018) B/F = 0.0005
Fugaku (June 2020) B/F = 0.303

Keren Bergman’s lab at Columbia
has been tracking architectural
trends in memory and networking
interconnects for two decades.
This slide is updated for Fugaku.

NB: log scale

Single-node speeds/feeds ratios, 1990-2020

John McCalpin, now at TACC, has
been tracking architectural trends
through the STREAM benchmark
since 1990, when he noticed that
code loops that gave 90% peak on
Cray gave less than 10% on RISC

n BW based on node level GF/s divided by node
level sustainable BW (memory or network)

n Latency based on GF/s for one core and
latency for “load” to local memory or “get”
from another node

18% / yr

20% / yr
25% / yr

15% /yr

NB: log scale

On-node memory latency, 1990-2020

What happens if all cores stall on a local memory latency?
n 50% / yr increase reflects increase in # cores per socket package
n This worse-than-single-core scenario prevails, for example, if an OpenMP

coordinating thread is in a serial section while the other cores are idle, and gets
worse with flooding of cores per socket

all cores

1 core
20% / yr
(same
curve)

NB: log scale

Why exa-… is hard

Moore’s Law (1965) has not fully ended
but Dennard’s MOSFET scaling (1972) has

Eventually, processing is
limited by transmission,
as known for > 4 decades

Robert Dennard, IBM
(inventor of DRAM, 1966)

Dennard et al., IEEE J. Solid-State Circuits (1974)

Typical power costs per operation

c/o J. Shalf (LBNL)

Remember that a pico (10-12) of something done exa (1018)
times per second is a mega (106)-somethings per second
u 100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!)
u 1 MW-year costs about $1M ($0.12/KW-hr × 8760 hr/yr)

• We “use” 1.4 KW continuously, so 100MW is 71,000 people

Operation approximate energy cost
DP FMADD flop 100 pJ
DP DRAM read-to-register 5,000 pJ
DP word transmit-to-neighbor 7,500 pJ
DP word transmit-across-system 10,000 pJ

Some “universals” of exascale computing
• Reside “high” on the memory hierarchy, close to the processing elements
• Rely on SIMD/SIMT-amenable batches of tasks at fine scale
• Reduce synchrony in frequency and/or span
• Reduce communication in number and/or volume of messages
• Exploit heterogeneity in processing, memory, and networking elements

Architectural imperatives

Rely on SIMD/SIMT tasks
n Many specialized operations are now hard-wired, e.g.,

§ traditional vector triadic operations
§ matrix-matrix operations used in DL

n Such instructions cannot be ignored
§ 4x4 matrix-matrix multiply-add does 64

FMADD instructions in one clock cycle
§ varieties of scales and precisions abound
§ more than an order of magnitude efficiency at stake

0.00

5.00

10.00

15.00

20.00

25.00

30.00
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

18
1

18
5

18
9

Power efficiencies
(191 entries of Nov 2020 Top500 report efficiency rating)

Median: 3.29 GF/s/W

Most efficient
> 26 GFs/W

Least efficient
< 0.2 GFs/W

P
o
w
e
r

E
f
f
i
c
i
e
n
c
y

~ 2 orders of
magnitude spread!

191 of the Top500 systems

All but 3 of
the 40 most
efficient are
accelerated

Specialization includes precision choice

c/o Nick Higham (2021)

Each halving of precision generally doubles execution rate
§ sometimes more than 2x from higher memory residency for given no. of elements

Some “universals” of exascale computing
• Reside “high” on the memory hierarchy, close to the processing elements
• Rely on SIMD/SIMT-amenable batches of tasks at fine scale
• Reduce synchrony in frequency and/or span
• Reduce communication in number and/or volume of messages
• Exploit heterogeneity in processing, memory, and networking elements

Architectural imperatives

Off-node data latency, 1990-2020
all cores

1 core
18% / yr
(same
curve)

What happens if all cores stall on a network latency?
n Duration of the stalls will be something like log2(P) network latencies
n This is common during MPI collective operations that synchronize all participating

cores, e.g., inner products, norms, barriers
n “Bandwidth is limited by money, but latency is limited by physics”

NB: log scale

Bulk Synchronous
Parallelism

Leslie Valiant, Harvard
2010 Turing Award Winner Communications of the ACM, 1990

How are most simulations implemented at
the petascale today?

n Iterative methods based on data decomposition and
message-passing
! data structures (e.g., grid points, particles, agents) are distributed
! each individual processor works on a subdomain of the original

(“owner computes”)
! exchanges information at its boundaries with other processors

that own portions with which it interacts causally, to evolve in
time or to establish equilibrium

! computation and neighbor communication are both fully
parallelized and their ratio remains constant in weak scaling

n The programming model is BSP/SPMD/CSP
! Bulk Synchronous Programming
! Single Program, Multiple Data
! Communicating Sequential Processes

BSP parallelism w/ domain decomposition

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

W1

W2

W3

A23A21 A22
rows assigned

to proc “2”

BSP has an impressive legacy

Year

Cost per
delivered
Gigaflop/s

1989 $2,500,000
1999 $6,900
2009 $8

Year

Gigaflop/s
delivered to
applications

1988 1
1998 1,020
2008 1,350,000

By the Gordon Bell Prize, performance on real applications (e.g.,
mechanics, materials, petroleum reservoirs, etc.) has improved more than
a million times in two decades. Simulation cost per performance has
improved by nearly a million times.

Gordon Bell
Prize: Peak

Performance

Gordon Bell
Prize: Price

Performance

Extrapolating exponentials eventually fails
Proceeded steadily for decades from giga- (1988) to
tera- (1998) to peta- (2008) with

§ same BSP programming model
§ same assumptions about who (hardware, systems software,

applications software etc.) is responsible for what
(resilience, performance, processor mapping, etc.)

§ same classes of algorithms (cf. 25 yrs. of Gordon Bell
Prizes)

Main challenge going forward for BSP
Almost all “good” algorithms in linear algebra,
differential equations, integral equations, signal
analysis, etc., require frequent synchronizing global
communication

§ inner products, norms, and fresh global residuals are
“addictive” idioms

§ tends to hurt efficiency beyond 100,000 threads
§ can be fragile for smaller concurrency, as well, due to

algorithmic load imbalance, hardware performance variation,
etc.

Concurrency is heading into the billions of cores
§ Already 10.6 million on TaihuLight (currently #4 overall)

Some “universals” of exascale computing
• Reside “high” on the memory hierarchy, close to the processing elements
• Rely on SIMD/SIMT-amenable batches of tasks at fine scale
• Reduce synchrony in frequency and/or span
• Reduce communication in number and/or volume of messages
• Exploit heterogeneity in processing, memory, and networking elements

Architectural imperatives

Motivation to communicate less

How 3 solvers exploit more bandwidth
Geometric MG (LBNL)

many-to-many msgs, 5% of runtime
Algebraic MG (LLNL)

many small msgs, 40% of runtime
Spectral (ANL)

large msgs, 68.5% runtime

• Improvements resulting from additional rails in a fat-tree network depend
on the application’s communication pattern

• For some apps, reduction in communication, not more bandwidth is the
only alternative for runtime improvements

• Applications sending large numbers of small packets with fewer
synchronization points (left) can see major improvements

• Applications transferring small numbers of larger packets with frequent
synchronization (right) see diminished improvement

c/o Jens Domke (RIKEN, 2021)

Some “universals” of exascale computing
• Reside “high” on the memory hierarchy, close to the processing elements
• Rely on SIMD/SIMT-amenable batches of tasks at fine scale
• Reduce synchrony in frequency and/or span
• Reduce communication in number and/or volume of messages
• Exploit heterogeneity in processing, memory, and networking elements

Architectural imperatives

Heterogeneity is taking over (top of) Top500

c/o Erich Strohmeier (LBNL, 2020)

Nearly one-third of the Top500 systems exploit accelerators
§ disproportionally concentrated at the top of the list

Heterogenous HPL performance
and power efficiency

c/o H. Sim, S. Vazhkudai & A Khan (ORNL, 2020)

20
19

20
19

For these
recent years, all
of the Top 5
systems were
heterogeneous

Exploit heterogeneity

after J. Ang et al (Sandia, 2014)

Heterogeneity in today’s smart phone

Typical smart phone has 40+ special processors

c/o John Shalf (LBNL, 2021)

Some “universals” of exascale computing

• Exploit extra memory to reduce communication volume
• Perform extra flops to require fewer global operations
• Use high-order discretizations to manipulate fewer DOFs (w/more ops per DOF)
• Adapt floating point precision to output accuracy requirements
• Take more resilience into algorithm space, out of hardware/systems space

Strategies in practice

Exploit extra memory to reduce comm

Exploit extra memory to reduce comm

Some “universals” of exascale computing

• Exploit extra memory to reduce communication volume
• Perform extra flops to require fewer global operations
• Use high-order discretizations to manipulate fewer DOFs (w/more ops per DOF)
• Adapt floating point precision to output accuracy requirements
• Take more resilience into algorithm space, out of hardware/systems space

Strategies in practice

Perform extra flops to synchronize less

Perform extra flops to synchronize less

NB: log scale

Speedup
of 2.25x

Some “universals” of exascale computing

• Exploit extra memory to reduce communication volume
• Perform extra flops to require fewer global operations
• Use high-order discretizations to manipulate fewer DOFs (w/more ops per DOF)
• Adapt floating point precision to output accuracy requirements
• Take more resilience into algorithm space, out of hardware/systems space

Strategies in practice

Use high-order discretizations for fewer DOFs

Rediscretize from 32 spectral
elements of order 8 on a side
to 8 spectral elements of order
16 on a side

Same error in key functional:
- approx 4e-6
Savings in execution time:
- factor of 8

Use high-order discretizations for fewer DOFs
Four different dense linear algebra libraries compared on 15 different
element orders for execution rate and memory transfer rate

Performance of all libraries improves up to 16th-order elements
LIBXSMM continues to improve up to 32nd-order elements

Some “universals” of exascale computing

• Exploit extra memory to reduce communication volume
• Perform extra flops to require fewer global operations
• Use high-order discretizations to manipulate fewer DOFs (w/more ops per DOF)
• Adapt floating point precision to output accuracy requirements
• Take more resilience into algorithm space, out of hardware/systems space

Strategies in practice

Adapt precision to accuracy requirements

Adapt precision to accuracy requirements

(2020)
(2017)
(2014)

Implicit question: Do we want to wait for NVIDIA Hopper (2023)?
Or do we want Hopper performance on NVIDIA Ampere today?

Adapt precision to accuracy requirements

fp64, fp32, fp16 defined by IEEE standard
Bfloat16: Google, Intel, ARM, NVIDIA

c/o Nick Higham (Manchester, 2021)

Some “universals” of exascale computing

• Exploit extra memory to reduce communication volume
• Perform extra flops to require fewer global operations
• Use high-order discretizations to manipulate fewer DOFs (w/more ops per DOF)
• Adapt floating point precision to output accuracy requirements
• Take more resilience into algorithm space, out of hardware/systems space

Strategies in practice

Resilience in algorithms, not hardware

Key ideas:
§ Reliable computing is expensive
§ Divide memory: reliable/unreliable
§ Divide routines: reliable/unreliable
§ Do most of the work in unreliable

mode with reliable detection and
correction

§ Ex.: FT-GMRES with unreliable
matvec or preconditioner

Resilience in algorithms, not hardware
Ill-conditioned Stokes problem

matvec & preconditioner unreliable
random faults

matvec unreliable
deterministically spaced faults

Some “universals” of exascale computing

• Employ dynamic scheduling capabilities, e.g., dynamic runtime systems based DAGs
• Code to specialized “back-ends” while presenting high-level APIs to general users
• Exploit data sparsity to meet “curse of dimensionality” with “blessing of low rank”
• Process “on the fly” rather than storing all at once (esp. large dense matrices)
• Co-design algorithms with hardware, incl. computing in the network or in memory

Strategies in progress

Employ dynamic scheduling

��� �

��� ����

� ��

�

�

��

�

��

�

��

�

�

�

�

��� �

���

�

��

���

���

� �

�

�

�

�

�

����

	�

�

�

�� �

���	

�

� �

��

�

�

�

�

�

��

���

�

���

����

�

�

�

�

����

�� �

�

�

�

����

� �

�

�

����

�

����

����

�	��

� �����

�

�

�

�
��

�

�

����

����

�

�

����

����

����

����

Task graph for the first 3 stages of a
Generalized Symmetric EVP with 4 blocks

Int Conf Par Comput (ParCo) 2011

Employ dynamic scheduling

n Remove artifactual synchronizations in the form of subroutine boundaries
n Remove artifactual orderings in the form of pre-scheduled loops
n Expose more concurrency

LAPACK

MKL

PLASMA

Speedup
of 21x

Some “universals” of exascale computing

• Employ dynamic scheduling capabilities, e.g., dynamic runtime systems based DAGs
• Code to specialized “back-ends” while presenting high-level APIs to general users
• Exploit data sparsity to meet “curse of dimensionality” with “blessing of low rank”
• Process “on the fly” rather than storing all at once (esp. large dense matrices)
• Co-design algorithms with hardware, incl. computing in the network or in memory

Strategies in progress

Employ APIs to specialized back-ends

Employ APIs to specialized back-ends

applications

architectures
(ARM, AMD, IBM, Intel, NVIDIA, …)

algorithmic
infrastructure

n Tiling and recursive subdivision
create large numbers of small
problems that can be marshaled
for batched operations on GPUs
and MICs
" amortize call overheads
" polyalgorithmic approach based

on block size
n Non-temporal stores, coalesced

memory accesses, double-
buffering, etc. reduce sensitivity to
memory

n Code is complex
n Code is architecture-specific at the

bottom
n Need to hide the support from the

apps through an API

Some “universals” of exascale computing

• Employ dynamic scheduling capabilities, e.g., dynamic runtime systems based DAGs
• Code to specialized “back-ends” while presenting high-level APIs to general users
• Exploit data sparsity to meet “curse of dimensionality” with “blessing of low rank”
• Process “on the fly” rather than storing all at once (esp. large dense matrices)
• Co-design algorithms with hardware, incl. computing in the network or in memory

Strategies in progress

Exploit data sparsity

TLR

HLR
weakly

admissible

HLR
strongly

admissible

Complexities of rank-structured factorization
For a square dense matrix of O(N) :
n “Straight” LU or LDLT

§ Operations O(N3)
§ Storage O(N2)

n Tile low-rank (Amestoy, Buttari, L’Excellent & Mary, SISC, 2016)*

§ Operations O(k0.5 N2)
§ Storage O(k0.5 N1.5)
§ for uniform blocks with size chosen optimally for max rank k of any

compressed block, bounded number of uncompressed blocks per row

n Hierarchically low-rank (Grasedyck & Hackbusch, Computing, 2003)

§ Operations O(k2 N log2N)
§ Storage O(k N)
§ for strong admissibility, where k is max rank of any compressed block

* First reported O(k0.5 N2.5), then later O(k0.5 N2) for variant that reorders updates and recompression

Some “universals” of exascale computing

• Employ dynamic scheduling capabilities, e.g., dynamic runtime systems based DAGs
• Code to specialized “back-ends” while presenting high-level APIs to general users
• Exploit data sparsity to meet “curse of dimensionality” with “blessing of low rank”
• Process “on the fly” rather than storing all at once (esp. large dense matrices)
• Co-design algorithms with hardware, incl. computing in the network or in memory

Strategies in progress

Process “on the fly”

H matrix-H matrix multiplication

Fast matvecs ⇒ fast approx inversions with Newton-Schulz

Some “universals” of exascale computing

• Employ dynamic scheduling capabilities, e.g., dynamic runtime systems based DAGs
• Code to specialized “back-ends” while presenting high-level APIs to general users
• Exploit data sparsity to meet “curse of dimensionality” with “blessing of low rank”
• Process “on the fly” rather than storing all at once (esp. large dense matrices)
• Co-design algorithms with hardware, incl. computing in the network or in memory

Strategies in progress

Co-design algorithms with hardware

Co-design algorithms with hardware

Some “universals” of exascale computing

• Employ dynamic scheduling capabilities, e.g., dynamic runtime systems based DAGs
• Code to specialized “back-ends” while presenting high-level APIs to general users
• Exploit data sparsity to meet “curse of dimensionality” with “blessing of low rank”
• Process “on the fly” rather than storing all at once (esp. large dense matrices)
• Co-design algorithms with hardware, incl. computing in the network or in memory

Strategies in progress

• Exploit extra memory to reduce communication volume
• Perform extra flops to require fewer global operations
• Use high-order discretizations to manipulate fewer DOFs (w/more ops per DOF)
• Adapt floating point precision to output accuracy requirements
• Take more resilience into algorithm space, out of hardware/systems space

Strategies in practice

• Reside “high” on the memory hierarchy, close to the processing elements
• Rely on SIMD/SIMT-amenable batches of tasks at fine scale
• Reduce synchrony in frequency and/or span
• Reduce communication in number and/or volume of messages
• Exploit heterogeneity in processing, memory, and networking elements

Architectural imperatives

Closing haiku

Exascale summits
are brought closer within reach

with insights from math

print c/o Toshi Yoshida

Thank you!

اركش

david.keyes@kaust.edu.sa

	Lecture 01: Scalable Solvers: Universals and Innovations
	Citation

	SLS_keyes_lecture1

