422 research outputs found

    Reflectance Hashing for Material Recognition

    Full text link
    We introduce a novel method for using reflectance to identify materials. Reflectance offers a unique signature of the material but is challenging to measure and use for recognizing materials due to its high-dimensionality. In this work, one-shot reflectance is captured using a unique optical camera measuring {\it reflectance disks} where the pixel coordinates correspond to surface viewing angles. The reflectance has class-specific stucture and angular gradients computed in this reflectance space reveal the material class. These reflectance disks encode discriminative information for efficient and accurate material recognition. We introduce a framework called reflectance hashing that models the reflectance disks with dictionary learning and binary hashing. We demonstrate the effectiveness of reflectance hashing for material recognition with a number of real-world materials

    NeRO: Neural Geometry and BRDF Reconstruction of Reflective Objects from Multiview Images

    Full text link
    We present a neural rendering-based method called NeRO for reconstructing the geometry and the BRDF of reflective objects from multiview images captured in an unknown environment. Multiview reconstruction of reflective objects is extremely challenging because specular reflections are view-dependent and thus violate the multiview consistency, which is the cornerstone for most multiview reconstruction methods. Recent neural rendering techniques can model the interaction between environment lights and the object surfaces to fit the view-dependent reflections, thus making it possible to reconstruct reflective objects from multiview images. However, accurately modeling environment lights in the neural rendering is intractable, especially when the geometry is unknown. Most existing neural rendering methods, which can model environment lights, only consider direct lights and rely on object masks to reconstruct objects with weak specular reflections. Therefore, these methods fail to reconstruct reflective objects, especially when the object mask is not available and the object is illuminated by indirect lights. We propose a two-step approach to tackle this problem. First, by applying the split-sum approximation and the integrated directional encoding to approximate the shading effects of both direct and indirect lights, we are able to accurately reconstruct the geometry of reflective objects without any object masks. Then, with the object geometry fixed, we use more accurate sampling to recover the environment lights and the BRDF of the object. Extensive experiments demonstrate that our method is capable of accurately reconstructing the geometry and the BRDF of reflective objects from only posed RGB images without knowing the environment lights and the object masks. Codes and datasets are available at https://github.com/liuyuan-pal/NeRO.Comment: Accepted to SIGGRAPH 2023. Project page: https://liuyuan-pal.github.io/NeRO/ Codes: https://github.com/liuyuan-pal/NeR

    BRDF Representation and Acquisition

    Get PDF
    Photorealistic rendering of real world environments is important in a range of different areas; including Visual Special effects, Interior/Exterior Modelling, Architectural Modelling, Cultural Heritage, Computer Games and Automotive Design. Currently, rendering systems are able to produce photorealistic simulations of the appearance of many real-world materials. In the real world, viewer perception of objects depends on the lighting and object/material/surface characteristics, the way a surface interacts with the light and on how the light is reflected, scattered, absorbed by the surface and the impact these characteristics have on material appearance. In order to re-produce this, it is necessary to understand how materials interact with light. Thus the representation and acquisition of material models has become such an active research area. This survey of the state-of-the-art of BRDF Representation and Acquisition presents an overview of BRDF (Bidirectional Reflectance Distribution Function) models used to represent surface/material reflection characteristics, and describes current acquisition methods for the capture and rendering of photorealistic materials

    BRDF representation and acquisition

    Get PDF
    Photorealistic rendering of real world environments is important in a range of different areas; including Visual Special effects, Interior/Exterior Modelling, Architectural Modelling, Cultural Heritage, Computer Games and Automotive Design. Currently, rendering systems are able to produce photorealistic simulations of the appearance of many real-world materials. In the real world, viewer perception of objects depends on the lighting and object/material/surface characteristics, the way a surface interacts with the light and on how the light is reflected, scattered, absorbed by the surface and the impact these characteristics have on material appearance. In order to re-produce this, it is necessary to understand how materials interact with light. Thus the representation and acquisition of material models has become such an active research area. This survey of the state-of-the-art of BRDF Representation and Acquisition presents an overview of BRDF (Bidirectional Reflectance Distribution Function) models used to represent surface/material reflection characteristics, and describes current acquisition methods for the capture and rendering of photorealistic materials

    Selective BRDFs for High Fidelity Rendering

    Get PDF
    High fidelity rendering systems rely on accurate material representations to produce a realistic visual appearance. However, these accurate models can be slow to evaluate. This work presents an approach for approximating these high accuracy reflectance models with faster, less complicated functions in regions of an image which possess low visual importance. A subjective rating experiment was conducted in which thirty participants were asked to assess the similarity of scenes rendered with low quality reflectance models, a high quality data-driven model and saliency based hybrids of those images. In two out of the three scenes that were evaluated significant differences were not found between the hybrid and reference images. This implies that in less visually salient regions of an image computational gains can be achieved by approximating computationally expensive materials with simpler analytic models

    BxDF material acquisition, representation, and rendering for VR and design

    Get PDF
    Photorealistic and physically-based rendering of real-world environments with high fidelity materials is important to a range of applications, including special effects, architectural modelling, cultural heritage, computer games, automotive design, and virtual reality (VR). Our perception of the world depends on lighting and surface material characteristics, which determine how the light is reflected, scattered, and absorbed. In order to reproduce appearance, we must therefore understand all the ways objects interact with light, and the acquisition and representation of materials has thus been an important part of computer graphics from early days. Nevertheless, no material model nor acquisition setup is without limitations in terms of the variety of materials represented, and different approaches vary widely in terms of compatibility and ease of use. In this course, we describe the state of the art in material appearance acquisition and modelling, ranging from mathematical BSDFs to data-driven capture and representation of anisotropic materials, and volumetric/thread models for patterned fabrics. We further address the problem of material appearance constancy across different rendering platforms. We present two case studies in architectural and interior design. The first study demonstrates Yulio, a new platform for the creation, delivery, and visualization of acquired material models and reverse engineered cloth models in immersive VR experiences. The second study shows an end-to-end process of capture and data-driven BSDF representation using the physically-based Radiance system for lighting simulation and rendering

    Real-time Cinematic Design Of Visual Aspects In Computer-generated Images

    Get PDF
    Creation of visually-pleasing images has always been one of the main goals of computer graphics. Two important components are necessary to achieve this goal --- artists who design visual aspects of an image (such as materials or lighting) and sophisticated algorithms that render the image. Traditionally, rendering has been of greater interest to researchers, while the design part has always been deemed as secondary. This has led to many inefficiencies, as artists, in order to create a stunning image, are often forced to resort to the traditional, creativity-baring, pipelines consisting of repeated rendering and parameter tweaking. Our work shifts the attention away from the rendering problem and focuses on the design. We propose to combine non-physical editing with real-time feedback and provide artists with efficient ways of designing complex visual aspects such as global illumination or all-frequency shadows. We conform to existing pipelines by inserting our editing components into existing stages, hereby making editing of visual aspects an inherent part of the design process. Many of the examples showed in this work have been, until now, extremely hard to achieve. The non-physical aspect of our work enables artists to express themselves in more creative ways, not limited by the physical parameters of current renderers. Real-time feedback allows artists to immediately see the effects of applied modifications and compatibility with existing workflows enables easy integration of our algorithms into production pipelines

    Image based surface reflectance remapping for consistent and tool independent material appearence

    Get PDF
    Physically-based rendering in Computer Graphics requires the knowledge of material properties other than 3D shapes, textures and colors, in order to solve the rendering equation. A number of material models have been developed, since no model is currently able to reproduce the full range of available materials. Although only few material models have been widely adopted in current rendering systems, the lack of standardisation causes several issues in the 3D modelling workflow, leading to a heavy tool dependency of material appearance. In industry, final decisions about products are often based on a virtual prototype, a crucial step for the production pipeline, usually developed by a collaborations among several departments, which exchange data. Unfortunately, exchanged data often tends to differ from the original, when imported into a different application. As a result, delivering consistent visual results requires time, labour and computational cost. This thesis begins with an examination of the current state of the art in material appearance representation and capture, in order to identify a suitable strategy to tackle material appearance consistency. Automatic solutions to this problem are suggested in this work, accounting for the constraints of real-world scenarios, where the only available information is a reference rendering and the renderer used to obtain it, with no access to the implementation of the shaders. In particular, two image-based frameworks are proposed, working under these constraints. The first one, validated by means of perceptual studies, is aimed to the remapping of BRDF parameters and useful when the parameters used for the reference rendering are available. The second one provides consistent material appearance across different renderers, even when the parameters used for the reference are unknown. It allows the selection of an arbitrary reference rendering tool, and manipulates the output of other renderers in order to be consistent with the reference
    corecore