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Figure 1: (a) Surface-based fabric appearance model [Guarnera et al. 2017] for commercial interior design applications. (b)

demonstrates data-driven BSDFs and the use of proxy geometry for rendering [Ward et al. 2012, 2014]. (c) Example of BRDF

parameter remapping [Guarnera et al. 2019]: source models (on the left), remapped appearance (at the center), error map (on

the right).

ABSTRACT

Photorealistic and physically-based rendering of real-world envi-
ronments with high fidelity materials is important to a range of
applications, including special effects, architectural modelling, cul-
tural heritage, computer games, automotive design, and virtual
reality (VR). Our perception of the world depends on lighting and
surface material characteristics, which determine how the light is
reflected, scattered, and absorbed. In order to reproduce appear-
ance, we must therefore understand all the ways objects interact
with light, and the acquisition and representation of materials has
thus been an important part of computer graphics from early days.
Nevertheless, no material model nor acquisition setup is without
limitations in terms of the variety of materials represented, and
different approaches vary widely in terms of compatibility and ease
of use.

In this course, we describe the state of the art in material appear-
ance acquisition and modelling, ranging from mathematical BSDFs
to data-driven capture and representation of anisotropic materials,
and volumetric/thread models for patterned fabrics. We further
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address the problem of material appearance constancy across dif-
ferent rendering platforms. We present two case studies in architec-
tural and interior design. The first study demonstrates Yulio, a new
platform for the creation, delivery, and visualization of acquired
material models and reverse engineered cloth models in immersive
VR experiences. The second study shows an end-to-end process of
capture and data-driven BSDF representation using the physically-
based Radiance system for lighting simulation and rendering.
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1 INTRODUCTION

Humans have the capability to identify which material an object
is made of, simply by looking at it, even though the appearance
of materials may vary significantly depending on a wide range
of properties such as colour, gloss, translucency, and texture, that
interact with each other in a complex way. Moreover, the geometry
of an object, the angle from which the material is viewed and the
lighting directions influence Human perception of materials. A ma-
jor challenge in computer graphics is how to simply and accurately
measure the appearance of material characteristics from real-world
objects and implement practical editable synthetic materials accu-
rately matching the appearance of the original.

A variety of rendering systems are used in the software pipeline,
resulting in a need for optimised material representations. This
demands both a flexible acquisition process and representation
methods. Unfortunately, up to now there is no widely adopted so-
lution good enough for a wide range of commercial applications
without significant labour and money. There is no standardised
material model format for material capture and acquired mate-
rial models have a high memory footprint. Finally, there is little
standardisation across renderers, and material models are hard to
edit by artists. Moreover, Virtual Reality (VR) is raising the bar
for efficient, realistic and cost effective material modelling since it
poses additional issues, related to the scale versatility, the need of
tiling artifact reduction and the computational limitations of mobile
devices.

This course introduces a broad range of material capture and rep-
resentation methods. Characteristics of mathematical BSDF models
as well as more complex, data-driven techniques for physically-
based rendering are presented. Material appearance constancy
across different rendering platforms is addressed, and practical
applications in VR, architecture, and interior design are highlighted.
The course is partly based on our previous SIGGRAPH Asia 2016
and SIGGRAPH 2017 Courses. We have revised the material taking
into account the feedback from beginners, students, artists and re-
searchers to increase the educational value. Non-experts in the field
can easily follow the course and benefit from our comprehensive
review. After our introduction to the fundamental concepts, the
course gradually moves to most advanced and up to date concepts
on both the representation and acquisition side, such as the use of
deep learning based techniques to estimate BRDFs/SVBRDFs, as
well as data-driven techniques for physically-based rendering.

2 SYLLABUS

The outline of the half-day course is reported below.

(1) Introduction and Course Overview −Mashhuda Glencross,
5 minutes;

(2) Materials for Virtual Reality: A Case Study − Ian Hall, 25
minutes

(a) Barriers to use in VR.
(b) Interior Design VREs.

(3) Material Appearance representation (Sec 4) −Giuseppe Clau-
dio Guarnera , 45 minutes;

(a) Taxonomy of the reflectance functions (BRDF, BTDF, BSDF,
BTF, BSSRDF).

(b) BRDF parameterization and properties.

(c) Physically based models.
(d) Appearance models for fabric.

(4) Material appearance constancy (Sec 5) − Dar’ya Guarnera,
20 minutes;

(a) BRDF parameter remapping
(5) Material capture Methods (Sec 6) − Mashhuda Glencross, 20

minutes;
(a) Acquisition Setups and trade-offs.
(b) Gonioreflectometers.
(c) Image Based acquisition.
(d) Catadioptric setups.
(e) Linear Light Source setups.
(f) LCD Light Source setup.
(g) Flash Light setups.
(h) Spherical Gantries setups.

(6) Break, 15 minutes.
(7) ApplyingDeep Learning (Sec. 6.7)−Giuseppe Claudio Guarn-

era, 20 minutes.
(a) Deep learning for material appearance estimation.

(8) General data-driven approach to BSDFs based on detailed
measurements (Sec 4.6) − Gregory J. Ward, 70 minutes

(a) PAB-opto goniophotometer
(b) Interpolating BSDFs using radial basis functions and ad-

vection between incident directions
(c) BSDF representations appropriate for rendering
(d) How to best make use of free, available software and APIs

(9) Questions, 5 minutes
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3 MATERIAL APPEARANCE: REFLECTANCE
FUNCTIONS AND PROPERTIES

The BRDF is a radiometric function, currently used to varying levels
of accuracy in photorealistic rendering systems. It describes, in the
general case, how incident energy is redirected in all directions
across a hemisphere above the surface.

Historically, the BRDF was defined and suggested over the more
generalised BSSRDF (Bidirectional Scattering- Surface Reflectance-
Distribution function) [Jensen et al. 2001] by Nicodemus [Nicode-
mus et al. 1977], as a simplified reflectance representation for
opaque surfaces: the BRDF assumes that light entering a material
leaves the material at the same position, whereas the BSSRDF can
describe light transport between any two incident rays on a surface.
Many common translucent materials like milk, skin and alabaster
cannot be represented by a BRDF since they are characterised by
their subsurface scattering behavior that smooth the surface de-
tails, with the light shining through them [Goesele et al. 2004].
These materials are expensive to render and many techniques have
been proposed [Jensen et al. 2001], [Dachsbacher and Stamminger
2003], [Hao et al. 2003], [Donner et al. 2008], [D’Eon and Irving
2011], [Klehm et al. 2015].

The BRDF is defined as the ratio of the outgoing radiance to the
incoming irradiance:

fr (vi, vr) =
dLr (vr)
dEi (vi)

=

dLr (vr)
Li (vi) cosθidωi

(1)

where vi and vr are vectors describing the incident (i) and exitant
(r ) directions, Ei is incident irradiance (i.e. the incident flux per unit
area of the surface), Li is incident radiance (i.e. the reflected flux
per unit area per unit solid angle) and Lr is the reflected radiance;
the units of a BRDF are inverse steradian [1/sr ]. Slide 11 shows the
geometry of the BRDF and the vectors used for parameterisation:

• n is the normal at a specific point p on the surface
• t is the tangent vector. It is perpendicular to the normal n
and hence it is tangent to the surface at p.

• b is the bi-tangent vector, defined as b = n × t. In literature
it is also named as binormal vector.

• h is the halfway vector [Rusinkiewicz 1998], defined as: h =
(vi+vr)
∥vi+vr ∥ .

The vectors t, b and n define a local reference frame; another pos-
sibility is to have a local reference frame in which one of the axis

is aligned with h and the other two are given by b’ =
(n×h)
∥n×h∥ and

t’ = b’ × h.
There exist other coordinate system and parameterisation, espe-

cially suited for dimensionality reduction of some isotropic BRDF
models, for instance the barycentric coordinate system with re-
spect to a triangular support proposed by Stark et al. [Stark et al.
2005], or the hybrid model described by Barla et al. which could
lead to a better repartition of samples to cover most of the effects of
materials [Barla et al. 2015]. Edwards et al. proposed a framework
for transforming the halfway vector h into different domains to
enforce some property of the BRDFs but compromising others.

The BRDF aims to represent the reflectance characteristics of
homogeneous materials. An extension of the BRDF concept to non-
homogeneous materials is given by the Spatially Varying BRDF
(SVBRDF), which can be viewed as a spatial collection of BRDFs
distributed over the surface, to simulate the appearance of smooth
materials [Haindl and Filip 2013]. The SVBRDF parameterisation
includes extra parameters with respect to the BRDF, to take into
account the location over the surface: fr (x ,y, vi, vr). Capturing a
SVBRDF generally requires long measurements and processing and
can require large, specialised and sometimes expensive hardware
rigs to capture the reflectance data. SVBRDF models represent
surfaces that are nearly flat and opaque, since the model is restricted
by the BRDF reciprocity and energy conservation properties and
can not capture subsurface scattering.

Many real world surfaces exhibit local variations not only in
reflectance but also in small-scale geometry, causing mesoscopic
effects like inter-reflections, self-occlusions and self-masking, not
captured by a SVBRDF representation [Haindl and Filip 2013]. Dana
et al. [Dana et al. 1999] suggested that the BRDF is suitable to char-
acterise surface variation at a coarse scale and introduced the term
BTF (Bidirectional Texture Function), an image-based representa-
tion that includes small-scale geometry and can describe a fine-scale
appearance of a rough surface. The aforementioned mesoscopic
effects are difficult to quantify and separate from the measured
data, hence BTF acquisition generally needs a large number of sam-
ples of the surface as well as high-end hardware support, due to
lengthy acquisition times and storage demands [Haindl and Filip
2013]. Nevertheless, there exist low cost acquisition setups, like
the kaleidoscopic device by Han and Perlin [Han and Perlin 2003].
BTFs generally result in very realistic material appearance, since
BTFs capture spatial variations of the whole surface, unlike BRDFs.
Despite of this, many BTF datasets can be approximated as a sparse
linear combination of rotated analytical BRDFs [Wu et al. 2011].
The first BTF database, described in [Dana et al. 1999], contains
61 real-world surfaces, each observed under 205 different combi-
nations of lighting and viewing illuminations (plus 205 additional
measurements for anisotropic surfaces), consists of over 14.000
images.
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For a homogeneous material, an intermediate representation
between the BSSRDF and the BRDF, comprising scattering effects
for both reflection and transmission, is given by the Bidirectional
Scattering Distribution Function (BSDF). The concept of BSDF is
generally understood as a sum of a BRDF and a Bidirectional Trans-
mittance Distribution Fuction (BTDF), the latter modelling how
the light passes through a (semi)transparent surface [Walter et al.
2007], [Haindl and Filip 2013].

The taxonomy of the reflectance functions introduced in this
Section, showing their relationships with the BRDF along with
their parameterisation, is reported in Slide 8: each of them can be
considered as a special case of the BRDF [Ashikhmin et al. 2001].
A BRDF should respect some basic physical properties, namely
non-negativity, reciprocity and energy conservation:

• non-negativity: the BRDF is a non-negative function, hence
for any pair of incident and outgoing direction fr (vr, vi) ≥ 0;

• the Helmholtz reciprocity principle states that the light path
is reversible, for any pair of incident and outgoing direction:
fr (vi, vr) = fr (vr, vi). This principle holds only for corre-
sponding states of polarisation for incident and emerging
fluxes, whereas large discrepancies might occur for non-
corresponding states of polarisation [Clarke and Parry 1985].
In designing a rendering system possible non-reciprocity
should be taken into account [Veach 1997].

• Energy conservation assumes that the energy reflected can-
not exceed incident energy [Dorsey et al. 2007]: Lr ≤ Ei
hence over the unit hemisphere Ω+ above the surface

∀vi,

∫

Ω+

fr (vi, vr)(vr · n)dωr ≤ 1 (2)

3.1 Lambertian, specular and glossy BRDFs

There are many reflectance models that are simplified subsets of
the BRDF function. One of the simplest reflectance models is the
Lambertian model, which represents the perfect diffuse reflectance
and is often used in many interactive applications, since it requires
no recalculation with the change of viewing direction. The model
simply assumes that the surface reflects light uniformly in all direc-
tions with the same radiance (see Slide 19, in light blue) constant
with vr unlike other BRDF models: fr (vi, vr) = ρd/π , where ρd is
the diffuse albedo.

In the case of a pure specular BRDF all the light is reflected
in a single direction, for a given incident direction (see Slide 19,
in blue). In fact, light that is incident within a differential solid
angle dωi from direction (θi ,ϕi ) is reflected in a differential solid
angle ωr in direction (θi ,ϕi + π ), hence the pure specular BRDF
can be formalised with a double Dirac delta function: fr (vi, vr) =
ρsδ (θi − θr )δ (ϕi + π − ϕr ), where ρs = Lr /Li is the specular
albedo. Perfect specularity is valid only for highly polished mirrors
and metals.

Surfaces not perfectly smooth, which have some roughness at the
micro-geometry level, have a glossy appearance and show broader
highlights, other than specular reflections (see Slide 19, in purple).

Some materials, like the surface of the moon or some biological
tissues, show a phenomenon called retro-reflection in which light is
scattered not only in the forward direction but also in the direction
of the illuminant.

BRDFs can be classified by taking into account the characteristics
of the material to represent:

• Isotropic BRDFs are able to represent materials whose reflec-
tion does not depend on the orientation of the surface, since
the reflectance properties are invariant to rotations of the
surface around n.

• Anisotropic BRDFs can describe materials whose reflection
change with respect to rotation of the surface around n; this
class includes materials like brushed metal, satin, velvet and
hair.

The Fresnel effect predicts the fraction of power which is re-
flected and transmitted and has a great impact on the appearance.
Many basic BRDF models have lost importance in the context of
physically based modelling because they do not account for a Fres-
nel term. For conductive materials, like metals, the fraction of light
reflected by pure specular reflection is roughly constant for all an-
gles of incidence, whereas for non-conductivematerials (dielectrics),
the amount of light reflected increases at grazing angles. for a com-
parative example of the behaviour of metals and dielectrics. The
fraction of light reflected is called Fresnel reflectance, which can
be obtained from the solution of Maxwell’s equations and depends
also on the polarisation state of the incident light. For unpolarised
light, the Fresnel reflectance ℑ at the interface between the surface
and the air is given by

ℑ(η,θi ,θt ) =
1

2

[

(

η cosθi − cosθt
η cosθi + cosθt

)2

+

(

cosθi − η cosθt
cosθi + cosηθt

)2
]

,

(3)
where η is the index of refraction of the surface and θt is the angle
of transmission. In Computer Graphics, it is very common to use
Schlick’s approximation of the Fresnel reflectance [Schlick 1994]:
ℑ(θ ) = ℑ(0)+ (1−ℑ(0))(1− cos(θ ))5; in Section 4 we will generally
use the symbol ℑ to refer either to the exact Fresnel reflectance or
one of its approximations.

4 TAXONOMY OF THE BRDF MODELS

Phenomenological models are entirely based on reflectance data,
which is fitted to analytical formulas, thus approximating the re-
flectance and reproducing characteristics of real world materials.
Some of the most important phenomenological models are de-
scribed in Sections 4.1 and 4.2.

Physically-based models, reported in Sections 4.3 and 4.4, are
based on Physics and Optics with the assumption that the surface
is rough at a fine scale, therefore described by a collection of micro
facets with some distribution D of size and direction. The most
common mathematical model has the form:

fr (vi, vr) =
D ·G · ℑ
4 cosθiθr

(4)

which also takes into account the Fresnel termℑ. Effect likemasking
and self-shadowing [Akenine-Möller et al. 2008] depend on the
projected area of the microfacets and hence on the distribution D,
generally described by the geometrical attenuation term G [Heitz
2014].

A measured BRDF can be fitted to analytic models and employed
to reconstruct the BRDF, thus significantly reducing storage size.
The down side of this strategy is related to the inflexibility of many
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models, hard to edit and able to represent only limited classes of
materials. A different solution is to to approximate measured BRDFs
with a suitable function space, e.g. spherical harmonics or wavelets,
weighted sum of separable functions or product of functions. We
refer to this class of models as Data-Driven models (Sec. 4.6).

Many medium, such as hair, fur, cloth and knitwear are difficult
to describe by a surface model. These materials, and objects with
highly complex boundary, are better described by volumetric ap-
pearance models [Kajiya and Kay 1989; Perlin and Hoffert 1989;
Xu et al. 2001], in particular for closer viewing distance, whereas
BRDFs can be used from farther away. Appearance models for fabric
are reported in Section 4.5.

An important aspect is the practicality of a model in a rendering
system, which requires a suitable technique for importance sam-
pling. When calculating the radiance direction of a surface in a
scene, accounting for the contribution of light from all possible di-
rections is expensive to compute, therefore Monte Carlo techniques
are used to estimate the values with fewer samples [Haines 1991],
based on a stochastic process. However, the number of samples
should be sufficient to produce consistent estimations, otherwise
the results will vary significantly.

A Table which summarizes the characteristics of the reflectance
models described in this Course is reported in [Guarnera et al. 2016].

4.1 Phenomenological models for isotropic
materials

One of the earliest models for non-Lambertian surfaces is the
Phong [Phong 1975] model, based on the cosine law and useful
for isotropic materials with a slightly rough surface: fr (vi, vr) =
ks (vr · rvi)n , where ks is a specular constant in the range [0,∞],
rvi is the direction of vi after being perfectly reflected and n con-
trols the shape of the specular highlight. This model does not take
into account energy conservation nor reciprocity. Moreover, it does
not capture the reflection behaviour of real surfaces at grazing
angles. It is not normalised, however some normalisation factors
for cosine lobes have been proposed, either based on double-axis
moments [Arvo 1995] or with the simpler option of a power series
in (n · h) with a suitable sequence of exponents [Lewis 1994].

The Blinn-Phong reflection model [Blinn 1977], is derived from
the Phong model, but makes use of the halfway vector h and the
normal n instead of the reflection vector rvi, thus reducing the
computational cost associated with the need to constantly calculate
the latter vector:

fr (vi, vr) = ks (n · h)n (5)

Although it has been used as the default shading model for OpenGL
and Direct3D until recent times, it shares the same limitations
of the Phong model, being physically not plausible and not able
to capture metallic and mirrored appearance. Since it follows the
cosine function, if n goes to infinity the reflected radiance and the
albedo converges to zero towards grazing angles.

Brady et al. [Brady et al. 2014] used Genetic Programming to
learn new analytic BRDF models. A few basic BRDF models are
used as a starting point (seeds), on which symbolic transformations
are applied. The fitness function calculates the residual error of
each variant after fitting the free parameters to the training set of
isotropic materials, a subset of the MERL-MIT database [Matusik

et al. 2003]. The random search is heuristic-based, trying to adapt
the starting models to the measured ground truth data and tends
to produce a large set of candidates expressions. To allow a better
exploration of the search space some suboptimal variations that
increase the error are allowed and for the same purpose an island
model genetic algorithm is used, allowing only sporadic interactions
between sub-populations. The grammar does not guarantee that
the resulting models respect energy conservation and reciprocity,
hence these properties need to be taken into account by the fitness
function; in [Brady et al. 2014] is reported a table with some variants
for which the properties have been numerically verified.

4.2 Phenomenological models for anisotropic
materials

The Ward reflectance model [Ward 1992] is able to represent both
isotropic and anisotropic reflection; it combines specular and diffuse
components of reflectance, representing specular peaks through
Gaussian distributions. The model specifies an efficient for Monte
Carlo sampling. The Ward model has four parameters, which can
be set independently, therefore it can be fitted to a large class
of measured data. The anisotropic model makes use of the two
parameters αx and αy to control the width of the gaussian lobe in
the two principal directions of anisotropy:

fr (vi, vr) =
ρd
π
+

ρs
√

cos (θi ) cos (θr )
· e

− tan2 (θh )
(

cos2 θh
αx 2 +

sin2 θh
αy 2

)

4παxαy
(6)

where ρs controls the magnitude of the lobe and 4πα2 is a nor-
malisation factor. The isotropic Ward model is obtained by setting
αx = αy .

The model does not obey the principle of energy conservation
at grazing angles, which has been investigated in [Neumann et al.
1999], [Dür 2006], [Geisler-Moroder and Dür 2010]. A different
normalisation factor has been proposed in [Dür 2006] to prevent
numerical instabilities and to correct the loss of energy at flat an-

gles, specifically (4 cos (θi ) cos (θr )) instead of
(

4
√

cos (θi ) cos (θr )
)

,

however it shares the problem of diverging to infinity with the orig-
inal Ward model. A new physically plausible version of the model
has been proposed in [Geisler-Moroder and Dür 2010], which meets
the energy conservation principle even at grazing angles by using
the following normalisation factor:

2 (1 + cosθi cosθr + sinθi sinθr cosϕr − ϕr )
(cosθi cosθr )4

. (7)

Neumann et al. [Neumann et al. 1999] proposed some modifica-
tions and correction factors for the reciprocal [Phong 1975], [Lafor-
tune andWillems 1994], [Blinn 1977] and [Ward 1992] models. The
correction factors can be seen as shadowing and masking terms
to make the models physically plausible. Moreover the modified
models can be used to render metals and other specular objects and
for each of them an importance sampling procedure is described.

The Lafortune [Lafortune et al. 1997] model is a flexible, empir-
ical model designed to fit measurements from real surfaces and
compactly represent them [Westin et al. 2004]. The model is a
generalisation of the cosine lobe model with multiple steerable
lobes, based on the Phong model. The primitive functions obey the
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Energy Conservation and Reciprocity principles. This model allows
lobe specification on the surface in terms of shape and direction,
by simply setting up to 3 parameters and an exponent :

fr (vi, vr) =
ρd
π
+

N
∑

l=1

(

Cx,lvi xvr x +Cy,lviyvr y +Cz,lvi zvr z

)nl

(8)
where N is the number of lobes, Cx , Cy , Cz are parameters which
absorb the specular albedo and control retro-reflections (by setting
Cx , Cy and Cz to positive values), anisotropy (with Cx , Cy ) and
off-specular peaks (if Cz is smaller than −Cx = −Cy ). Lafortune′s
reflection model can represent generalised diffuse reflectance as
the model is able to reflect radiance evenly in all directions, by
setting Cx = Cy = 0; the Lambertian model can be obtained by
setting N = 0. A comparative study shows that the Lafortune
model performs better than the Phong, Ward and He et al. models
in representing measured BRDFs like white paper, rough plastic,
rough aluminium and metal, since it was designed to fit almost any
BRDF data [Westin et al. 2004].

4.3 Physically based models for single-layered
material

The Cook-Torrance model [Cook and Torrance 1982] takes into
account both specular and diffuse reflections, the latter modeled as
Lambertian reflections. As for the specular component, the model
assumes that only the fraction of the facets oriented in the direction
of h contributes to the final reflection, moreover it accounts for
how many facets are visible from different view angles and how
they reflect light [Weyrich et al. 2009]. These factors are modeled
respectively through the functions D, G and ℑ:

fr,s (vi, vr) =
ℑ (θr )D(h)G (vi, vr)
π cos (θr ) cos (θi )

. (9)

The expression of the distribution D(h) is generally a Gaussian:

D(h) = cos (θr ) exp−(
α
m )2 , where α is the angle between vi and the

reflected vr andm is a roughness parameter. The attenuation term
G includes both the shadowing and masking effects:

G (vi, vr) = min

(

1,
2(n · h)(n · vr)

vr · h
,
2(n · h)(n · vi)

vr · h

)

. (10)

One of the important contributions of this work is the formulation
of the Fresnel term ℑ, which represents the reflection of polished
microfacets, approximated with the following expression:

ℑ (θ ) = (д − c)2

2 (д + c)2
(

1 +
(c(д + c) − 1)2

(c(д − c) + 1)2
)

(11)

where c = vr · h and д = η2 + c2 − 1, being η the index of refraction.
The Cook-Torrance model can properly model metals, plastic with
varying roughness and view-dependent changes in colour, although
it does not follow the energy conservation principle in the entire
hemisphere; additional drawbacks are the not intuitive parameters.

Oren-Nayar [Oren and Nayar 1994] enhanced the Lambertian
model for rough diffuse surfaces, to describe in a more realistic
way the behaviour of real-world materials like concrete, sand and
cloth, which show increasing brightness as the viewing direction
approaches the light source direction, rather than being indepen-
dent of the viewing direction. A rough diffuse surface is modelled as

a collection of long symmetric V-cavities, each of which consists of
two microfacets with a Lambertian reflectance; microfacets orien-
tated toward the light source diffusely reflect some light back to the
light source (backscatter). The model takes into account masking,
shadowing and inter-reflections. The expression is given by:

fr (vi, vr) =
ρd
π

(A + Bmax (0, cos (ϕi − ϕr )) sin (α) tan (β)) (12)

where α = max (θr ,θi ) ; β = min (θr ,θi ); given the surface rough-
ness σ , the expressions for A and B are:
A = 1 − [(0.5 · σ 2)/(σ 2

+ 0.33)]; B = (0.45 · σ 2)/(σ 2
+ 0.09). This

model, widely used in computer graphics, obeys the reciprocity
principle and reduces to the Lambertian model when σ = 0.

Walter et al. [Walter et al. 2007] extend the microfacets theory
introduced by [Cook and Torrance 1982] to simulate transmission
through etched glass and other rough surfaces, thus taking into
account the BSDF. The work by Smith [Smith 1967], which in-
vestigated the geometrical self-shadowing of a surface described
by Gaussian statistics, is also extended by deriving a shadowing
function from any microfacet distribution D; the BRDF component
follows 4.

The distribution D is different from previous models and has
been developed to better fit measured data; it is named GGX and
has the following expression:

D(h) =
αд

2χ+(h · n)
π cos4 θh

(

αд2 + tan2 θh
)2

(13)

where αд2 is a width parameter and χ+(x) is equal to one if x > 0
and zero if x ≤ 0. The GGX distribution has a stronger tail than com-
monly used distributions, such as Beckmann and Phong, and thus
tends to have more shadowing; in [Bagher et al. 2012] it has been
observed that the GGX distribution is identical to the Trowbridge-
Reitz distribution [Trowbridge and Reitz 1975]. FromD it is possible
to derive a simple sampling equation and the expression ofG , which
is given by:

G(vi, vr, h) ≈ G1(vi, h)G1(vr, h) (14)

G1(vx, h) = χ+
(

vx, h

vx,n

)

2

1 +
√

1 + αд2 tan2 θx

. (15)

The GGX distribution fails to properly capture the glowy highlights
of highly polished surfaces like the chrome sample in the MERL
database [Matusik et al. 2003], with a narrow specular peak and
a much wider specular tail [McAuley et al. 2012]. An anisotropic
extension of the distribution, named Generalised-Trowbridge-Reitz,
has been proposed by Burley [McAuley et al. 2012]; a symmetric
extension of the GGX to the entire ellipsoid domain, suitable for
volumetric anisotropic materials, is described by Heitz et al. [Heitz
et al. 2015].

Bagher et al. suggested a function of tan2 θh
−p

for the distri-
bution D, where p depends on the model [Bagher et al. 2012], in
order to enhance data fitting for single-layered materials like metals,
metallic paints and shiny plastics, otherwise very difficult to fit with
commonly used distributions and generally requiring several lobes,
due to the shape of the decrease in their BRDFs, close to exponential
at large angles but sharper at small angles. The model presented
is the Cook−Torrance [Cook and Torrance 1982], in which the
microfacets distribution is designed to efficiently and accurately
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approximate measured data. The distribution resulting from the
suggested slope is called SGD (Shifted Gamma Distribution):

D(θh ) =
χ[0,π /2](θh )αp−1e−

α 2
+tan2 θh
α

π cos4 θhΓ(1 − p,α)
(

α2 + tan2 θh
)p (16)

where α is a fitting parameter, χ[0,π /2](θh ) is is equal to 1 if θh <
π/2 and 0 otherwise, Γ is the incomplete Gamma function:

Γ(1 − p,α) =
∫ ∞

α
t−pe−tdt . (17)

From the SGD it is possible to derive the shadowing functionG and
a sampling method.

Low et al. [Löw et al. 2012] proposed two isotropic models for
glossy surfaces, based either on the Rayleigh-Rice light scattering
theory (smooth surface BRDF) or on the microfacet theory (micro-
facet BRDF). Both models make use of a modified version of the
ABC model [Church et al. 1990], [Church and Takacs 1991], which
was originally formulated to fit the Power Spectral Density of some
measured smooth surfaces. The PSD describes the surface statistics
in terms of the spacial frequencies fx and fy , which depend on the
wavelength λ of the incident light:

fx (vi, vr) = (sinθr cosϕr − sinθi ) /λ; (18)

fy (vi, vr) = (sinθr sinϕr ) /λ. (19)

The ABC model [Church et al. 1990], [Church and Takacs 1991] is
able to model the inverse power law shape PSD of polished data,
and it is given by:

PSD(f ) = A
′/
(

1 + B2 f 2
)
C+1
2

(20)

where A is determined by low-frequency spectral density, B = 2πl0,

l0 is the autocorrelation length, C > 0, f =
√

fx
2
+ fy

2, A
′
=

Γ((c + 1)/2)AB/[2Γ(c/2)√π ] and Γ is the gamma function. In [Löw
et al. 2012] the ABC model is simplified to S(f ) = a/

(

1 + b f 2
)c
,

where the mapping of the new parameters to the original ABC is:
a = A

′
, b = B2 and c = (C + 1)/2; in practice narrower specular

peaks are obtained by increasing b, whereas c controls the fall-off
rate of wide-angle scattering. The smooth surface BRDF has the
following expression:

fr (vi, vr) = (kd/π ) +O ℑ(θd ) S
(

∥Dp∥
)

(21)

where kd is a scaling factor for the Lambertian term, O is a modi-
fied obliquity factor, ℑ(θd ) is the Fresnel term in Equation 9 with
extinction coefficient set to zero and aimed to approximate the
reflectivity polarisation factor, which depends on the surface ma-
terial properties. Dp is the projected deviation vector, defined as
Dp = vr,p − rvi,p , where vr,p is the projection of vr on the surface
tangent plane and rvip is the projection of the mirror direction of
vi on the surface tangent plane. To deal with unreliable data near
grazing angles, the value suggested for the obliquity factor O is 1
instead of the typical definition ofO = cosθi cosθr . The microfacet
model is based on Cook-Torrance [Cook and Torrance 1982] and
makes use of the modified ABC distribution:

fr (vi, vr) =
kd
π
+

ℑ(θh )S
(√

1 − h · n
)

G(vi, vr)
vi · n vr · n

(22)

where ℑ and G are the same as in Equation 9, S is the modified
ABC distribution and kd is again a scaling factor for the diffuse
component; the parameter a of S is used as a scaling factor for the
specular term, hence the distribution is not normalised. The model
is reciprocal but does not obey energy conservation. Both models
provide accurate fits to measured data, with the microfacet model
showing lower errors, and accurately represent scattering from
glossy surfaces with sharp specular peaks and non-Lambertian
wide angle scattering. For both models an efficient importance
sampling strategy is suggested.

The discrete stochastic model by Jakob et al. [Jakob et al. 2014]
extends the microfacet theory by replacing the continuous distribu-
tion of microfacets in the Cook-Torrance model [Cook and Torrance
1982] with a discrete one, thus assuming that a surface consists of
a high but finite number of scattering particles. This assumption
facilitates modelling a controllable, non-smooth spatially varying
BRDF appearance of a glittery surface, like mica flakes, ice crystals,
metallic car paint and craft glitter for decorations. The notion of
multiscale BRDF is introduced, which takes into account finite areas
and solid angles rather than single points and directions:

fr (A, vi,ωr ) =
(vi · h)ℑ(vi · h)D(A,ωh ),G(vi, vr,n)

a(A)σ (ωr )(vi · n)(vr · n)
(23)

whereA is the area around the point p into account, a(A) its surface
area, ωh := {(vi + vr/∥vi + vr∥), vr ∈ ωr } is the set of microfacet
normals that reflect from vi into the finite solid angle ωr around
vr, σ (ωr ) is the area of ωr on the unit sphere, ℑ is the fresnel
term, G models shadowing and masking. The discrete multiscale
microfacets distribution D is defined as:

D(A,ωh ) =
1

N

N
∑

k=1

1ωh (vhk )1A(pk ) (24)

where pk and vh
k are the position and normal of the kth microfacet

of a list of N microfacets, 1A and 1ωh are the indicator functions of
the sets A and ωh respectively. The indicator functions control the
appearance of the surface, since they determine which microfacets
in A reflect light into the solid angle ωr around vr: a high number
of participating facets gives a smoother appearance than a low
number, which gives instead a strongly glittery appearance. An
efficient implementation of the model is discussed, together with
an importance sampling strategy for Monte Carlo renderers.

4.4 Physically based models for multi-layered
material

The multilayered model by Ershov et al. [Ershov et al. 2001] repre-
sents car paint and consists of binder pigment particles, flakes and
flake coatings. The model approximates the BRDF of each sub-layer
and then merges sub-layers together and it is able to produce realis-
tic appearance for car paints and models their components (binder,
pigment particles, flakes). However, due to the complexity of the
layered model, the computational time is significantly high. An later
model is simplified to bi-layered materials and presents a substrate
layer as a solid paint film where the reflectance is Lambertian and
a transparent binder layer with embedded flakes. Flakes are consid-
ered as partially transparent coloured mirrors, with the assumption
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that the reflectance of flakes does not depend on the incident direc-
tion and inter-reflections between flakes, so their interaction with
light is modelled using constant reflectance values [Ershov et al.
2004]. A large number of parameters are required and not all of
them can be directly measured. This model is suitable for interac-
tive design of automotive paints, by solving through optimisation
the problem of finding pigment composition of a paint from its
bidirectional reflectance distribution function.

To simulate both smooth and rough multi-layered materials, Wei-
dlich and Wilkie [Weidlich and Wilkie 2007] proposed to combine
several microfacet based layers into a single physically plausible
BRDF model. Their model assumes that any microfacet is large in
relation to the layer thickness, models the absorbtion of part of
light when it travels inside a transparent material and include a
total reflection term, when light propagates at an angle of incidence
greater than the critical angle; the simplicity of the model does not
allow reproducing effects like iridescence.

Rump et al. [Rump et al. 2008] proposed the first hybrid ana-
lytical BRDF and image-based BTF representation to describe the
complex reflectance behaviour of car paint. The appearance of
metallic car paint is separated into the homogeneous BRDF part,
which describes the reflection behaviour of the base and the top
layer of the paint, and the spatially varying BTF part, which is
caused by the aluminium flakes. The homogeneous part is repre-
sented by a multi lobe version of the Cook Torrance model [Cook
and Torrance 1982]. In order to account for the characteristics of
pearlescent paint, which show view-dependent off-specular colour
changes, the model includes a spectral view and light dependent
part. The BRDF parameters are derived from the BTF measurements
by means of a fitting procedure; the BRDF is calculated for every
pixel and subtracted in the RGB space from the captured images.
The resulting images contain only flakes data and they are used for
a copy and paste synthesis approach.

Kurt et al. [Kurt et al. 2010] proposed a physically plausible BRDF
model based on the halfway vector representation and Beckmann
distribution. The basic BRDF model they propose is the sum of
a pure Lambertian term and a single specular lobe, which can be
readily extended to multiple specular lobes representation, to model
mixture materials like a car paint:

fr (vi, vr) =
kd
π
+

N
∑

l=1

kslℑl (vr, h)Dl (h)
4(vr · h) ((vi · n)(vr · n))αl

(25)

where N is the number of lobes, kd is the diffuse albedo, ksl is the
specular reflectivity per-lobe,ℑl is a per-lobe Fresnel term,Dl a per-
lobe normalised microfacet distribution, αl is a set of parameters
which needs to be chosen carefully to enforce energy conservation.

4.5 Appearance Models for Fabric

Realistic representation of textiles is essential in Computer Graph-
ics, since cloth is and important component of many virtual scenes,
from interior design to fashion.

A woven textile can be considered at the fiber scale, yarn scale
and weave pattern scale. At the micro-scale, the geometric (e.g.
cross section) and optical properties (e.g. index of refraction) of
the fibers, which are grouped together to form yarns, influence the

light transport in a scene and hence can have a significant impact
on the overall appearance of a fabric swatch.

A huge number of short staple fibers (e.g. cotton) can be twisted
together to make a single thread, called spun yarn. Strands of yarn
(plies) are twisted together to make a thicker yarn and depending
on the direction of the twisting the yarn will have either s−twist or
z−twist. Small fibers can protrude from a yarn, causing hairiness.
For materials like silk, long and continuous fibers are grouped
together to form filament yarns.

Once yarns have been colored or brightened they can be used for
weaving, the process of interlacing two perpendicular sets of yarns
(warps and wefts) by means of a loom. Warps are fixed horizontally
to the loom while the wefts are inserted crossways while some of
the warps are lowered or raised; the interlaced yarns hold together
by friction. The process of interlacing the yarn is controlled by the
weave pattern, a binarymatrixwhich defines the crossings: typically
0 indicates the warp overlaps the weft at the corresponding yarn
crossing, whereas 1 means that it lies below. The weave pattern
determines many mechanical properties of fabric and also greatly
influence its appearance.

To capture the view-dependent appearance of cloth BTFs have
been often employed. In [Sattler et al. 2003] the fabric BTF is ac-
quired from a rectangular probe and PCA of the acquired data is
used to generate a view-dependent texture-map, mapped onto the
simulated geometry. One of the main issues with the use BTF is the
difficult handling of silhouette effects, where the quality is limited
as well as under grazing illumination.

Distant viewing of cloth has been simulated in [Sadeghi et al.
2013], where a shading model based on light scattering measure-
ments at both weave and yarn level is reported. The surface-based
BSDF model takes into account shadowing and masking between
neighboring threads.

Jakob et al. [Jakob et al. 2010] introduced a generalisation to
anisotropic scattering structures, exploited also for volumes ac-
quired by CT scans [Zhao et al. 2011]. More recently, collections of
individual fibers have been used for fabric representation [Khun-
gurn et al. 2015].

Computed Tomography imaging (CT) has been used by Zhao et
al. [Zhao et al. 2011] to derive yarn and fiber geometry information.
From these, they build volumetric models which are fitted to the
optical information, i.e. color and texture, derived from photographs.
The resulting model allows to synthesize large regions of fabric
without tiling artifacts, however it can only reproduce textiles that
have been previously scanned.

In a later work, Zhao et al. [Zhao et al. 2012] used CT scanning
to acquire a database of volumetric 3D models of complex woven
textiles. Realistic close up renderings are achieved from two types
input, the description of the material weave pattern, and a few
examples of simpler fabrics. Given a weave pattern in input which
specifies the structure of the output, a new sample can be generated
from similar or simpler exemplars of a textile, by copying data
from the reference exemplars at each yarn crossing to match the
requested structure. Their method allows quick creation of new
exemplars of fabrics due to a fast synthesis algorithm and is useful
for generating volumetric models of complex and spatially varying
woven textiles.
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In Schröder et al. [Schröder et al. 2015] a single image as input
is used to derive the weave pattern, yarn colors and local irreg-
ularities such as thinning and thickening of yarns, by means of
an iterative process. The optical properties of the fibers, assumed
to be dielectrics with elliptical cross-section, are described by a
bidirectional curve scattering distribution function (BCSDF), where
the parameters are manually set. Khungurn et al. [Khungurn et al.
2015] proposed a framework to optimize for the parameters of a
given appearance model (either volumetric or at fiber level) that
best match a set of photographs of a fabric sample under many
different lighting conditions. The described framework can handle
only fabrics with a single yarn type and color.

In [Aliaga et al. 2017] low-level optical and geometric properties
of fibers are used to derive a physically-based scattering model,
allowing accurate definition of the reflectance field of cloth fibers.

In the context of the contract furniture business, woven cloth
model acquisition must be rapid, since the volume of cloth swatches
that need to be routinely processed is huge. Nevertheless, results
must be renderable in high quality even on a mobile device, for VR
applications. Guarnera et al. [Guarnera et al. 2017] developed an
image-based technique for reverse engineering woven fabrics at a
yarn level. It determines, from a single digital image, captured with
a DSLR camera under controlled uniform lighting, the woven cloth
structure and reflectance properties.

4.6 Data-driven models

The general idea behind this class of models use the measured data
to derive some ad-hoc model, generally based on the principle that
a continuous function can be represented by a linear combination
of basis functions and a mixture of basis functions can be used for
interpolation.

Tensors are a generalisation of scalars and vectors to higher
orders and their rank is defined by the number of directions, e.g. a
scalar is a zero-order tensor and a vector a first-order tensor. Tensor
representation has been used for interactive modification of the
material properties and relighting by Sun et al. [Sun et al. 2007].

Bilgili et al. [Bilgili et al. 2011] proposed to represent 4-D mea-
sured BRDFs data as a function of tensor products, factorised using
Tucker decomposition [Tucker 1966], a generalisation of higher
order principal component analysis which decomposes a tensor
into a set of matrices and one small core tensor.

More recently, tensor representation has been used by Ward
et al. [Ward et al. 2012, 2014] to represent anisotropic materials
with no assumption on the reflectance and scattering behaviour,
particularly useful in presence of unusual scattering properties.
The measured data is fitted to a series of radial basis functions
in order to derive a continuous representation from the sparse
input 4-D measurements. The incident and reflected hemispheres
are projected onto disks and mapped over the unit square; the
four dimensions given by the two squares define a rank-4 tensor,
subdivided into a tensor tree for fastMonte Carlo sample generation.
The tensor tree representation adaptively subdivides sharp peaks of
the BRDF in different regions of the distribution, with an additional
averaging step between incident and reflected direction to account
for Helmoltz reciprocity. For more details, please see the included
papers [Ward et al. 2012, 2014].

5 BRDF PARAMETER REMAPPING
TECHNIQUES

The need to manually match the appearance of a material in two
or more different rendering tools is common in digital 3D product
design, due to the wide range of tools and material models com-
monly used, and a lack of standards to exchange materials data. In
fact, the appearance of a virtual material depends on the under-
lying BRDF model implementation; the same material model can
be implemented differently in different rendering tools [Sztrajman
et al. 2017], and even within the same tool there is no guarantee
that different versions render a material identically.

Ngan et al. [Ngan et al. 2006] proposed an approach to navigate
the appearance space spanned by analytical BRDF models, account-
ing also for variations within a model; reflectance neighbours in
other models are found by using precomputed conversions and
multi-linear interpolation. To measure the distance between BRDFs,
an image-based L2 metric is used.

Sztrajman et al. [Sztrajman et al. 2017] suggested two image-
based strategies for matching the appearance of a BRDF model
(called source) to another one (target). The framework is based on a
nonlinear optimization performed by means of the Trusted Region
Reflective method, which measures the difference between source
and target renderings in image space, using a L2 metric; starting
from an user-provided initial guess of the parameters for the target
model, the optimization tries to find a set of parameters which
minimizes the L2 metric, generating new rendering with the target
model at each step. The most reliable results are obtained by remap-
ping specular and diffuse terms independently (two-stage method).
In order to address layered materials, for which the assumption of
independence between diffuse and specular terms might not hold,
a third stage takes in input the results of the two-stage method,
performing an additional optimization in which specular and dif-
fuse are coupled together. However, coupling diffuse and specular
seems to causes instabilities [Sztrajman et al. 2017].

Guarnera et al. proposed a genetic algorithm-based approach to
derive a sensible mapping for parametric BRDF models [Guarnera
et al. 2019; Guarnera et al. 2018], without the need for an user-
provided initial guess. Their pipeline, aimed at providing a percep-
tually accurate remapping also for anisotropic BRDFs and SVBRDFs,
relies on a metric in image space which exploits features to which
the human visual system is very sensitive, such as color and gradi-
ent differences. The framework can incorporate knowledge about
the semantic and functional relationship among source and target
parameters (constrained remapping), allowing a significant reduc-
tion of the computational time with respect to the alternative black
box-like approach (unconstrained remapping).

6 REFLECTANCE ACQUISITION SETUPS

Measuring how a surface interacts with light can be a time consum-
ing and expensive procedure, potentially generating a vast amount
of data.

The setup of a typical measurement device includes a light source
to uniformly illuminate a large area of a surface and a detector to
measure a small area within the illuminated region [Ashikhmin et al.
2001]. Various systems with different degrees of accuracy and costs
have been constructed to measure reflectance functions, ranging
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from gonioreflectometers to image based measurement systems;
low cost setups have also been investigated [Filip et al. 2015; Han
and Perlin 2003; Rushmeier et al. 2015]. By dropping the assumption
that a material is homogeneous and opaque, many techniques for
BRDF measurement can be adapted for more complex reflectance
functions (SVBRDFs, BTFs, BSSRDFs).

Under certain assumptions, also setups used to acquire objects ge-
ometry through the classical photometric stereo technique [Wood-
ham 1980], where the point of view is kept constant between suc-
cessive images while the direction of incident illumination varies,
have been successfully used to recover BRDF and SVBRDF of non-
lambertian surfaces [Alldrin et al. 2008; Chen et al. 2006; Georghi-
ades 2003; Goldman et al. 2005; Hertzmann and Seitz 2005; Holroyd
et al. 2008; Zickler et al. 2006].

In general, disentangling the interactions between geometry, re-
flectance and light, is an ill-posed task, since different combinations
of these factors can lead to the same appearance. As a results, most
setups need more than one measurement to overcome ambiguities.

Numerical simulation [Ashikmin et al. 2000; Cabral et al. 1987;
Dong et al. 2015; Hanrahan and Krueger 1993; Westin et al. 1992]
represents, for some complex materials, a possible alternative to a
measurement device. The material appearance is described by the
result of the simulation of the light interaction with the surface (and
sub-surface) structure. Given a geometry that can be ray-traced,
Westin et al. in their seminal work [Westin et al. 1992] describe a
method to simulate scattering hierarchically, by using the result of
the simulation at a scale to generate the BRDF for a larger scale.

6.1 Gonioreflectometers

The gonioreflectometer measures the spectral reflectance of sur-
faces, it covers specular and diffuse reflectance depending on the
settings of the device. The construction of the device was described
by Nicodemus and used in the experimental development of a num-
ber of BRDF models, including Torrance and Sparrow [Torrance
and Sparrow 1967], Blinn [Blinn 1977], He et al. [He et al. 1991]
and many others. The goniomereflectometer design can allow dif-
ferent Degrees of Freedom (DoF), thus allowing different kind of
measurements.

Foo [Foo 1997] designed a three axis automated gonioreflectome-
ter with two degrees of freedom. The measuring system consists
of a light source moving around a sample, a stationary detector
and a folding mirror. The system can measure the reflection at high
grazing angles (up to 86 degrees) and allows high dynamic range
measurements, making it considerably precise. Unfortunately, this
setup can only measure isotropic BRDFs; a similar setup is described
by Li et al. [Li et al. 2006].

Riviere et al. [Riviere et al. 2012] used an in-plane multispec-
tral polarised reflectometer. The measurement setup consists of a
lighting system with three linearly polarised laser sources; the po-
larised detection system is based on the Fresnel equation to identify
polariser’s axes. It allows sampling at zero lighting angles and it
is fully calibrated for polarised and multispectral in-plane BRDF
measurements. Polarised measurements are used to distinguish the
different scattering processes in BRDF directional components. This
measurement system is suggested for analysis of physical measure-
ments of the optical surface and for laser-imaging applications.

6.2 Image based measurement

Image-based BRDF measurement makes use of photographs of an
object and requires only general-purpose equipment, thus lowering
the cost of the process. The data can be measured quickly and
completely through a series of photographs taken of a surface.
These photographs capture light reflected from various surface
orientations. However, to measure the wavelength spectrum of the
BRDF requires more time per measurement [Marschner 1998].

Marschner et al. [Marschner et al. 1999] presented a rapid, com-
plete and accurate isotropic BRDF measurement setup for a broad
range of homogeneous materials, including human skin. It can
achieve high resolution and accuracy over a large range of illumi-
nation and reflection directions. This setup consists of a hand-held
digital camera, equipped with a standard CCD sensor with RGB
colour filter array, and an industrial electronic flash light source,
which suffice to measure surfaces with simple shapes, e.g. spherical
and cylindrical which can be defined analytically; for more complex
irregular shapes a 3D scanner is required in addition. The cam-
era, characterised in terms of Optoelectronic Conversion Function
(OECF) in order to know the radiance reflected to the camera and
the irradiance due to the source, moves from near the light source,
to measure near retro-reflections, to opposite the light source, in
order to measure grazing-angle reflection. Some additional pho-
tographs are taken to measure the location and intensity of the
light source, the camera pose and the sample pose. About 30 images
from different positions are required to cover the three-dimensional
BRDF domain. Each pixel in the images is used to derive one sample
in the domain of the BRDF, thanks to the estimated relationship
between the geometry of the sample and the position of the cam-
era, light source and sample, through bundle adjustment. A typical
measurement session takes up to half an hour.

A more recent development by Matusik et al. [Matusik et al.
2003], similar to Marschner et al. [Marschner et al. 1999], has been
used to measure 100 isotropic materials. Matusik′s data-driven
method is described in Section 4.6.

Ngan et al. [Ngan et al. 2005] presented an anisotropic BRDF
acquisition setup for flat and flexible samples. To deal with the
anisotropy, strips of the material at different orientations obtained
from flat samples are wrapped around a cylinder, which can be
tilted by means of a precision motor in order to account for the
missing degree of freedom with respect to a sphere. A light source
rotates around the cylinder while the target is captured by a fixed
camera, enabling the capture of the full 4d BRDF. For each light and
target position a set of 8 pictures with different exposures is taken,
to form an HDR image. The sampling density of the light and the
cylinder tilting can be adjusted to increase the resolution of the
measured BRDF, whereas the main limitation in the resolution is
due to the limited number of material strips which can be wrapped
around the cylinder.

The reflectance acquisition setup proposed by Naik et al. [Naik
et al. 2011] exploits space-time images captured by a time-of-flight
camera. Two different setups are described, both based on indirect
viewing with 3-bounce scattering and making use of two known
Lambertian materials, respectively the source S and the receiver
R, while P is the patch to measure. In the first setup, the laser
illuminates S, and the camera views R, thus measuring P indirectly.
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As for the second configuration, it is based on an around the corner
viewing in which P is not directly visible to the camera, whereas S
and R are the same surface. The light is multiplexed along different
transport paths and some of them might have the same length,
hence the light can arrive along multiple paths at the same point at
the same time. For this reason the measurements of the material
need to be decoded, by solving a sparse underdetermined system;
the system is solved by recovering the parameters the Ashikhmin-
Premoze model [Ashikhmin and Premoze 2007] (see Section 4.2),
using the halfway vector parameterisation. When the multiplexing
does not cause ambiguities, in order to measure the parameters
of a material it is enough to analyse the streak images to find the
specular peak. This setup enables to takemany BRDFmeasurements
simultaneously, but it requires an ultra-fast camera; moreover it
suffers from a low signal to noise ratio due to the multiple bounces,
the size of patches and the maximum sharpness of the reflectance
function are limited by the hardware and the range of measurable
incoming and outgoing directions is limited by the geometry of the
setup.

6.3 Catadioptric measurement setups

Catadioptric optical systems makes use of both reflected and re-
fracted light, in order to reduce aberrations. The resulting imaging
setups are generally efficient image based BRDF acquisition devices,
usually without any moving parts.

The imaging gonioreflectometer described by Ward [Ward 1992]
measures anisotropic surfaces by repeating measurement process
under various orientations. It captures the entire hemisphere of
reflected and refracted directions at the same time. This device
cannot measure sharp specular peaks nor take measurements at
high grazing angles.

Dana et al.’s [Dana 2001] measuring device makes use of a para-
bolic mirror that densely covers a relatively small solid angle. Planar
translations of the light source are required to cover various inci-
dent directions; similarly translations of the sample are necessary
in order to scan the surface for spatial variations in reflectance.

The measurement device presented in [Han and Perlin 2003]
is based on the principle of the kaleidoscope and consists of a ta-
pered tube whose inner walls are lined with front-surface mirrors. A
single camera captures the kaleidoscopic image, in which the subim-
ages represent the same sample seen simultaneously from many
different viewpoints. The sample is illuminated by a DLP projector,
which shares the optical path with the camera by means of a 45◦

beam splitter. The properties of the sample are measured through a
sequence of pictures with different illumination images, which illu-
minate the sample from a known range of incoming directions due
to the unique sequence of reflections from the kaleidoscopic walls.
The advantages of this setting, suitable for BTFs and BSSRDFs, are
the absence of moving parts which enables quick measurements
and guarantee perfect registration of the measurements and the low
cost; radiometric and geometric calibration need to be performed
only once.

Mukaigawa et al. [Mukaigawa et al. 2007] built twomeasurement
systems for anisotropic BRDFs which use a projector as the light
source, placed at the focal point of an ellipsoidal mirror, a camera
and a beam splitter, since the camera and the projector cannot be

located at the same position; a slightly different setup makes use
of a half mirror. The number of acquired images depends on the
sampling of the lighting direction and viewing direction, which
needs to be estimated based on the accuracy required. The acquired
data are then fitted to the Ward anisotropic reflection model.

Ghosh et al. [Ghosh et al. 2007], [Ghosh et al. 2010b] describe a
measurement device that consists of a camera focusing on a zone of
reflected directions, a light source with a beam splitter, a mirrored
dome and mirrored parabola. The focus of the illumination beam
is on the mirrored components that the beam reflects back to its
origin. This setup allows BRDF measurement over a continuous re-
gion, from 9âŮę to 57âŮę off normal, corresponding to about 51% of
the hemisphere, with a specially designed orthonormal zonal basis
function illumination, which results in a very rapid BRDF acquisi-
tion and in a better signal to noise ratio compared to point-sampling
the incident directions [Mukaigawa et al. 2007]. The measurements
are then projected into a spherical harmonics basis or fitted to an
analytical reflection model. The downside is due to the oscillations
which affect the zonal basis sin the proximity of discontinuities or
strong gradients, thus limiting the acquisition of specular materials.

6.4 Spherical and Hemispherical Gantry

Malzbender et al. [Malzbender et al. 2001] built a hemispherical
device with 50 strobe light source, where the camera is placed at
the apex. The samples, almost flat, are placed on the floor and
illuminated by a single light source at a time. The acquired data are
represented by Polynomial Texture Maps (PTM), in which for each
fitted texel the coefficients of the following polynomial are fitted to
the data and stored as a map:

L (u,v ; lu , lv ) = a0 (u,v) l2u + a1 (u,v) l2v+
+ a2 (u,v) lulv + a3 (u,v) lu + a4 (u,v) lv + a5 (u,v)

(26)

where L is the surface luminance at (u,v), the local coordinates of
the texture and (lu , lv ) are the projection of the normalised light
vector at that coordinate. PTMs can lead to good quality renderings,
in particular for diffuse samples.

A hemispherical device for anisotropic BRDF measurement was
presented by Ben-Ezra et al. [Ben-Ezra et al. 2008]. The rationale
of this setup it that after an accurate radiometric and geometric
calibration, LEDs can be used as light sources and as detectors, with-
out needing any moving parts nor cameras and thus allowing fast
acquisition times. In their implementation 84 LEDs pointing toward
the centre of the hemisphere are used. During the acquisition, each
LED is switched on, in turn acting as an emitter, while all others
measure the reflected light from the sample. The SNR of the mea-
surements can be increased by multiplexed illumination and the
use of different colours for the LEDs allows capture of multispectral
data. Since a LED cannot be used at the same time as an emitter
and detector this setup cannot be used to measure retro-reflection
and offers a lower resolution compared to camera-based setups.

The measurement device presented by Rump et al. [Rump et al.
2008] consists of a hemispherical gantry with 151 cameras uni-
formly distributed; the cameras flashes are used as light sources
and for each flash all the cameras take a picture of the subject,
giving a total of 151x151 = 22,801 pictures, which can be increased
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by taking HDR sequences. The gantry is capable of supporting
projectors in order to illumined the subject with structured light.

Ghosh et al. [Ghosh et al. 2009] proposed a setup suitable for
roughly specular objects of any shape, based on a LED sphere with
150 controllable lights linearly polarised, with the subject placed at
the centre of the sphere. It can be used to estimate spatially varying
BRDFs for both isotropic and anisotropic materials, using up to 9
polarised second order spherical gradient illumination patterns. For
specular reflections, specular albedo, reflection vector and specular
roughness can be directly estimated from the 0th , 1st [Ma et al.
2007] and 2nd order [Ghosh et al. 2009] statistics respectively. In the
same work two additional setups are described. The second setup is
suitable for flat objects and uses as the light source a LCD monitor,
placed very close to the subject, which clearly offers a smaller
coverage of incident direction but with a higher resolution than
the LED sphere. The third setup makes use of a roughly specular
hemisphere which reflects the light emitted by a projector on the
subject placed at the centre of the hemisphere, thus allowing a
dense sampling; the camera observes the subject from the apex of
the hemisphere.

The analysis of the Stokes reflectance field of circularly polarised
spherical illumination has been exploited by Ghosh et al. [Ghosh
et al. 2010a] to estimate the specular and diffuse albedo, index of
refraction and specular roughness for isotropic SVBRDFs, assum-
ing known surface orientation. Three different setups are used to
demonstrate the technique, similar to the ones described in [Ghosh
et al. 2009] but with the light sources covered with right circular
polarisers. Four pictures of the subject are required to measure the
Stokes field, three of themwith differently oriented linear polarisers
in front of the camera and one with a circular polariser.

The same framework based on the analysis of the Stokes re-
flectance field has been further exploited by Guarnera et al. [Guarn-
era et al. 2012] and it is extended to cover also unpolarised il-
lumination, to obtain a per-pixel estimate of the surface normal
from the same input data as in [Ghosh et al. 2010a]. The proposed
setup makes use of a LED sphere with 346 controllable lights un-
polarised/circularly polarised; the surface normals estimation is
demonstrated also with uncontrolled outdoors measurement un-
der overcast and hence unpolarised sky, by capturing a reference
dielectric sphere in the same environment.

Tunwattanapong et al. [Tunwattanapong et al. 2013] proposed a
spinning spherical reflectance acquisition apparatus. A 1m semi-
circular arc with 105 LED focused toward the centre rotates about
the vertical axis at 1rpm, sweeping out continuous spherical har-
monic illumination conditions. They demonstrated that 44 pictures
are enough to estimate anisotropic SVBRDFs and the 3D geometry
of very specular or diffuse objects. This technique further gener-
alises the approach by Ghosh et al. [Ghosh et al. 2009], since it
can be applied to higher-order spherical harmonic illumination (up
to 5th order), which allows obtaining diffuse/specular separation
without relying on polarisation.

Gardner et al. [Gardner et al. 2003] built a low cost linear light
source apparatus to capture flat samples making use of a fixed
camera for imaging and a structured light diode. The light source
is a 50 cm long neon tube, which is translated horizontally over
the surface of the subject and moved in sync with the camera

acquisitions. The reflectance model used to fit the measured data
is the isotropic model by Ward [Ward 1992], given the camera
and light source positions at each frame. The laser projects a laser
stripe, which is deformed by surface variations and used in order to
recover the geometry, together with two scans of the light source,
in a diagonal direction. A cabin light box, with two diffused cathode
tubes are used as a sample holder and to project a even diffuse white
light on the surface and allows measurement of the transmitted and
reflected light. Overall, the system allows recovery of the diffuse
and specular colours, specular roughness, surface normals and per
pixel translucency for isotropic samples.

In Ren et al. [Ren et al. 2011] a hand-held linear light source
device, together with a BRDF chart is employed to obtain spatially
varying isotropic BRDFs from a video taken with a mobile phone
in LDR. The BRDF chart consists of 24 square flat tiles, with known
BRDFs. The tiles are made of specular materials, except one which
is a diffuse standard for camera calibration (exposure and white
balance). The light source is a 40cm florescent tube, slowly moved
by hand over the surface and the chart, which needs to be placed
alongside. This approach requires solving a number of issues, since
the camera and the light source need to be placed close to the sample
and the light is moved manually. Consequently, the camera and
light position are unknown, as well as the SVBRDF of the sample.
Saturated values from LDR acquisition are repaired using the values
in the neighbourhood and the reflectance responses are normalised
and hence aligned by a dynamic time warping algorithm. Aligned
samples are then used for BRDF reconstruction.

Chen et al. [Chen et al. 2014] present a similar setup to Gardner
et al. [Gardner et al. 2003], scanning a linear light source over a flat
sample but with the significant advantage of capturing anisotropic
surface reflectance. The basic assumption is that a microfacet model
can be used to model the anisotropic surface reflectance. To ob-
serve the specular reflection they modulate the illumination along
the light source, by means of a transparent mask. They propose
two different setups which differ in form factor and employ the
same 35cm CCFL lamp and DSLR camera. The desktop form factor
scanner scans a linear light source over the sample, observing the
SVBRDF by means of the camera; as for the hand-held form factor
scanner, the sample moves with respect to the camera and the linear
light source, which instead have a fixed relative position. Finally a
cylindrical lens is employed to capture in a single picture a scanline
of the sample. One constant lighting pattern, together with two
phase shifted sinusoidal patterns suffices to reconstruct the surface
reflectance.

6.5 LCD Light Source setups

Francken et al. [Francken et al. 2008] make use of commodity hard-
ware such as a LCD display and a SLR camera to recover detailed
normal maps of specular objects, based on the observation that
the normal of a specular pixel is the halfway vector between the
light direction and the view direction. To identify the light direc-
tion among n different light sources they make use of a gray code
lighting patterns, by taking O(log2 n) pictures. The accuracy of the
estimated normal map depends on the number of sampled light
sources.
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In Aittala et al. [Aittala et al. 2013] a low cost capture setup for
SVBRDFs is presented. Their work relies on the design of the image
formation model and uses a Fourier basis for the measurements.
Isotropic BRDFs are reconstructed through Bayesian inference,
since the model is analytically integrable.

The capture set up by Wang et al. [Wang et al. 2011], consists
of a vision camera and a regular LCD, used as an area light source.
It allows rapid measurement of a stationary, isotropic, glossy and
bumpy surface, describing its appearance with a dual-level model,
which consists of the specular and diffuse relative albedos, two
surface roughness parameters and a 1D power spectrum over fre-
quencies for visible surface bumps. Two images are required for
calibration, since the LCD radiance is dependent on the viewing an-
gle. To establish the pose of the surface with respect to the camera
a target is placed on the surface. At the micro-scale the reflectance
is characterized with the Cook-Torrance model and the distribution
D is assumed to be Gaussian, where the standard deviation repre-
sents the roughness; similarly at the mesoscale level roughness is
approximated in terms of the standard deviation. The effect of the
roughness at the microscale is assumed to be a blurring of perfect
mirror reflections, whereas at the mesoscale it determines a per-
mutation of the pixels. The surface is illuminated with a half-black,
half-white image with a vertical edge, and the overall roughness is
estimated by fitting a Gaussian filter that blurs the step-edge image
to produce the observed one. To separate the roughness for the two
different scales, all pixels are sorted by intensity and reshaped back
in column-major order, thus removing the permutation induced
by the mesoscale roughness; the slope of the segment obtained by
averaging over the rows of the sorted image is used to estimate the
microscale roughness. This approach can produce visually plausible
results for highly glossy man-made indoor surfaces, including some
paints, metals and plastics.

Riviere et al. [Riviere et al. 2015] propose a mobile reflectom-
etry solution based on a mobile device’s LCD panel as extended
illumination source, statically mounted at a distance of 45cm above
a isotropic planar material sample, at normal incidence, in a dimly
lit room. The linear polarisation of the LCD panel is exploited for
diffuse/specular separation, by taking two pictures of the sample
with a differently orientated plastic sheet linear polariser in front of
the device camera. Albedo, surface normals and specular roughness
are estimated by illuminating the sample with the same lighting
patterns described in [Ghosh et al. 2009]. Due to the limited size of
the LCD panel and the position of the front camera, this setup can
only acquire 5cm × 5cm area of the sample; for larger samples an ap-
pearance transfer approach, that relies on additional measurements
under natural illumination, is used.

6.6 Flash Illumination and other Capture
Setups

Backscattering data can be used to extract an appropriate distribu-
tion for microfacets BRDF models [Ashikhmin and Premoze 2007;
Dupuy and Jakob 2018]. Based on this observation, mobile devices
equipped with a flash light, typically positioned near the back cam-
era, represent near-coaxial setups particularly useful to capture
the backscatter surface reflectance to be fitted in a microfacets
BRDF model [Riviere et al. 2015], since they allow to extract an

appropriate distribution of microfacets [Ashikhmin and Premoze
2007], by observing high frequencies for specular components in
the highlights areas and the diffuse components in other areas [Li
et al. 2018].

Riviere et al. [Riviere et al. 2015] mobile flash-based acquisition
setup estimates the diffuse and specular albedo, surface normal and
specular roughness of a planar material sample, with spatially vary-
ing isotropic surface reflectance. The back camera and flash light of
a mobile device are used for a hand-held acquisition of a video in a
dimly lit room, capturing data of the sample from several directions
over the upper hemisphere. For reflectance calibration the diffuse
grey squares of an X-Rite ColorChecker are used. The top view of
the sample at normal incidence is used as a reference to register the
other frames. To estimate the lighting and view directions the mag-
netometer/accelerometer sensors or 3D tracking can be used. The
surface normal of each point is computed as the weighted average
of the brightest reflection direction, the diffuse albedo is estimated
as the trimmed median of the measured intensities, whereas the
specular albedo is estimated from the hemispherical integral of the
diffuse subtracted measurements. The specular roughness is ob-
tained by fitting the observed backscattering profile to the [Walter
et al. 2007] model (see Section 4.3). Some blurring in the reflectance
maps can be introduced by misalignments and motion blur. The
limited number of lighting directions suggests the use only for
rough specular materials.

Aittala et al. [Aittala et al. 2015] mobile measurement setup for
stationary materials consists of a single mobile device with on-
board flash light. Given a flash-no-flash image pair of a textured
material of known characteristic size, a multi-stage reconstruction
pipeline allows to capture the full anisotropic SVBRDF. The in-
put images are registered through a homography, computed from
manually specified points of correspondence. The flash image pro-
vides an approximate retro-reflective measurement for each pixel,
that combines the effect of surface normal and BRDF, whereas the
other image is used as a guide to identify points on the surface
with similar local reflectance. Since there is only one observation
per pixel, it is assumed that multiple points on the surface share
the same reflectance properies and that can be identified under
ambient lighting to be combined together. The input is organised
into regular tiles approximately of the same size of the repeating
texture pattern, assumed to contain a random rearrangement of
the same BRDF values. A master-tile is selected for relighting and
lumitexels, (i.e. data structures to store the geometric and photo-
metric data of one point [Lensch et al. 2003]), are obtained for it.
The lumitextels are regularised using a preliminary SVBRDF fit and
augmented by transferring high-frequency detail from similarly
lit tiles to reduce blurring. The augmented lumitexels are used in
a non-linear optimizer to fit an analytic SVBRDF model and the
solution is finally reverse-propagated to the full image. This setup
limits the input to the retro-reflective slice of the BRDF, hence the
Fresnel effect, shadowing and masking are assumed to have typical
behaviour and modelled with the BRDF model A [Brady et al. 2014]
(see Section 4.1). The camera field of view represents an upper limit
on the width of the specular lobes which can be observed.
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6.7 Deep learning for material appearance
estimation

As seen in the previous sections, the ambiguities arising by the
complex interactions between light, reflectance and shape, are typi-
cally mitigated by taking more than one measurement of a material.
Alternatively, inverse rendering can be solved by introducing a
priori assumptions, thus constraining the space of plausible solu-
tions. For example, a typical approach to intrinsic images [Barrow
and Tenenbaum 1978] is to assume one or more properties to be
know and rather simple, such as a point lights and lambertian
reflectance, while estimating the other properties. More complex
priors, such as a statistical model of spherical harmonic lighting in
natural scenes, help in addressing inverse rendering of arbitrary
shapes, reflectances and lighting in the wild [Yu and Smith 2019].

In recent years, automatically learned priors from large datasets
have become popular, thanks to the use of Convolutional Neural
Networks (CNNs). Rematas et al. [Rematas et al. 2016] proposed the
use of deep learning to derive a matcap (i.e. the image of a sphere in
orthographic projection, in which lighting and material properties
are conveyed together) from a single RGB image depicting an object
with complex shape and specular, homogeneous material. They
describe two different variants of their approach, with the first one
directly estimating a mapping between the object image and its
matcap by means of a CNN. Instead, the second variant starts with
CNN-based estimation of a per-pixel surface normal map, used to
map the observed RGB values on a sphere, thus producing a sparse
reflectance map; finally a dense reflectance map is estimated from
the sparse one, by means of a second CNN.

Single-image SVBRDFs reconstruction has been addressed in [De-
schaintre et al. 2018], assuming in input a flash photograph, since
they contain backscattering data, useful to estimate material proper-
ties (see Section 6.6). Since different areas of the flash image convey
either information about the specular or the diffuse lobes, to de-
rive a consistent solution for the image it is important to exchange
information across distant image region. For this purpose, the typi-
cal enconder-decoder architecture is augmented with a secondary
network, aimed at extracting global feature at each stage of the
main network, the latter focusing on local features. The training
stage relies on a similarity metric which compares the appearance
of estimated and ground truth material, rendered under several ran-
domized combinations of viewing and incoming directions lighting
and viewing directions.

While [Deschaintre et al. 2018] focuses on almost flat geometries,
in [Li et al. 2018] SVBRDF and geometry estimation is extended to
arbitrary shapes, by means of a cascade design for the network. In
such a design, each stage estimates shape and SVBRDF parameters,
providing the results in input to subsequent stages, along with
the error. Input to their system is a single RGB image, acquired
under a combination of uncontrolled environment lighting and
flash lighting, with the latter assumed to be dominant.

7 CONCLUSION

In this course we introduced the problem of material representation
for Computer Graphics, with a particular focus on Virtual Reality
applications. We described the state of the art on material mod-
els, their representations and acquisition setups. Most models are

limited to a specific material group and even generalised models
might not be able cover a broad range of materials nor variations of
a material within one group. Currently, material modelling might
involve a great deal of manual effort from artists, and the broad
range of material models and complexity of the parameters requires
from an artist an understanding of the underlying representation
and material’s micro/ macrostructure.

Due to the wide range of tools and material models commonly
used, and the lack of standards to exchange materials data, it is
common for a digital artist to manually match the appearance of
a material in two or more different rendering tools. Recent BRDF
parameter remapping techniques promise to reduce the burden
on the artist, automatically providing the user with appearance
preserving mapping between a pair of different material models,
even across different rendering platforms. From the material ap-
pearance acquisition side, while many setups require samples of
a specific size and shape, in recent years lightweight appearance
acquisition setups, based on flash photography, and deep-learning
based approaches, have become suitable to acquire SVBRDFs from
a single input photograph, even in presence of arbitrary shapes.
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Abstract

We address the problem of measuring and representing reflection and transmission for anisotropic materials with-

out relying on mathematical models or a large sample database. By eliminating assumptions of material behavior,

we arrive at a general method that works for any surface class, from metals to fabrics, fritted glazing, and pris-

matic films. To make data gathering practical, we introduce a robust analysis method that interpolates a sparse

set of incident angle measurements to obtain a continuous function over the full 4-D domain. We then convert this

interpolant to a standard representation tailored for efficient rendering and supported by a common library that

facilitates data sharing. We conclude with some remaining challenges to making anisotropic BSDF measurements

truly practical for rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Color, shading, shadowing, and texture

1. The Challenge

The principal difficulty with measured anisotropic Bidirec-

tional Scattering Distribution Functions (BSDFs) is in gath-

ering enough incident and reflected directions to completely

characterize a material. The usual approach is to take a

small number of accurate measurements or, equivalently, a

large number of noisy measurements, and fit them to an

appropriate Bidirectional Reflectance Distribution Function

(BRDF) or Bidirectional Transmittance Distribution Func-

tion (BTDF) model [WMLT07]. This fitting process smooths

out noise and reduces the number of dimensions by orders

of magnitude, but requires that the data fit a known model

a priori. In many applications, this undercuts the purpose of

taking measurements, which is to discover and characterize

a material’s behavior. Particularly in cases where a material

has been custom-designed to have unusual scattering proper-

ties, measurements are needed for the very reason that there

are no models to fit the data. Data-driven methods have been

proposed to solve this problem for dense isotropic BRDF

data [MPBM03, PCS∗12], but achieving good results with

sparse anisotropic data is an open challenge.

Complete anisotropic BSDF measurements are of course

possible, but they require days if not weeks of measurement

time for a single material in order to gather hundreds of mil-

lions of data points for a simple interpolation scheme. For

this reason, most measurements and most research to date

have been restricted to isotropic measurements.

A secondary factor curtailing the adoption of measured

BSDFs for rendering is the absence of any widely supported

representation. There are a number of informal standards

that typically list measured values at specific angles on an

angular coordinate grid or individual point samples, but there

is no obvious way to apply such data. If the data is dense

enough, linear interpolation may be used to estimate unmea-

sured positions, but this threshold is almost never reached

for anisotropic distributions. In addition to the impractical

measurement times, there is the problem of missing angles

due to instrument self-interference. A robust interpolation

method is required to arrive at a complete BSDF representa-

tion, which must be stored in a standard format supported by

a majority of physically-based rendering software packages.

Only then will we have a common practice for measured ma-

terials.

2. The Vision

Our solution to anisotropic BSDF data measurement is out-

lined in five parts. First, we describe a commercial goniopho-

tometer that captures dense enough scattering angles to char-

c© 2014 The Author(s)
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Figure 1: An overview of pgII goniophotometer [AB14].

acterize peaks in the BSDF. Second, we show how to smooth

and interpolate incomplete measurements captured by this

device. Third, we convert the intermediate representation to

a standard format suitable for rendering. Fourth, we describe

a BSDF library that supports this format and provides func-

tions for interrogating and generating stratified Monte Carlo

samples in a space- and time-efficient manner. Fifth, we sug-

gest a means for sharing measured data between software

packages and users, leveraging these techniques.

2.1. Anisotropic BSDF Measurements

We employ the pgII goniophotometer designed and built by

Peter Apian-Bennewitz of Freiburg, Germany to measure

materials for lighting and energy simulation. This appara-

tus brings a high degree of automation, programmability,

and precision to the characterization of flat material sam-

ples [AB14] (See Fig. 1). A sample rotator allows us to

measure almost any desired incident and reflected angles

up to about 82◦ from normal, excepting some unavoidable

source-detector interference near retroreflection. Also, the

total measurement time goes up linearly with the number of

incident directions, moving in the direction of "days" as we

pass a few dozen angles.

Scattered directions are captured at a high sampling rate

during sweeps of the detector arm, which follow longitudi-

nal paths, but may be programmed to capture higher den-

sity in areas of interest using additional spiral or sine-wave

patterns. This yields many low-noise BSDF measurements

along overlapping longitudes with supplementary samples

like those shown in Fig. 2(a). The smooth and continuous

motion of the detector arm is key to the outstanding accu-

racy and repeatability of this device. Typically, incident di-

rections are spaced apart 10◦ or 15◦ in altitude and 15◦ or

greater in azimuth as shown in Fig. 2(b). This results in be-

tween 50 and 100 incident directions for each hemisphere

– two hemispheres are captured for materials that transmit

as well as reflect light. The number of incident angles re-

quired may often be reduced by a factor of two or four if the

material’s microstructure has bilateral or quadrilateral sym-

metry, respectively. The number of scattered directions usu-

ally runs into tens or hundreds of thousands of sample points

per incident direction that do not fit a grid pattern. The only

assumption we make is that there are enough scattered di-

(c)(b)(a)

Figure 2: (a) Example measured pgII scattering directions

for a single incidence. (b) Example set of incident directions

for a material with bilateral symmetry. (c) Incident direc-

tions from (b) organized into triangle mesh for interpolation.

rections to capture the important peaks in the data, although

these peaks may be quite distinct between different incident

measurements, as shown in Fig. 3(a,b).

2.2. BSDF Interpolation

One reason we do not see direct renderings of measured ma-

terials is that there are invariably holes and noise in the data.

There must always be some BSDF model, or another inter-

mediate representation that fills in and smooths out the raw

measurements to suit them for rendering. Anisotropic ma-

terials are particularly challenging in this regard, and most

data-driven methods are isotropic, leaving us only with a

handful of mathematical reflectance models, and nothing at

all for transmission.

To resolve this problem, we have created a method for

interpolating reflectance and transmittance data that makes

no assumptions about material behavior and requires no

database of measurements other than the particular BSDF

of interest. We extend the mass-transport solution of Bon-

neel et al. [BvdPPH11] to drive a set of radial basis func-

tions fitted to each measured distribution. This allows us to

interpolate between sparse incident directions, arriving at a

continuous, smooth description of the BSDF over the entire

four-dimensional (4-D) domain. Incident direction measure-

ments are organized into a spherical Delaunay mesh like the

one shown in Fig. 2(c).

An example of our interpolation technique is shown

in Fig. 3, where we compare a naive linear interpolation

method to our mass-transport solution. While changing the

linear interpolation coordinates to a Rusinkiewicz [Rus98]

basis would certainly improve results for isotropic materi-

als, it relies on assumptions about the surface microstructure

that do not apply to anisotropic materials in any general way.

We could in principle design a custom coordinate system

that worked for a particular material, but only if we knew

how it behaved, which is presumably why we need measure-

ments in the first place. We opt for the much simpler and

more direct solution of employing an interpolation method

that fits whatever behavior we measure. Our interpolant is a

spherical mesh of radial basis function sets (or systems), one

set per incident angle vertex, which describes the scattering

distribution. The vertices are interpolated in two dimensions

c© 2014 The Author(s)
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(a) (b) (c) (d)

Figure 3: (a) Reflectance distribution for one incident mea-

surement direction. (b) Distribution at another incidence. (c)

Linear interpolation of three distributions. (d) Lagrangian

mass transport.

using transport plans computed along each edge with a mass

transport solver. Each plan is represented as a sparse matrix,

and each radial basis system is a list of Gaussian lobe po-

sitions, widths, and maximum values. This reduced data is

then written to an intermediate file, which is used to gener-

ate a BSDF representation for rendering as described below.

2.3. BSDF Representation

While we could render directly from our interpolant, it is

more efficient to convert it to a form that is tailored for fast

queries and Monte Carlo sample generation. To this end, we

have created what we call the BSDF tensor tree representa-

tion [WKB12]. The incident and reflected hemispheres are

projected onto disks, then mapped to Cartesian coordinates

over the unit square using the Shirley-Chiu formula [SC97].

These two squares represent the four dimensions of a rank-

4 tensor that gets subdivided as a hextree (16 children per

node). In this manner, high-resolution peaks anywhere in

a distribution may be captured without requiring equiva-

lent high data density everywhere. In the case of anisotropic

BRDF measurements, we can add an averaging step between

complimentary incident and reflected directions according

to Helmholtz reciprocity. This guarantees physical behavior

while minimizing unwanted variations in the reconstruction.

For stratified importance sampling, we need to sort

our leaf nodes at a given incident direction into a one-

dimensional (1-D) sequence that preserves locality. We em-

ploy the Hilbert traversal shown in Fig. 4, which maximizes

locality while keeping a direct relationship to the output

quadtree branching [GL96]. Working in a square slice corre-

sponding to the exiting hemisphere for the queried incident

vector, we order a cumulative table along the Hilbert path.

This path traverses the [0,1]2 square with a [0,1] line seg-

ment such that any given fraction of the line segment cov-

ers the same fraction of the area. This is the key to convert-

ing our two-dimensional (2-D) sampling domain into a 1-D

cumulative table based on projected area. Larger leaf nodes

will skip further along the path, but we never have the prob-

lem of re-entering a node since the Hilbert curve respects the

quadtree’s boundaries at each level of detail.

While we have found the tensor tree to be fast and ef-

ficient for rendering, other applications may prefer a dif-

ferent representation. For example, the three-phase method

Figure 4: A Hilbert 2-D space-filling curve drawn to the 4th

level. Different regions illustrate a hypothetical tensor tree’s

subdivision of exiting directions where samples might go.

for annual daylight simulation [MJA∗13] works best when

a BSDF is stored as a fixed-size matrix corresponding to

incoming and outgoing directions using a particular subdi-

vision of the hemisphere. Starting with our mass-transport

interpolant, we can compute such a matrix representation.

Fig. 5 shows a rendering comparison between these two

representations, demonstrating the superiority of the tensor

tree in this case. However, when we want to simulate the ap-

pearance of a space as daylight changes and the shades on

the window adapt dynamically, a matrix representation re-

duces the calculation time to a tiny fraction of what it would

be otherwise, and permits one to try out different shading

solutions and controls at little added cost.

A standard XML file format for the matrix and tensor tree

representations has already been defined, and we expect to

refine and extend this over time. Supporting this standard

is a C library that interprets the XML files in a backwards-

compatible fashion, so updating the library is all that is

needed to support extensions to the XML representation.

2.4. BSDF Software Library

We have implemented the following queries for matrix and

tensor tree sampling in an ANSI-C library with a fixed API:

(a) Get a BSDF value for a pair of directions.

(b) Get the directional hemispherical scattering for a given

incident direction.

(c) Get the projected solid angle sample size for one or two

directions.

(d) Get a probability-based importance direction and weight

for the given input direction.

The caller may in practice treat the BSDF as a single en-

tity, or may access it as components. These components in-

clude transmission, front reflection and back reflection, each

further divided into Lambertian and non-Lambertian compo-

nents, any of which may be zero. The library further supports

multiple non-Lambertian components, which may provide

for more efficient representations in the future.

In the simplest use of our library, the application makes

a single call at each surface evaluation to generate a sam-

ple ray direction and weight using method (d). The weight

would always be the same, although the spectrum might

c© 2014 The Author(s)
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(a) (b) (c)

Figure 5: (a) Matrix-based BRDF rendering of anisotropic

Ward model. (b) Reference image. (c) Tensor tree BRDF ren-

dering of the same model. Insets show color-coded maps

which represent a probability that an average observer will

notice a difference between the reference image and ren-

dered image [MKRH11].

change for different importance samples. Multiple rays can

be generated to reduce variance, and the tensor tree repre-

sentation maintains any stratification present in the passed

random variable. New representations as well as extensions

to existing types may be added to our library without altering

the interface, which is more general than the existing XML

specification. The library also supports loading and caching

BSDF data and vector operations for surface reorientation.

While we have tested this API for our own purposes, our

goal is to provide it to the rendering and simulation com-

munities as a C library to facilitate BSDF data sharing and

re-use based on a standardized XML format.

3. Data Sharing and Remaining Challenges

It is unclear how BSDF data sharing will eventually work,

but once we have the capability to characterize materials,

a standard means to represent them, and widespread soft-

ware to make use of these data, manufacturers will most

likely want their products included. Similar to the IES and

EULUMDAT standards for luminaire data, we expect to

see companies offering measured BSDFs they either create

themselves or hire an independent laboratory to create for

them. We plan to seed this process by measuring a number

of materials and providing them with our BSDF library.

In order to create sufficiently compelling examples of this

new capability, we have a few issues we must still address.

First, we need to find a satisfactory method for extrapolating

data to grazing angles. Backlit appearance is important to

our judgement of materials, and getting this right is challeng-

ing, even for smooth surfaces. The limited ability of most

goniophotometers to measure low angles due to edge ef-

fects and illumination/acceptance apertures forces us to rely

on grazing models to fill in these important regions. Unfor-

tunately, this is also where most mathematical models are

weak and do not represent real-world materials accurately.

Further research is needed to resolve this problem. Second,

there is the question of what to do when there are very nar-

row peaks in the distribution. While the tensor tree can re-

solve peaks down to a fraction of a degree, mirror-like re-

flections and glass-like transmission beg for a different rep-

resentation altogether. Is it possible to represent directional-

diffuse with such specular peaks together in a common for-

mat? We have not found a good solution to this issue, and

we do not know how critical it will be in practice. Third, we

need to experiment with different spectral representations to

find the best compromise between accuracy and computation

requirements. There probably is no "one-size-fits-all" solu-

tion, but having a small set of common approaches would be

very helpful.
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