984 research outputs found

    A BLE-based multi-gateway network infrastructure with handover support for mobile BLE peripherals

    Get PDF
    Bluetooth Low Energy (BLE) is a popular technology within the Internet of Things. It allows low-power, star networks to be set up between a BLE gateway and multiple, power-constrained BLE devices. However, these networks tend to be static, not supporting BLE devices that can freely move around in an environment of multiple interconnected BLE gateways and perform handovers whenever necessary. This work proposes two alternative network architectures for mobile BLE peripherals. One leverages on IPv6 over BLE, whereas the other combines default BLE mechanisms with an additional custom controller. On top, we study in detail the handover mechanism that must be present in both architectures and compare the performance of both a passive and active handover approach. The passive handover approach can be set up without any extra implementation, but an active handover approach offers more proactive handover decisions and can provide a much lower handover latency. All proposed solutions have been implemented and validated on real hardware, showing the feasibility of having future infrastructures with support for mobile BLE devices

    PSM-DMO: power save mode and discontinuous BLE mesh operation

    Get PDF
    The Bluetooth Low Energy (BLE) mesh profile, standardized by the Bluetooth Special Interest Group (SIG), has an increasing interest in IoT solutions. However, the standard assumes that relay and friend nodes should be continuously scanning the channel awaiting any incoming transmissions. This could be very inefficient in terms of energy consumption, particularly in application scenarios where the backbone of the mesh network cannot be powered and traffic is infrequent. Hence, we present a novel strategy, named PSM-DMO, that minimizes the scan periods and thus, significantly reduces the overall energy consumption of the mesh network. PSM-DMO is defined as a new and optional feature for the currently published BLE mesh specifications, coexists with the standard operation, and is implemented without modifying the core of the specification. The proposal, that ensures the reliability of the mesh operation, can be used in BLE sensor networks that can tolerate a certain transmission delay. PSM-DMO replaces the continuous scan by a periodic but asynchronous polling process whereby the relay and sink nodes interrogate their neighbors about the existence of data to receive or to retransmit through the network. Nodes only go into scan mode during the period of time the mesh network will be involved in the transmission and dissemination. This period is estimated by the node which is the source of data, it is announced to its neighbors and it is propagated consecutively by all the relay nodes until the destination. PSM-DMO allows a theoretical reduction in the energy consumption of relay nodes up to 99.24 %.This work has been supported in part by the Spanish Ministry of Science through the projects RTI2018-099880-B-C32. RTI2018-095684-B-I00 and RTI2018-099063-B-I00 with ERFD funds, and by the Government of Aragon (Reference Group T31_20R).Peer ReviewedPostprint (published version

    PSM-DMO: power save mode and discontinuous BLE mesh operation

    Get PDF
    The Bluetooth Low Energy (BLE) mesh profile, standardized by the Bluetooth Special Interest Group (SIG), has an increasing interest in IoT solutions. However, the standard assumes that relay and friend nodes should be continuously scanning the channel awaiting any incoming transmissions. This could be very inefficient in terms of energy consumption, particularly in application scenarios where the backbone of the mesh network cannot be powered and traffic is infrequent. Hence, we present a novel strategy, named PSM-DMO, that minimizes the scan periods and thus, significantly reduces the overall energy consumption of the mesh network. PSM-DMO is defined as a new and optional feature for the currently published BLE mesh specifications, coexists with the standard operation, and is implemented without modifying the core of the specification. The proposal, that ensures the reliability of the mesh operation, can be used in BLE sensor networks that can tolerate a certain transmission delay. PSM-DMO replaces the continuous scan by a periodic but asynchronous polling process whereby the relay and sink nodes interrogate their neighbors about the existence of data to receive or to retransmit through the network. Nodes only go into scan mode during the period of time the mesh network will be involved in the transmission and dissemination. This period is estimated by the node which is the source of data, it is announced to its neighbors and it is propagated consecutively by all the relay nodes until the destination. PSM-DMO allows a theoretical reduction in the energy consumption of relay nodes up to 99.24 %

    Analytical and experimental performance evaluation of BLE neighbor discovery process including non-idealities of real chipsets

    Get PDF
    The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage

    Contributions to bluetooth low energy mesh networks

    Get PDF
    Bluetooth Low Energy (BLE) has become a popular Internet of Things (IoT) technology. However, it was originally designed to only support the star topology. This PhD thesis investigates and evaluates different Bluetooth Low Energy (BLE) mesh network approaches, including existing ones (such as the Bluetooth Mesh standard), and our own solution for IPv6-based BLE mesh networking (6BLEMesh). The thesis comprises 6 main contributions: 1.- A comprehensive survey on existing BLE mesh networking proposals and a taxonomy for BLE mesh network solutions. 2.- An energy consumption model for Bluetooth Mesh. The model allows to predict useful performance parameters, such as device average current consumption, device lifetime and energy efficiency, considering the impact of the most relevant Bluetooth Mesh parameters, i.e. PollTimeout and ReceiveWindow, as well as application parameters (e.g. the data interval for a sensor that periodically reports its readings). 3.- A new proposed IPv6-based BLE mesh networking IETF standard (in progress), called 6BLEMesh. After defining the characteristics and properties of 6BLEMesh, we evaluated it in terms of connectivity, latency, RTT, and energy consumption. 4.- For the connectivity evaluation of 6BLEMesh, we developed an analytical model that takes a set of network and scenario characteristics as inputs, and provides two main results: i) the probability of no isolation of a node, and ii) the k-connectivity of the considered network. We validated the model by simulation. 5.- An implementation, and an experimental evaluation, of 6BLEMesh. We built a three-node testbed consisting of all node types (i.e. 6LN, 6LR and 6LBR). We used three different popular commercial hardware platforms. We evaluated a number of performance parameters on the testbed, related with latency and energy consumption. Next, we characterized the current consumption patterns of the complete life cycle for different node types in the three-node testbed. We also evaluated the energy performance of a 6LN on three different platforms. We presented a 6LN current consumption model for different connInterval settings. To this end, we experimentally characterized each current consumption state in terms of its duration time and average current consumption value. We illustrated the impact of connInterval on energy performance. 6.- A comparison between Bluetooth Mesh and 6BLEMesh, in terms of protocol stack, protocol encapsulation overhead, end-toend latency, energy consumption, message transmission count, end-to-end reliability, variable topology robustness and Internet connectivity. Bluetooth Mesh and 6BLEMesh offer fundamentally different BLE mesh networking solutions. Their performance depends significantly on their parameter configuration. Nevertheless, the following conclusions can be obtained. Bluetooth Mesh exhibits slightly greater protocol encapsulation overhead than 6BLEmesh. Both Bluetooth Mesh and 6BLEMesh offer flexibility to configure per-hop latency. For a given latency target, 6BLEMesh offers lower energy consumption. In terms of message transmission count, both solutions may offer relatively similar performance for small networks; however, BLEMesh scales better with network size and density. 6BLEMesh approaches ideal packet delivery probability in the presence of bit errors for most parameter settings (at the expense of latency increase), whereas Bluetooth Mesh requires path diversity to achieve similar performance. Bluetooth Mesh does not suffer the connectivity gaps experimented by 6BLEMesh due to topology changes. Finally, 6BLEMesh naturally supports IP-based Internet connectivity, whereas Bluetooth Mesh requires a protocol translation gateway.Bluetooth Low Energy (BLE) ha esdevingut una tecnologia popular per a Internet of Things (loT). Ara bé, va ser originalment dissenyada per suportar només la topologia en estrella. Aquesta tesi doctoral investiga i avalua diferents alternatives de xarxa mesh BLE, incloent alternatives existents (com l'estandard Bluetooth Mesh), i la nostra propia solució basada en IPv6, 6BLEMesh. Aquesta tesi comprén 6 contribucions·principals: 1.- Una revisió exhaustiva de l'estat de l'art i una taxonomia de les xarxes mesh BLE. 2.- Un model de consum d'energia per Bluetooth Mesh. El model permet predir parametres de rendiment útils, tals com consum de corrent, temps de vida del dispositiu i eficiéncia energética, considerant !'impacte deis principals parametres de Bluetooth Mesh (PollTimeout i ReceiveWindow) i a nivell d'aplicació. 3.- Un nou estandard (en progrés) anomenat 6BLEMesh. Després de definir les característiques de 6BLEMesh, aquesta solució ha estat avaluada en termes de connectivitat, laténcia, RTT i consum d'energia. 4.- Per a l'avaluació de connectivitat de 6BLEMesh, hem desenvolupat un model analític que proporciona dos resultats principals: i) probabilitat de no arllament d'un node i ii) k-connectivitat de la xarxa considerada. Hem validat el model mitjani;:ant simulació. .- Una imP.lementació, i una avaluació experimental, de 6BLEMesh. S'ha construrt un testbed de tres nodes, que comprén 5tots els tipus de node principals (6LN, 6LR i 6LBR). S'han usat tres plataformes hardware diferents. S'han avaluat diversos parametres de rendiment en el testbed, relacionats amb laténcia i consum d'energia. A continuació, s'ha caracteritzat els patrons de consum de corren! d'un ciclde de vida complet per als diferents tipus de nodes en el testbed. També s'han avaluat les prestacions d'energia d'un 6LN en tres plataformes diferents. S'ha presenta! un model de consum de corren! d'un 6LN per a diferents valors de connlnterval. Per aquest fi, s'ha caracteritzat emplricament cada estat de consum de corrent en termes de la seva durada i consum de corrent. 6.- Una comparativa entre Bluetooth Mesh i 6BLEMesh, en termes de pila de protocols, overhead d'encapsulament de protocol, laténcia extrem a extrem, consum d'energia, nombre de missatges transmesos, fiabilitat extrem a extrem, robustesa davant de topologies variables, i connexió a Internet. Bluetooth Mesh i 6BLEMesh són solucions de BLE mesh networking fonamentalment diferents. Les seves prestacions depenen de la seva configuració de parametres. Ara bé, es poden extreure les següents conclusions. Bluetooth Mesh mostra un overhead d'encapsulament de protocol lleugerament superior al de 6BLEmesh. Tots dos, Bluetooth Mesh i 6BLEMesh, ofereixen flexibilitat per configurar la laténcia per cada salt. Per un target de laténcia doni¡it, 6BLEMesh ofereix un consum d'energia inferior. En termes de nombre de missatges transmesos, les dues solucions ofereixen prestacions relativament similars per a xarxes petites. Ara bé, 6BLEMesh escala millor amb la mida i la densitat de la xarxa. 6BLEMesh s'aproxima a una probabilitat d'entrega de paquets ideal en preséncia d'errors de bit (amb un increment en la laténcia), mentre que Bluetooth Mesh requereix diversitat de caml per assolir unes prestacions similars. Bluetooth Mesh no pateix els gaps de connectivitat que experimenta 6BLLEMesh a causa de canvis en la topología. Finalment, 6BLEMesh suporta de forma natural la connectivitat amb Internet basada en IP, mentre que Bluetooth Mesh requereix un gateway de traducció de protocols.Postprint (published version

    Contributions to bluetooth low energy mesh networks

    Get PDF
    Bluetooth Low Energy (BLE) has become a popular Internet of Things (IoT) technology. However, it was originally designed to only support the star topology. This PhD thesis investigates and evaluates different Bluetooth Low Energy (BLE) mesh network approaches, including existing ones (such as the Bluetooth Mesh standard), and our own solution for IPv6-based BLE mesh networking (6BLEMesh). The thesis comprises 6 main contributions: 1.- A comprehensive survey on existing BLE mesh networking proposals and a taxonomy for BLE mesh network solutions. 2.- An energy consumption model for Bluetooth Mesh. The model allows to predict useful performance parameters, such as device average current consumption, device lifetime and energy efficiency, considering the impact of the most relevant Bluetooth Mesh parameters, i.e. PollTimeout and ReceiveWindow, as well as application parameters (e.g. the data interval for a sensor that periodically reports its readings). 3.- A new proposed IPv6-based BLE mesh networking IETF standard (in progress), called 6BLEMesh. After defining the characteristics and properties of 6BLEMesh, we evaluated it in terms of connectivity, latency, RTT, and energy consumption. 4.- For the connectivity evaluation of 6BLEMesh, we developed an analytical model that takes a set of network and scenario characteristics as inputs, and provides two main results: i) the probability of no isolation of a node, and ii) the k-connectivity of the considered network. We validated the model by simulation. 5.- An implementation, and an experimental evaluation, of 6BLEMesh. We built a three-node testbed consisting of all node types (i.e. 6LN, 6LR and 6LBR). We used three different popular commercial hardware platforms. We evaluated a number of performance parameters on the testbed, related with latency and energy consumption. Next, we characterized the current consumption patterns of the complete life cycle for different node types in the three-node testbed. We also evaluated the energy performance of a 6LN on three different platforms. We presented a 6LN current consumption model for different connInterval settings. To this end, we experimentally characterized each current consumption state in terms of its duration time and average current consumption value. We illustrated the impact of connInterval on energy performance. 6.- A comparison between Bluetooth Mesh and 6BLEMesh, in terms of protocol stack, protocol encapsulation overhead, end-toend latency, energy consumption, message transmission count, end-to-end reliability, variable topology robustness and Internet connectivity. Bluetooth Mesh and 6BLEMesh offer fundamentally different BLE mesh networking solutions. Their performance depends significantly on their parameter configuration. Nevertheless, the following conclusions can be obtained. Bluetooth Mesh exhibits slightly greater protocol encapsulation overhead than 6BLEmesh. Both Bluetooth Mesh and 6BLEMesh offer flexibility to configure per-hop latency. For a given latency target, 6BLEMesh offers lower energy consumption. In terms of message transmission count, both solutions may offer relatively similar performance for small networks; however, BLEMesh scales better with network size and density. 6BLEMesh approaches ideal packet delivery probability in the presence of bit errors for most parameter settings (at the expense of latency increase), whereas Bluetooth Mesh requires path diversity to achieve similar performance. Bluetooth Mesh does not suffer the connectivity gaps experimented by 6BLEMesh due to topology changes. Finally, 6BLEMesh naturally supports IP-based Internet connectivity, whereas Bluetooth Mesh requires a protocol translation gateway.Bluetooth Low Energy (BLE) ha esdevingut una tecnologia popular per a Internet of Things (loT). Ara bé, va ser originalment dissenyada per suportar només la topologia en estrella. Aquesta tesi doctoral investiga i avalua diferents alternatives de xarxa mesh BLE, incloent alternatives existents (com l'estandard Bluetooth Mesh), i la nostra propia solució basada en IPv6, 6BLEMesh. Aquesta tesi comprén 6 contribucions·principals: 1.- Una revisió exhaustiva de l'estat de l'art i una taxonomia de les xarxes mesh BLE. 2.- Un model de consum d'energia per Bluetooth Mesh. El model permet predir parametres de rendiment útils, tals com consum de corrent, temps de vida del dispositiu i eficiéncia energética, considerant !'impacte deis principals parametres de Bluetooth Mesh (PollTimeout i ReceiveWindow) i a nivell d'aplicació. 3.- Un nou estandard (en progrés) anomenat 6BLEMesh. Després de definir les característiques de 6BLEMesh, aquesta solució ha estat avaluada en termes de connectivitat, laténcia, RTT i consum d'energia. 4.- Per a l'avaluació de connectivitat de 6BLEMesh, hem desenvolupat un model analític que proporciona dos resultats principals: i) probabilitat de no arllament d'un node i ii) k-connectivitat de la xarxa considerada. Hem validat el model mitjani;:ant simulació. .- Una imP.lementació, i una avaluació experimental, de 6BLEMesh. S'ha construrt un testbed de tres nodes, que comprén 5tots els tipus de node principals (6LN, 6LR i 6LBR). S'han usat tres plataformes hardware diferents. S'han avaluat diversos parametres de rendiment en el testbed, relacionats amb laténcia i consum d'energia. A continuació, s'ha caracteritzat els patrons de consum de corren! d'un ciclde de vida complet per als diferents tipus de nodes en el testbed. També s'han avaluat les prestacions d'energia d'un 6LN en tres plataformes diferents. S'ha presenta! un model de consum de corren! d'un 6LN per a diferents valors de connlnterval. Per aquest fi, s'ha caracteritzat emplricament cada estat de consum de corrent en termes de la seva durada i consum de corrent. 6.- Una comparativa entre Bluetooth Mesh i 6BLEMesh, en termes de pila de protocols, overhead d'encapsulament de protocol, laténcia extrem a extrem, consum d'energia, nombre de missatges transmesos, fiabilitat extrem a extrem, robustesa davant de topologies variables, i connexió a Internet. Bluetooth Mesh i 6BLEMesh són solucions de BLE mesh networking fonamentalment diferents. Les seves prestacions depenen de la seva configuració de parametres. Ara bé, es poden extreure les següents conclusions. Bluetooth Mesh mostra un overhead d'encapsulament de protocol lleugerament superior al de 6BLEmesh. Tots dos, Bluetooth Mesh i 6BLEMesh, ofereixen flexibilitat per configurar la laténcia per cada salt. Per un target de laténcia doni¡it, 6BLEMesh ofereix un consum d'energia inferior. En termes de nombre de missatges transmesos, les dues solucions ofereixen prestacions relativament similars per a xarxes petites. Ara bé, 6BLEMesh escala millor amb la mida i la densitat de la xarxa. 6BLEMesh s'aproxima a una probabilitat d'entrega de paquets ideal en preséncia d'errors de bit (amb un increment en la laténcia), mentre que Bluetooth Mesh requereix diversitat de caml per assolir unes prestacions similars. Bluetooth Mesh no pateix els gaps de connectivitat que experimenta 6BLLEMesh a causa de canvis en la topología. Finalment, 6BLEMesh suporta de forma natural la connectivitat amb Internet basada en IP, mentre que Bluetooth Mesh requereix un gateway de traducció de protocols

    Design and analysis of adaptive hierarchical low-power long-range networks

    Get PDF
    A new phase of evolution of Machine-to-Machine (M2M) communication has started where vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually change to multi-purpose IoT infrastructures that service different applications across multiple industries. New networking technologies are being deployed operating over sub-GHz frequency bands that enable multi-tenant connectivity over long distances and increase network capacity by enforcing low transmission rates to increase network capacity. Such networking technologies allow cloud-based platforms to be connected with large numbers of IoT devices deployed several kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area Networks (LPWANs), it remains unclear how to organize the wireless sensor network in a scaleable and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is presented in detail along with the technical details on the implementation in real-world hardware platforms. A platform-agnostic software firmware is produced that is evaluated in real-world large-scale testbeds. The performance of the networking scheme is evaluated through a series of experimental scenarios that generate environments with varying channel quality, failing nodes, and mobile nodes. The performance is evaluated in terms of the overall time required to organize the network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as well as the ability to adapt to channel failures. The experimental analysis indicate that the combination of long-range and short-range networking technologies can lead to scalable solutions that can service concurrently multiple applications

    Anti-Collision Adaptations of BLE Active Scanning for Dense IoT Tracking Applications

    Get PDF
    Bluetooth low energy (BLE) is one of most promising technologies to enable the Internet-of-Things (IoT) paradigm. The BLE neighbor discovery process (NDP) based on active scanning may be the core of multiple IoT applications in which a large and varying number of users/devices/tags must be detected in a short period of time. Minimizing the discovery latency and maximizing the number of devices that can be discovered in a limited time are challenging issues due to collisions between frames sent by advertisers and scanners. The mechanism for resolution of collisions between scanners has a great impact on the achieved performance, but backoff in NDP has been poorly studied so far. This paper includes a detailed analysis of backoff in NDP, identifies and studies the factors involved in the process, reveals the limitations and problems presented by the algorithm suggested by the specifications and proposes simple and practical adaptations on scanner functionality. They are easily compatible with the current definitions of the standard, which together with a new proposal for the backoff scheme, may significantly improve the discovery latencies and, thus, the probability of discovering a large number of devices in high density scenarios

    Cluster Framework for Internet of People, Things and Services

    Get PDF

    Proposal and evaluation of BLE discovery process based on new features of bluetooth 5.0

    Get PDF
    The device discovery process is one of the most crucial aspects in real deployments of sensor networks. Recently, several works have analyzed the topic of Bluetooth Low Energy (BLE) device discovery through analytical or simulation models limited to version 4.x. Non-connectable and non-scannable undirected advertising has been shown to be a reliable alternative for discovering a high number of devices in a relatively short time period. However, new features of Bluetooth 5.0 allow us to define a variant on the device discovery process, based on BLE scannable undirected advertising events, which results in higher discovering capacities and also lower power consumption. In order to characterize this new device discovery process, we experimentally model the real device behavior of BLE scannable undirected advertising events. Non-detection packet probability, discovery probability, and discovery latency for a varying number of devices and parameters are compared by simulations and experimental measurements. We demonstrate that our proposal outperforms previous works, diminishing the discovery time and increasing the potential user device density. A mathematical model is also developed in order to easily obtain a measure of the potential capacity in high density scenarios.Peer ReviewedPostprint (published version
    corecore