367 research outputs found

    The development of non-coding RNA ontology

    Get PDF
    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data

    Knowledge Rich Natural Language Queries over Structured Biological Databases

    Full text link
    Increasingly, keyword, natural language and NoSQL queries are being used for information retrieval from traditional as well as non-traditional databases such as web, document, image, GIS, legal, and health databases. While their popularity are undeniable for obvious reasons, their engineering is far from simple. In most part, semantics and intent preserving mapping of a well understood natural language query expressed over a structured database schema to a structured query language is still a difficult task, and research to tame the complexity is intense. In this paper, we propose a multi-level knowledge-based middleware to facilitate such mappings that separate the conceptual level from the physical level. We augment these multi-level abstractions with a concept reasoner and a query strategy engine to dynamically link arbitrary natural language querying to well defined structured queries. We demonstrate the feasibility of our approach by presenting a Datalog based prototype system, called BioSmart, that can compute responses to arbitrary natural language queries over arbitrary databases once a syntactic classification of the natural language query is made

    Deep learning for information extraction in the biomedical domain

    Get PDF
    Mención Internacional en el título de doctorThe main hypothesis of this PhD dissertation is that novel Deep Learning algorithms can outperform classical Machine Learning methods for the task of Information Extraction in the Biomedical Domain. Contrary to classical systems, Deep Learning models can learn the representation of the data automatically without an expert domain knowledge and avoid the tedious and time-consuming task of defining relevant features. A Drug-Drug Interaction (DDI), which is an essential subset of Adverse Drug Reaction (ADR), represents the alterations in the effects of drugs that were taken simultaneously. The early recognition of interacting drugs is a vital process that prevents serious health problems that can cause death in the worst cases. Health-care professionals and researchers in this domain find the task of discovering information about these incidents very challenging due to the vast number of pharmacovigilance documents. For this reason, several shared tasks and datasets have been developed in order to solve this issue with automated annotation systems with the capability to extract this information. In the present document, the DDI corpus, which is an annotated dataset of DDIs, is used with Deep Learning architectures without any external information for the tasks of Name Entity Recognition and Relation Extraction in order to validate the hypothesis. Furthermore, some other datasets are tested to evidence the performance of these systems. To sum up, the results suggest that the most common Deep Learning methods like Convolutional Neural Networks and Recurrent Neural Networks overcome the traditional algorithms concluding that Deep Learning is a real alternative for a specific and complex scenario like the Information Extraction in the Biomedical domain. As a final goal, a complete architecture that covers the two tasks is developed to structure the named entities and their relationships from raw pharmacological texts.This thesis has been supported by: Pre-doctoral research training scholarship of the Carlos III University of Madrid (PIF UC3M 02-1415) for four years. Research Program of the Ministry of Economy and Competitiveness - Government of Spain, (DeepEMR project TIN2017-87548-C2-1-R). Research Program of the Ministry of Economy and Competitiveness - Government of Spain, (eGovernAbility-Access project TIN2014-52665-C2-2-R). Doctoral stay TEAM - Technologies for information and communication, Europe - east Asia Mobilities project (Erasmus Mundus Action 2-Strand 2 Programme) funded by the European Commission realized in the University of Tokyo, Japan, for the Aizawa Laboratory in National Institute of Informatics (NII) for seven months.PublicadoPrograma de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Ricardo Aler Mur.- Secretario: Alberto Díaz Esteban.- Vocal: María Herrero Zaz

    Biocom_Usp: tweet sentiment analysis with adaptive boosting ensemble

    Get PDF
    We describe our approach for the SemEval-2014 task 9: Sentiment Analysis in Twitter. We make use of an ensemble learning method for sentimento classification of tweets that relies on varied features such as feature hashing, part-of-speech, and lexical features. Our system was evaluated in the Twitter message-level task.CAPESFAPESPCNP

    High-Throughput Polygenic Biomarker Discovery Using Condition-Specific Gene Coexpression Networks

    Get PDF
    Biomarkers can be described as molecular signatures that are associated with a trait or disease. RNA expression data facilitates discovery of biomarkers underlying complex phenotypes because it can capture dynamic biochemical processes that are regulated in tissue-specific and time-specific manners. Gene Coexpression Network (GCN) analysis is a method that utilizes RNA expression data to identify binary gene relationships across experimental conditions. Using a novel GCN construction algorithm, Knowledge Independent Network Construction (KINC), I provide evidence for novel polygenic biomarkers in both plant and animal use cases. Kidney cancer is comprised of several distinct subtypes that demonstrate unique histological and molecular signatures. Using KINC, I have identified gene correlations that are specific to clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer. ccRCC is associated with two common mutation profiles that respond differently to targeted therapy. By identifying GCN edges that are specific to patients with each of these two mutation profiles, I discovered unique genes with similar biological function, suggesting a role for T cell exhaustion in the development of ccRCC. Medicago truncatula is a legume that is capable of atmospheric nitrogen fixation through a symbiotic relationship between plant and rhizobium that results in root nodulation. This process is governed by complex gene expression patterns that are dynamically regulated across tissues over the course of rhizobial infection. Using de novo RNA sequencing data generated from the root maturation zone at five distinct time points, I identified hundreds of genes that were differentially expressed between control and inoculated plants at specific time points. To discover genes that were co-regulated during this experiment, I constructed a GCN using the KINC software. By combining GCN clustering analysis with differentially expressed genes, I present evidence for novel root nodulation biomarkers. These biomarkers suggest that temporal regulation of pathogen response related genes is an important process in nodulation. Large-scale GCN analysis requires computational resources and stable data-processing pipelines. Supercomputers such as Clemson University’s Palmetto Cluster provide data storage and processing resources that enable terabyte-scale experiments. However, with the wealth of public sequencing data available for mining, petabyte-scale experiments are required to provide novel insights across the tree of life. I discuss computational challenges that I have discovered with large scale RNA expression data mining, and present two workflows, OSG-GEM and OSG-KINC, that enable researchers to access geographically distributed computing resources to handle petabyte-scale experiments
    corecore