186 research outputs found

    Measuring Effectiveness of Address Schemes for AS-level Graphs

    Get PDF
    This dissertation presents measures of efficiency and locality for Internet addressing schemes. Historically speaking, many issues, faced by the Internet, have been solved just in time, to make the Internet just work~\cite{justWork}. Consensus, however, has been reached that today\u27s Internet routing and addressing system is facing serious scaling problems: multi-homing which causes finer granularity of routing policies and finer control to realize various traffic engineering requirements, an increased demand for provider-independent prefix allocations which injects unaggregatable prefixes into the Default Free Zone (DFZ) routing table, and ever-increasing Internet user population and mobile edge devices. As a result, the DFZ routing table is again growing at an exponential rate. Hierarchical, topology-based addressing has long been considered crucial to routing and forwarding scalability. Recently, however, a number of research efforts are considering alternatives to this traditional approach. With the goal of informing such research, we investigated the efficiency of address assignment in the existing (IPv4) Internet. In particular, we ask the question: ``how can we measure the locality of an address scheme given an input AS-level graph?\u27\u27 To do so, we first define a notion of efficiency or locality based on the average number of bit-hops required to advertize all prefixes in the Internet. In order to quantify how far from ``optimal the current Internet is, we assign prefixes to ASes ``from scratch in a manner that preserves observed semantics, using three increasingly strict definitions of equivalence. Next we propose another metric that in some sense quantifies the ``efficiency of the labeling and is independent of forwarding/routing mechanisms. We validate the effectiveness of the metric by applying it to a series of address schemes with increasing randomness given an input AS-level graph. After that we apply the metric to the current Internet address scheme across years and compare the results with those of compact routing schemes

    Efficient and Scalable Internet Mapping : Record Route Revisited

    Get PDF
    Abstract The IPv4 Record Route option was designed to accurately map the topology between any two nodes on the Internet. The IP protocol design allows only a maximum of nine IP addresses to be accommodated in the record route header field. As nine hops are insufficient to map the current extent of the Internet, the record route technique was replaced by Traceroute and Border Gateway Protocol (BGP) based techniques. These current techniques consume more bandwidth and host resources compared to record route. This paper revives the record route option by proposing various packet-marking schemes to be deployed on routers. The proposed technique also ensures a minimum of computational overhead for both routers and end hosts. It is faster, scalable and consumes lesser bandwidth compared to the Traceroute and BGP techniques

    Traffic matrix estimation with enhanced origin destination generator algorithm using simulation of real network

    Get PDF
    The rapid growth of the Internet has made the issue of ensuring reliability and redundancy a big challenge. Studies of these issues using Traffic Engineering and simulation have been extensively done. In Traffic Matrix Estimation (TME), the Origin–Destination Generator algorithm (ODGen) is limited to the number of hops, where the Expectation Maximization (EM) accuracy is 92%. Most studies have not taken into account real traffic parameters and integration of TME models with routing protocols in their simulation models. Also, there is no a comprehensive model consisting of TME, Border Gateway Protocol (BGP) and Hot Potato (HP) routing in the NS-2 network simulator based on real networks. In this research, Integrated Simulated Model (ISM) is introduced consisting of ODGen-HP algorithm and BGP integrated into the NS-2 network simulator. ISM is then used to simulate the infrastructure of a real production network using actual captured traffic data parameters. Validation is then done against the changes in network topology based on packet loss, delay and throughput. Results gave the average error for packet sent by simulated and production networks of 0% and the average error for packet received by simulation and production networks of 3.61%. The network is modelled with a baseline topology where 5 main nodes were connected together, with redundant links for some nodes. The simulations were repeated for link failures, node addition, and node removal. TME used in ISM is based on ODGen, that is optimized with unlimited number of hops, the accuracy of EM increases to 97% and Central Processing Unit complexity is reduced. HP helps in improving the node which experiences a link failure to select shorter distance route to egress router. In the case of a link failure, HP switching time between the links is 0.05 seconds. ISM performance was evaluated by comparing trace file before and after link failure or by adding nodes (up to 32) or removing nodes. The parameters used for comparison are the packets loss, delay and throughput. The ISM error percentage obtained for packets loss is 0.025%, delay 0.013% and throughput 0.003%

    From the edge to the core : towards informed vantage point selection for internet measurement studies

    Get PDF
    Since the early days of the Internet, measurement scientists are trying to keep up with the fast-paced development of the Internet. As the Internet grew organically over time and without build-in measurability, this process requires many workarounds and due diligence. As a result, every measurement study is only as good as the data it relies on. Moreover, data quality is relative to the research question—a data set suitable to analyze one problem may be insufficient for another. This is entirely expected as the Internet is decentralized, i.e., there is no single observation point from which we can assess the complete state of the Internet. Because of that, every measurement study needs specifically selected vantage points, which fit the research question. In this thesis, we present three different vantage points across the Internet topology— from the edge to the Internet core. We discuss their specific features, suitability for different kinds of research questions, and how to work with the corresponding data. The data sets obtained at the presented vantage points allow us to conduct three different measurement studies and shed light on the following aspects: (a) The prevalence of IP source address spoofing at a large European Internet Exchange Point (IXP), (b) the propagation distance of BGP communities, an optional transitive BGP attribute used for traffic engineering, and (c) the impact of the global COVID-19 pandemic on Internet usage behavior at a large Internet Service Provider (ISP) and three IXPs.Seit den frühen Tagen des Internets versuchen Forscher im Bereich Internet Measu- rement, mit der rasanten Entwicklung des des Internets Schritt zu halten. Da das Internet im Laufe der Zeit organisch gewachsen ist und nicht mit Blick auf Messbar- keit entwickelt wurde, erfordert dieser Prozess eine Meg Workarounds und Sorgfalt. Jede Measurement Studie ist nur so gut wie die Daten, auf die sie sich stützt. Und Datenqualität ist relativ zur Forschungsfrage - ein Datensatz, der für die Analyse eines Problems geeiget ist, kann für ein anderes unzureichend sein. Dies ist durchaus zu erwarten, da das Internet dezentralisiert ist, d. h. es gibt keinen einzigen Be- obachtungspunkt, von dem aus wir den gesamten Zustand des Internets beurteilen können. Aus diesem Grund benötigt jede Measurement Studie gezielt ausgewählte Beobachtungspunkte, die zur Forschungsfrage passen. In dieser Arbeit stellen wir drei verschiedene Beobachtungspunkte vor, die sich über die gsamte Internet-Topologie erstrecken— vom Rand bis zum Kern des Internets. Wir diskutieren ihre spezifischen Eigenschaften, ihre Eignung für verschiedene Klas- sen von Forschungsfragen und den Umgang mit den entsprechenden Daten. Die an den vorgestellten Beobachtungspunkten gewonnenen Datensätze ermöglichen uns die Durchführung von drei verschiedenen Measurement Studien und damit die folgenden Aspekte zu beleuchten: (a) Die Prävalenz von IP Source Address Spoofing bei einem großen europäischen Internet Exchange Point (IXP), (b) die Ausbreitungsdistanz von BGP-Communities, ein optionales transitives BGP-Attribut, das Anwendung im Bereich Traffic-Enigneering findet sowie (c) die Auswirkungen der globalen COVID- 19-Pandemie auf das Internet-Nutzungsverhalten an einem großen Internet Service Provider (ISP) und drei IXPs

    Improving the accuracy of spoofed traffic inference in inter-domain traffic

    Get PDF
    Ascertaining that a network will forward spoofed traffic usually requires an active probing vantage point in that network, effectively preventing a comprehensive view of this global Internet vulnerability. We argue that broader visibility into the spoofing problem may lie in the capability to infer lack of Source Address Validation (SAV) compliance from large, heavily aggregated Internet traffic data, such as traffic observable at Internet Exchange Points (IXPs). The key idea is to use IXPs as observatories to detect spoofed packets, by leveraging Autonomous System (AS) topology knowledge extracted from Border Gateway Protocol (BGP) data to infer which source addresses should legitimately appear across parts of the IXP switch fabric. In this thesis, we demonstrate that the existing literature does not capture several fundamental challenges to this approach, including noise in BGP data sources, heuristic AS relationship inference, and idiosyncrasies in IXP interconnec- tivity fabrics. We propose Spoofer-IX, a novel methodology to navigate these challenges, leveraging Customer Cone semantics of AS relationships to guide precise classification of inter-domain traffic as In-cone, Out-of-cone ( spoofed ), Unverifiable, Bogon, and Unas- signed. We apply our methodology on extensive data analysis using real traffic data from two distinct IXPs in Brazil, a mid-size and a large-size infrastructure. In the mid-size IXP with more than 200 members, we find an upper bound volume of Out-of-cone traffic to be more than an order of magnitude less than the previous method inferred on the same data, revealing the practical importance of Customer Cone semantics in such analysis. We also found no significant improvement in deployment of SAV in networks using the mid-size IXP between 2017 and 2019. In hopes that our methods and tools generalize to use by other IXPs who want to avoid use of their infrastructure for launching spoofed-source DoS attacks, we explore the feasibility of scaling the system to larger and more diverse IXP infrastructures. To promote this goal, and broad replicability of our results, we make the source code of Spoofer-IX publicly available. This thesis illustrates the subtleties of scientific assessments of operational Internet infrastructure, and the need for a community focus on reproducing and repeating previous methods.A constatação de que uma rede encaminhará tráfego falsificado geralmente requer um ponto de vantagem ativo de medição nessa rede, impedindo efetivamente uma visão abrangente dessa vulnerabilidade global da Internet. Isto posto, argumentamos que uma visibilidade mais ampla do problema de spoofing pode estar na capacidade de inferir a falta de conformidade com as práticas de Source Address Validation (SAV) a partir de dados de tráfego da Internet altamente agregados, como o tráfego observável nos Internet Exchange Points (IXPs). A ideia chave é usar IXPs como observatórios para detectar pacotes falsificados, aproveitando o conhecimento da topologia de sistemas autônomos extraído dos dados do protocolo BGP para inferir quais endereços de origem devem aparecer legitimamente nas comunicações através da infra-estrutura de um IXP. Nesta tese, demonstramos que a literatura existente não captura diversos desafios fundamentais para essa abordagem, incluindo ruído em fontes de dados BGP, inferência heurística de relacionamento de sistemas autônomos e características específicas de interconectividade nas infraestruturas de IXPs. Propomos o Spoofer-IX, uma nova metodologia para superar esses desafios, utilizando a semântica do Customer Cone de relacionamento de sistemas autônomos para guiar com precisão a classificação de tráfego inter-domínio como In-cone, Out-of-cone ( spoofed ), Unverifiable, Bogon, e Unassigned. Aplicamos nossa metodologia em análises extensivas sobre dados reais de tráfego de dois IXPs distintos no Brasil, uma infraestrutura de médio porte e outra de grande porte. No IXP de tamanho médio, com mais de 200 membros, encontramos um limite superior do volume de tráfego Out-of-cone uma ordem de magnitude menor que o método anterior inferiu sob os mesmos dados, revelando a importância prática da semântica do Customer Cone em tal análise. Além disso, não encontramos melhorias significativas na implantação do Source Address Validation (SAV) em redes usando o IXP de tamanho médio entre 2017 e 2019. Na esperança de que nossos métodos e ferramentas sejam aplicáveis para uso por outros IXPs que desejam evitar o uso de sua infraestrutura para iniciar ataques de negação de serviço através de pacotes de origem falsificada, exploramos a viabilidade de escalar o sistema para infraestruturas IXP maiores e mais diversas. Para promover esse objetivo e a ampla replicabilidade de nossos resultados, disponibilizamos publicamente o código fonte do Spoofer-IX. Esta tese ilustra as sutilezas das avaliações científicas da infraestrutura operacional da Internet e a necessidade de um foco da comunidade na reprodução e repetição de métodos anteriores

    Proactive techniques for correct and predictable Internet routing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 185-193).The Internet is composed of thousands of autonomous, competing networks that exchange reachability information using an interdomain routing protocol. Network operators must continually reconfigure the routing protocols to realize various economic and performance goals. Unfortunately, there is no systematic way to predict how the configuration will affect the behavior of the routing protocol or to determine whether the routing protocol will operate correctly at all. This dissertation develops techniques to reason about the dynamic behavior of Internet routing, based on static analysis of the router configurations, before the protocol ever runs on a live network. Interdomain routing offers each independent network tremendous flexibility in configuring the routing protocols to accomplish various economic and performance tasks. Routing configurations are complex, and writing them is similar to writing a distributed program; the (unavoidable) consequence of configuration complexity is the potential for incorrect and unpredictable behavior. These mistakes and unintended interactions lead to routing faults, which disrupt end-to-end connectivity. Network operators writing configurations make mistakes; they may also specify policies that interact in unexpected ways with policies in other networks.(cont.) To avoid disrupting network connectivity and degrading performance, operators would benefit from being able to determine the effects of configuration changes before deploying them on a live network; unfortunately, the status quo provides them no opportunity to do so. This dissertation develops the techniques to achieve this goal of proactively ensuring correct and predictable Internet routing. The first challenge in guaranteeing correct and predictable behavior from a routing protocol is defining a specification for correct behavior. We identify three important aspects of correctness-path visibility, route validity, and safety-and develop proactive techniques for guaranteeing that these properties hold. Path visibility states that the protocol disseminates information about paths in the topology; route validity says that this information actually corresponds to those paths; safety says that the protocol ultimately converges to a stable outcome, implying that routing updates actually correspond to topological changes. Armed with this correctness specification, we tackle the second challenge: analyzing routing protocol configurations that may be distributed across hundreds of routers.(cont.) We develop techniques to check whether a routing protocol satisfies the correctness specification within a single independently operated network. We find that much of the specification can be checked with static configuration analysis alone. We present examples of real-world routing faults and propose a systematic framework to classify, detect, correct, and prevent them. We describe the design and implementation of rcc ("router configuration checker"), a tool that uses static configuration analysis to enable network operators to debug configurations before deploying them in an operational network. We have used rcc to detect faults in 17 different networks, including several nationwide Internet service providers (ISPs). To date, rcc has been downloaded by over seventy network operators. A critical aspect of guaranteeing correct and predictable Internet routing is ensuring that the interactions of the configurations across multiple networks do not violate the correctness specification. Guaranteeing safety is challenging because each network sets its policies independently, and these policies may conflict. Using a formal model of today's Internet routing protocol, we derive conditions to guarantee that unintended policy interactions will never cause the routing protocol to oscillate.(cont.) This dissertation also takes steps to make Internet routing more predictable. We present algorithms that help network operators predict how a set of distributed router configurations within a single network will affect the flow of traffic through that network. We describe a tool based on these algorithms that exploits the unique characteristics of routing data to reduce computational overhead. Using data from a large ISP, we show that this tool correctly computes BGP routing decisions and has a running time that is acceptable for many tasks, such as traffic engineering and capacity planning.by Nicholas Greer Feamster.Ph.D

    On the dynamics of interdomain routing in the Internet

    Full text link
    The routes used in the Internet's interdomain routing system are a rich information source that could be exploited to answer a wide range of questions.  However, analyzing routes is difficult, because the fundamental object of study is a set of paths. In this dissertation, we present new analysis tools -- metrics and methods -- for analyzing paths, and apply them to study interdomain routing in the Internet over long periods of time. Our contributions are threefold. First, we build on an existing metric (Routing State Distance) to define a new metric that allows us to measure the similarity between two prefixes with respect to the state of the global routing system. Applying this metric over time yields a measure of how the set of paths to each prefix varies at a given timescale. Second, we present PathMiner, a system to extract large scale routing events from background noise and identify the AS (Autonomous System) or AS-link most likely responsible for the event. PathMiner is distinguished from previous work in its ability to identify and analyze large-scale events that may re-occur many times over long timescales. We show that it is scalable, being able to extract significant events from multiple years of routing data at a daily granularity. Finally, we equip Routing State Distance with a new set of tools for identifying and characterizing unusually-routed ASes. At the micro level, we use our tools to identify clusters of ASes that have the most unusual routing at each time. We also show that analysis of individual ASes can expose business and engineering strategies of the organizations owning the ASes.  These strategies are often related to content delivery or service replication. At the macro level, we show that the set of ASes with the most unusual routing defines discernible and interpretable phases of the Internet's evolution. Furthermore, we show that our tools can be used to provide a quantitative measure of the "flattening" of the Internet

    Internet Interconnection Ecosystem in Finland

    Get PDF
    For both fixed and mobile network operators, interconnection constitutes an indisputably key element to provide end users with a variety of services. Internet interconnection is particularly an intriguing subject due to the importance of the Internet in our everyday lives and our genuine curiosity to grasp its underlying structure. This thesis aims to provide a holistic approach to study the Internet interconnections in a nation-centric stance. To accomplish the objective, initially the method that breaks down the key features of the interconnection analysis is introduced. The nation-centric analysis is conducted for Finland by jointly utilizing the Internet registry data and collected Internet routing data. Covering the last decade of the Finnish Internet, the longitudinal analysis yields significant findings for the Internet address usage statistics and the level of multi-homed networks, along with the classification and inference of relationships between stakeholders in the interconnection ecosystem. The implications that the emerging interconnection models pose for the future global service delivery among both fixed and mobile networks are expounded from the perspective of the existing domestic interconnection practices. The longitudinal interconnectivity study allows us to comprehend both technical and business interfaces between market players by revealing a complete list of customer-provider relationships. Within a national milieu, the assessment of the current Internet market dynamics and future implications of emerging models can be considered in more rationally anticipated manner. Hence, authorities who desire to design new pricing schemes and policies for future networking interconnections can be guided more thoroughly

    DECO: Liberating Web Data Using Decentralized Oracles for TLS

    Full text link
    Thanks to the widespread deployment of TLS, users can access private data over channels with end-to-end confidentiality and integrity. What they cannot do, however, is prove to third parties the {\em provenance} of such data, i.e., that it genuinely came from a particular website. Existing approaches either introduce undesirable trust assumptions or require server-side modifications. As a result, the value of users' private data is locked up in its point of origin. Users cannot export their data with preserved integrity to other applications without help and permission from the current data holder. We propose DECO (short for \underline{dec}entralized \underline{o}racle) to address the above problems. DECO allows users to prove that a piece of data accessed via TLS came from a particular website and optionally prove statements about such data in zero-knowledge, keeping the data itself secret. DECO is the first such system that works without trusted hardware or server-side modifications. DECO can liberate data from centralized web-service silos, making it accessible to a rich spectrum of applications. To demonstrate the power of DECO, we implement three applications that are hard to achieve without it: a private financial instrument using smart contracts, converting legacy credentials to anonymous credentials, and verifiable claims against price discrimination.Comment: This is the extended version of the CCS'20 pape
    • …
    corecore