2,021 research outputs found

    Flip-OFDM for Optical Wireless Communications

    Get PDF
    We consider two uniploar OFDM techniques for optical wireless communications: asymmetric clipped optical OFDM (ACO-OFDM) and Flip-OFDM. Both techniques can be used to compensate multipath distortion effects in optical wireless channels. However, ACO-OFDM has been widely studied in the literature, while the performance of Flip-OFDM has never been investigated. In this paper, we conduct the performance analysis of Flip-OFDM and propose additional modification to the original scheme in order to compare the performance of both techniques. Finally, it is shown by simulation that both techniques have the same performance but different hardware complexities. In particular, for slow fading channels, Flip-OFDM offers 50% saving in hardware complexity over ACO-OFDM at the receiver.Comment: published in IEEE Information Theory Workshop, Paraty Brazil, Sept 201

    Precoded FIR and Redundant V-BLAST Systems for Frequency-Selective MIMO Channels

    Get PDF
    The vertical Bell labs layered space-time (V-BLAST) system is a multi-input multioutput (MIMO) system designed to achieve good multiplexing gain. In recent literature, a precoder, which exploits channel information, has been added in the V-BLAST transmitter. This precoder forces each symbol stream to have an identical mean square error (MSE). It can be viewed as an alternative to the bit-loading method. In this paper, this precoded V-BLAST system is extended to the case of frequency-selective MIMO channels. Both the FIR and redundant types of transceivers, which use cyclic-prefixing and zero-padding, are considered. A fast algorithm for computing a cyclic-prefixing-based precoded V-BLAST transceiver is developed. Experiments show that the proposed methods with redundancy have better performance than the SVD-based system with optimal powerloading and bit loading for frequency-selective MIMO channels. The gain comes from the fact that the MSE-equalizing precoder has better bit-error rate performance than the optimal bitloading method

    Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication.

    Get PDF
    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120(o) with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10(-3) over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems

    Modeling of Orthogonal Frequency Division Multiplexing (OFDM) for Transmission in Broadband Wireless Communications

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a multi carrier modulation technique that provides high bandwidth efficiency because the carriers are orthogonal to each other and multiple carriers share the data among themselves. The main advantage of this transmission technique is its robustness to channel fading in wireless communication environment. This paper investigates the effectiveness of OFDM and assesses its suitability as a modulation technique in wireless communications. Several of the main factors affecting the performance of a typical OFDM system are considered and they include multipath delay spread, channel noise, distortion (clipping), and timing requirements. The core processing block and performance analysis of the system is modeled usingMatlab

    Mixed numerologies interference analysis and inter-numerology interference cancellation for windowed OFDM systems

    Get PDF
    Extremely diverse service requirements are one of the critical challenges for the upcoming fifth-generation (5G) radio access technologies. As a solution, mixed numerologies transmission is proposed as a new radio air interface by assigning different numerologies to different subbands. However, coexistence of multiple numerologies induces the inter-numerology interference (INI), which deteriorates the system performance. In this paper, a theoretical model for INI is established for windowed orthogonal frequency division multiplexing (W-OFDM) systems. The analytical expression of the INI power is derived as a function of the channel frequency response of interfering subcarrier, the spectral distance separating the aggressor and the victim subcarrier, and the overlapping windows generated by the interferer's transmitter windows and the victim's receiver window. Based on the derived INI power expression, a novel INI cancellation scheme is proposed by dividing the INI into a dominant deterministic part and an equivalent noise part. A soft-output ordered successive interference cancellation (OSIC) algorithm is proposed to cancel the dominant interference, and the residual interference power is utilized as effective noise variance for the calculation of log-likelihood ratios (LLRs) for bits. Numerical analysis shows that the INI theoretical model matches the simulated results, and the proposed interference cancellation algorithm effectively mitigates the INI and outperforms the state-of-the-art W-OFDM receiver algorithms

    Efficient space-frequency block coded pilot-aided channel estimation method for multiple-input-multiple-output orthogonal frequency division multiplexing systems over mobile frequency-selective fading channels

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.An iterative pilot-aided channel estimation technique for space-frequency block coded (SFBC) multiple-input multiple-output orthogonal frequency division multiplexing systems is proposed. Traditionally, when channel estimation techniques are utilised, the SFBC information signals are decoded one block at a time. In the proposed algorithm, multiple blocks of SFBC information signals are decoded simultaneously. The proposed channel estimation method can thus significantly reduce the amount of time required to decode information signals compared to similar channel estimation methods proposed in the literature. The proposed method is based on the maximum likelihood approach that offers linearity and simplicity of implementation. An expression for the pairwise error probability (PEP) is derived based on the estimated channel. The derived PEP is then used to determine the optimal power allocation for the pilot sequence. The performance of the proposed algorithm is demonstrated in high frequency selective channels, for different number of pilot symbols, using different modulation schemes. The algorithm is also tested under different levels of Doppler shift and for different number of transmit and receive antennas. The results show that the proposed scheme minimises the error margin between slow and high speed receivers compared to similar channel estimation methods in the literature.Peer reviewe
    corecore