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Abstract—We propose a time delay estimator for known sym-
bol padding (KSP) orthogonal frequency division multiplexing
(OFDM) in a multipath fading environment. The estimator makes
use of pilot symbols in the guard interval and known pilot
carriers. The performance of the estimator is illustrated by means
of simulation results for the mean squared error (MSE) and the
bit error rate (BER). There is a degradation in performance
compared with a receiver with perfect synchronization, especially
for high Es/N0, but the KSP-OFDM system with the proposed
estimator outperforms a cyclic prefix OFDM system with the
time delay estimator from [1].

I. I NTRODUCTION

The number of wired and wireless services has increased a
lot during the last years. This increase has made it necessary
to find a technique that combines high data rates with a
high reliability. Orthogonal frequency division multiplexing
(OFDM) is a strong candidate as it is a flexible technique that
can support high data rates, and is able to combat frequency
selective channels [2]. These advantageous properties have
made OFDM a hot research topic and the OFDM technique
has already been applied in various standards like digital audio
broadcasting (DAB) [3], digital video broadcasting (DVB) [4],
in modems for digital subscriber lines (xDSL) [5], in wireless
local area networks (WLAN) [6], ...

An OFDM system can be efficiently implemented by the
usage of fast Fourier transforms (FFT), which is a great
advantage. Before the transmission, an inverse FFT (IFFT)
is applied to the information to be transmitted, in order to
convert the data that are modulated in the frequency domain
on the different carriers into a time domain signal. Further,
a guard interval is inserted to avoid inter block interference
(IBI) between successively transmitted OFDM blocks. In the
literature, there exist different types of guard intervals. The two
most popular guard interval techniques are the cyclic prefix
(CP) and the zero padding (ZP) techniques [7]. In the cyclic
prefix technique, the guard interval is transmitted before each
OFDM block and consists of the last samples of the OFDM
block. In ZP-OFDM, the guard interval is filled with zeros, i.e.
during the guard interval no signal is transmitted. In this paper
however, we will consider a third guard interval technique,
i.e. the known symbol padding (KSP) technique [8]. In this
technique, the guard interval is filled with known samples or
pilots.

Synchronization of the OFDM receiver with the OFDM
transmitter requires to find the starting point of the OFDM

symbol: time offsets can cause inter carrier interference (ICI)
and IBI [9], [10]. For CP-OFDM, several time delay estimation
algorithms have been proposed in the literature. The authors
of [1] derive the maximum likelihood (ML) estimator for
a time delay in the presence of additive white Gaussian
noise (AWGN). The redundancy of the cyclic prefix and pilot
symbols on the carriers are exploited. The blind estimator of
[11] is a special case of the previous estimator and only makes
use of the correlation of the cyclic prefix and the last samples
of the transmitted OFDM block. A time delay estimator that
makes use of a specially designed training symbol is proposed
in [12] for the AWGN channel. However, as it does not
employ all available information, the estimator is suboptimal.
In [13], the ML time delay estimator is derived in the case of
dispersive channels under the assumption of perfect channel
knowledge. The estimator uses the cyclic prefix only. However,
as it is in practice very difficult to obtain a channel estimate
without knowledge about the time delay, the performance of
this estimator can be seen as a lower bound on the performance
of an estimator which does not assume any knowledge about
the channel.

To our knowledge, no research has been done about time
delay estimation algorithms for KSP-OFDM. This motivated
us to derive an ML-based timing delay estimator for KSP-
OFDM in dispersive channels. The performance of the pro-
posed estimator is compared with the estimator for CP-OFDM
from [1] in terms of the mean squared error (MSE) of the time
delay estimate, and in terms of the bit error rate (BER).

II. SYSTEM MODEL

Consider a KSP-OFDM system withN carriers and
a guard interval of lengthν. M is defined as the to-
tal number of transmitted pilot symbols of whichν
are transmitted during the guard interval andM − ν
on the carriers. On the different carriers we trans-
mit a block of symbols a = (a(0) , . . . , a(N −1))T

consisting of M − ν pilot symbols denoted asbc =
(bc (0) , . . . , bc (M−ν−1))T and N + ν − M data symbols
denoted asad = (ad (0) , . . . , ad (N +ν−M−1))T . The guard
interval consists of ν pilot symbols denoted asbg =
(bg (0) , . . . , bg (ν−1))T . We define Es as the transmitted

energy per symbol:Es = E
[

|a(n)|2
]

= E
[

|bg (k)|2
]

. The trans-
mitted symbola is modulated on the different carriers using
the N-point IFFT. The guard interval is inserted after theN
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Figure 1. Time-domain signal of a KSP-OFDM block a) transmitted signal
b) received signal and observation interval

IFFT outputs. The samples of the transmitted time domain
signals= (s(0) , . . . , s(N +ν−1))T are given by

s=

√

N
N +ν

(

FHa
bg

)

(1)

whereF denotes theN×N FFT matrix with elements(F)k,l =
1√
N

e− j2π kl
N ; k, l = 0, . . . , N − 1. Figure 1 shows the time

domain signal. We define the vectorssp andsd as

sp =

√

N
N +ν

Fpbc

sd =

√

N
N +ν

Fdad

whereFp consists of theM−ν columns ofFH which corre-
spond to the pilot carriers andFd is given by theN + ν−M
columns of FH that correspond to the data carriers. Sosp

can be seen as theN-point IFFT of the pilot carriers only,
while sd is the N-point IFFT of the data carriers only. We
defineb as the total transmitted pilot signal, sob collects the
contribution from the pilot carriers and the pilot symbols in
the guard interval

b =

(

sp
√

N
N+νbg

)

. (2)

The sampless are transmitted over a frequency selective
channel with an impulse response of lengthL denoted as
h = (h(0) , . . . , h(L−1))T . In order to avoid inter block
interference, the length of the guard intervalν is chosen so that
the guard interval exceeds the duration of the channel impulse
response:ν ≥ L−1. The received signalr (k) can be written
as

r (k) =
L−1

∑
l=0

h(l) s(k− k0− l)+w(k) (3)

wherek0 is the integer time delay andw(k) is additive white
Gaussian noise with varianceN0 and zero mean. Note that
s(k) = 0 for k ≥N +ν andk < 0. Expression (3) can be written
in the following matrix form

r = Hs+w (4)

where r = (r (k0) , . . . , r (k0 +N +ν+L−2))T ,
w = (w(k0) , . . . , w(k0 +N +ν+L−2))T , s is defined
in (1) and H is the (N +ν+L−1) × (N +ν)
Toeplitz channel matrix whose entries are defined as
(H)i:i+L−1,i = h; i = 0, . . . , N + ν− 1. The contribution of
the useful signal in (4) can be written as the sum of the
contribution of the data symbols and the pilot symbols:

Hs = Hdsd +Bh (5)

where Hd consists of the firstN columns of H and
B is the (N +ν+L−1) × L Toeplitz matrix with entries
(B)i:i+N+ν−1,i = b; i = 0, . . . , L−1.

For data detection, the contribution from the pilot symbols
of the guard interval is first subtracted from the received signal,
and the lastν samples of the observation interval are added to
the firstν samples of the OFDM symbol (see figure 1b). The
resulting block ofN samples is then applied to the FFT.

III. T IME DELAY ESTIMATION

In this section we derive an ML-based estimator for the
time delayk0, starting from the joint log likelihood function
of k0 and h. We derive the algorithm under the assumption
that only one OFDM block is transmitted, so before and after
the OFDM block only noise is received. In the simulation
results section, we will evaluate the proposed algorithm in
a continuous transmission mode, where continuously OFDM
symbols are transmitted.

The joint ML estimate ofk0 and h can be obtained by
maximizing the log likelihood function ofk0 and h, i.e.
Λ(k0, h), given by (see appendix)

Λ(k0, h) = −1
2

logdet(R)

− 1
N0

(

k0−1

∑
k=−∞

|r (k)|2 +
+∞

∑
k=k0+N+ν+L−1

|r (k)|2
)

− (r −Bh)H R−1 (r −Bh) (6)

where det(R) is the determinant of the matrixR, and R is
defined as

R = N0I +
NEs

N +ν
HdFdFH

d HH
d . (7)

The maximization of (6) with respect toh is difficult because
of the presence ofNEs

N+ν HdFdFH
d HH

d in the matrixR. To solve
this problem we simplify the log likelihood function (6) by
neglectingNEs

N+ν HdFdFH
d HH

d in R, which means that we neglect
the contribution from the unknown data symbols

Λ(k0, h) = −1
2

logdet(N0I)

− 1
N0

(

+∞

∑
k=−∞

|r (k)|2− rHBh−hHBH r +hHBHBh

)

. (8)

The first two terms in (8) do not depend onk0 andh, and can
therefore be neglected. The estimate ofh given k0 is obtained
by deriving (8) with respect toh and results in

ĥ(k0) =
(

BHB
)−1

BHr (9)



When we substitute this estimate ofh in (8) we obtain the
function Γ(k0) which only depends onk0:

Γ(k0) =
1

N0
rHB

(

BHB
)−1

BH r . (10)

The estimate ofk0 is then given by

k̂0 = argmax
k0

{Γ(k0)} . (11)

Although we derive the joint estimate ofh and k0 in this
algorithm, only the estimate fork0 is used. Indeed, the estimate
for h will perform badly at high SNR, as the contributions
from the data symbols in (6) and (7) have been neglected,
resulting in an error floor in the MSE ofh and the BER
(see [14] and [15]). The derivation of the estimate ofh is
only needed to remove its contribution from (8) in order to
obtain a simple expression for the estimate ofk0. For channel
estimation, better estimators are available in the literature, e.g.
[16], [17], having better performance at high SNR than the
estimator (9).

If we take a closer look at (10), we see that the function
Γ(k0) computes the correlation between the received signal
and the pilot vectorb at L successive time instants as can be
seen from the matrix productBHr . The estimator (11) tries
to find the k̂0 that maximizes a function of theL successive
correlations between the received signal and the pilot vector.

IV. SIMULATION RESULTS

In this section the performance of the time delay estimator
is evaluated by means of simulations. We compare the perfor-
mance of the estimator with the ML time delay estimation
algorithm for CP-OFDM from [1]. We considerN = 1024
sub carriers and a guard interval of lengthν = 100 for KSP-
OFDM and CP-OFDM respectively. To make a fair compar-
ison between CP-OFDM and KSP-OFDM, we assume that
the number of pilot symbols transmitted on the carriers in the
CP-OFDM signal is equal toM−ν. The transmitted symbols
consist of randomly generated QPSK symbols. Although we
derived the estimator fork0 under the assumption that only
one OFDM block is transmitted, we simulate a continuous
transmission of OFDM symbols. As we want to focus on the
impact of time delay estimation errors, it is assumed for the
simulation of the BER that possible phase rotations of the
symbol constellation caused by time delay estimation errors,
are perfectly compensated and that the channel is perfectly
estimated after the time delay estimation. For KSP-OFDM,
these assumptions mean that the interference caused by pilot
symbols from the guard interval can be perfectly removed.

The performance of both estimators in a dispersive channel
is shown in figures 2-7. We consider a frequency selective
Rayleigh fading channel consisting ofL = 50 channel taps.
Figure 2 shows the results for the MSE on the time delay
estimate. The KSP-OFDM estimator outperforms the estimator
for CP-OFDM as could be expected: our estimator takes
the dispersive nature of the channel into account while the
estimator from [1] was designed for an AWGN channel. When
we add extra pilot carriers, we see that the MSE of the
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Figure 2. MSE results for a frequency selective channel,L = 50, N = 1024,
ν = 100
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Figure 3. Histogram of the time delay estimation error for the KSP-OFDM,
Es/N0 = 20 dB, M = 100

KSP-OFDM estimator decreases while the MSE of the CP-
OFDM estimator does not change much. This indicates that the
performance of the estimator [1] is not robust to a dispersive
channel.

Figures 3 and 4 show a histogram of the estimation error
k̂0 − k0 for the KSP-OFDM estimator and the CP-OFDM
estimator respectively forEs/N0 = 20 dB. For these figures, we
only put pilot symbols in the guard interval (M = ν). In almost
70% of all simulated cases, the KSP-OFDM estimator finds the
real k0 and in more than 90% of all simulated cases, we find
that

∣

∣k̂0− k0
∣

∣≤ 2 samples. The performance of the CP-OFDM
estimator is much worse: the truek0 is almost never found and
less than 1% of all cases results in

∣

∣k̂0− k0
∣

∣≤ 2 samples.
Figures 5 and 6 show a histogram of the estimation error

k̂0 − k0 for the KSP-OFDM estimator and the CP-OFDM
estimator respectively forEs/N0 = 20 dB and 100 pilot carriers
(M = 200). The KSP-OFDM estimator finds the realk0 in
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Figure 4. Histogram of the time delay estimation error for the CP-OFDM
estimator,Es/N0 = 20 dB, no pilot carriers
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Figure 5. Histogram of the time delay estimation error for the KSP-OFDM,
Es/N0 = 20 dB, M = 200

more than 90% of all simulated cases and in more than 99%
of all simulated cases,

∣

∣k̂0− k0
∣

∣ is smaller than or equal to
2 samples. Hence, a large improvement is obtained by using
100 pilot carriers in the proposed estimator. The performance
of the CP-OFDM estimator does not benefit from the pilot
carriers: the performance is similar to the case without pilot
carriers.

The BER results for a dispersive channel are shown in
figure 7. We see that the KSP-OFDM estimator exhibits a
lower BER than the CP-OFDM system with the time delay
estimator from [1]. Both estimators exhibit an error floor for
higher Es/N0, but the CP-OFDM has a significantly higher
error floor. This error floor of the proposed estimator is caused
by the assumptions made in the derivation of this estimator,
i.e. that only one OFDM symbol is transmitted whereas in the
simulations continuous transmission is considered, and bythe
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Figure 6. Histogram of the time delay estimation error for the CP-OFDM
estimator,Es/N0 = 20 dB, 100 pilot carriers
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Figure 7. BER results for a frequency selective channel,L = 50, N = 1024,
ν = 100

neglection of the data symbols in the channel estimate used to
estimate the timing offset. As can be seen on the figure, the
performance of the KSP-OFDM estimatoris further improved
by adding extra pilot symbols on some carriers.

V. CONCLUSION

We have derived a time delay estimator for KSP-OFDM in
multipath fading environments. The estimator is based on the
correlation between the received signal and the pilot symbols
in the guard interval and the correlation between the received
signal and the time domain contribution from the pilot carriers.
We compared the proposed time delay estimator with the ML
time delay estimator for a CP-OFDM system [1]. The KSP-
OFDM system with our estimator outperforms the considered
CP-OFDM system. The KSP-OFDM system with our time
delay estimator results in a lower BER than the considered CP-
OFDM system. We have seen that adding extra pilot carriers



improves the performance of our estimator while the estimator
for the CP-OFDM system does not benefit from the extra pilot
symbols.

APPENDIX

For the derivation of the time delay estimation algorithm
we assume that only one OFDM block is transmitted. This
means that before and after the OFDM block, only white
Gaussian noise is received. We definer∞ as the vector of all
observations:

r∞ = {r (k) | k = −∞, . . . , +∞}
The contribution of the unknown data symbols in the received
OFDM block r can be modelled as an extra noise term.
Each element of the vectorsd consists of a large weighted
sum of i.i.d random variablesad (if the number of data
carriers is sufficiently large) and can therefore be modelled as
a Gaussian random variable. Assuming the joint probability
density function ofsd is Gaussian, it has zero mean and
covariance matrix equal toN

N+ν EsFdFH
d . The distribution of

the observationr∞ given k0, the channel impulse responseh
and the pilot vectorsbc andbg is given by

p(r∞ |k0, h, bc, bg ) =

C (det(R))−
1
2 exp

{

− 1
N0

(

k0−1

∑
k=−∞

|r (k)|2

+
+∞

∑
k=k0+N+ν+L−1

|r (k)|2

− 1
N0

(r −Bh)H R−1 (r −Bh)

)}

(12)

whereC is some constant, det(R) is the determinant of the
matrix R, and the covariance matrixR is defined as

R = N0I +
NEs

N +ν
HdFdFH

d HH
d .

The log likelihood function ofk0 andh, neglecting irrelevant
terms, is then given by

Λ(k0, h) = −1
2

logdet(R)

− 1
N0

(

k0−1

∑
k=−∞

|r (k)|2 +
+∞

∑
k=k0+N+ν+L−1

|r (k)|2
)

− 1
N0

(r −Bh)H R−1(r −Bh) (13)
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