24 research outputs found

    Cognitive Radio Connectivity for Railway Transportation Networks

    Get PDF
    Reliable wireless networks for high speed trains require a significant amount of data communications for enabling safety features such as train collision avoidance and railway management. Cognitive radio integrates heterogeneous wireless networks that will be deployed in order to achieve intelligent communications in future railway systems. One of the primary technical challenges in achieving reliable communications for railways is the handling of high mobility environments involving trains, which includes significant Doppler shifts in the transmission as well as severe fading scenarios that makes it difficult to estimate wireless spectrum utilization. This thesis has two primary contributions: (1) The creation of a Heterogeneous Cooperative Spectrum Sensing (CSS) prototype system, and (2) the derivation of a Long Term Evolution for Railways (LTE-R) system performance analysis. The Heterogeneous CSS prototype system was implemented using Software-Defined Radios (SDRs) possessing different radio configurations. Both soft and hard-data fusion schemes were used in order to compare the signal source detection performance in real-time fading scenarios. For future smart railways, one proposed solution for enabling greater connectivity is to access underutilized spectrum as a secondary user via the dynamic spectrum access (DSA) paradigm. Since it will be challenging to obtain an accurate estimate of incumbent users via a single-sensor system within a real-world fading environment, the proposed cooperative spectrum sensing approach is employed instead since it can mitigate the effects of multipath and shadowing by utilizing the spatial and temporal diversity of a multiple radio network. Regarding the LTE-R contribution of this thesis, the performance analysis of high speed trains (HSTs) in tunnel environments would provide valuable insights with respect to the smart railway systems operating in high mobility scenarios in drastically impaired channels

    Soluções de broadcast para redes 4G

    Get PDF
    Mestrado em Engenharia Electrónica e de TelecomunicaçõesA primeira difusão de conteúdos video e audio teve um forte impacto no quotidiano da população que assistiu a uma revolução nos modelos de transmissão de informação e de entretenimento. A evolução desde então foi significativa, e já na era digital, encontramo-nos face a uma nova sub-elevação da metodologia e do conceito subjacentes à transmissão de conteudos multimédia. O mundo actual apresenta, contudo, diferentes requisitos, de entre os quais se destacam a procura pela alta definição e mobilidade. A mobilidade tem sido um particular foco de atenção por parte dos operadores que exploram agora modelos para entregar uma vasta gama de serviços que sejam atractivos para os utilizadores. Esta dissertação apresenta um sumário das tecnologias emergentes de broadcast que se distinguem nas várias partes do mundo com a sua particular incidência geográfica, características e cenários de aplicação. É ainda apresentada uma arquitectura 4G abordando assuntos inerentes à mobilidade e qualidade de serviço com particular incidência nos aspectos relacionados com a integração de uma tecnologia de broadcast particular. Para avaliação da arquitectura proposta foram efectuados estudos com base num equipamento de broadcast na sua versão comercial, permitindo desta forma obter uma análise que ilustra o que os operadores podem esperar do estado actual dos dispositivos. Os resultados permitiram retirar ilações sobre o comportamento de um equipamento considerado como um produto final a disponibilizar aos operadores, quando integrado num ambiente 4G com suporte de mobilidade e QoS. Nomeadamente é discutida a sua aplicabildiade tendo em linha de conta as desvantagens introduzidas pelas características inerentes à própria tecnologia.Broadcast of video and audio through analogical television completely changed the paradigm of information and entertainment divulgation. Today, in the “digital era”, the Analogue Switch Off revolution is being held. Manufacturers and operators already show concerns regarding the support of mobility, quality of experience and of service. Delivering competitive High Definition contents and providing solutions for the average “on-the-move” user are two of the most important issues to be dealt by the service providers, which are also within the analysis scope of this work. This dissertation presents an overview on the most relevant broadcast technologies which are assumed to be of relative acceptance in their respective target market. It presents their main characteristics and applicability. 4G architectural concepts are also analyzed, closely dealing with mobility and quality of service provisioning, with particular focus on the seamless integration of broadcast technologies. As a mean to evaluate the feasibility of integrating broadcast technologies with 4G architectures, a performance evaluation study was performed using commercial equipment. In this way a several set of considerations constructed illustrating the features and functionalities which operators can expect or disregard from professional commercial broadcasting devices. Results allow the withdrawing of conclusions concerning the integration of a final broadcasting solution when incorporated within a 4G environment with QoS and mobility support. Its applicability is evaluated having in mind the performance drawbacks introduced by the specific technology, and generalized towards the gathering of more general conclusions which consider the main characteristics of the commercial broadcasting devices

    Exploitation of signal information for mobile speed estimation and anomaly detection

    Get PDF
    Although the primary purpose of the signal received by amobile handset or smartphone is to enable wireless communication, the information extracted can be reused to provide a number of additional services. Two such services discussed in this thesis are: mobile speed estimation and signal anomaly detection. The proposed algorithms exploit the propagation environment specific information that is already imprinted on the received signal and therefore do not incur any additional signalling overhead. Speed estimation is useful for providing navigation and location based services in areas where global navigation satellite systems (GNSS) based devices are unusable while the proposed anomaly detection algorithms can be used to locate signal faults and aid spectrum sensing in cognitive radio systems. The speed estimation algorithms described within this thesis require a receiver with at least two antenna elements and a wideband radio frequency (RF) signal source. The channel transfer function observed at the antenna elements are compared to yield an estimate of the device speed. The basic algorithm is a one-dimensional and unidirectional two-antenna solution. The speed of the mobile receiver is estimated from a knowledge of the fixed inter-antenna distance and the time it takes for the trailing antenna to sense similar channel conditions previously observed at the leading antenna. A by-product of the algorithm is an environment specific spatial correlation function which may be combined with theoretical models of spatial correlation to extend and improve the accuracy of the algorithm. Results obtained via computer simulations are provided. The anomaly detection algorithms proposed in this thesis highlight unusual signal features while ignoring events that are nominal. When the test signal possesses a periodic frame structure, Kullback-Leibler divergence (KLD) analysis is employed to statistically compare successive signal frames. A method of automatically extracting the required frame period information from the signal is also provided. When the signal under test lacks a periodic frame structure, information content analysis of signal events can be used instead. Clean training data is required by this algorithm to initialise the reference event probabilities. In addition to the results obtained from extensive computer simulations, an architecture for field-programmable gate array (FPGA) based hardware implementations of the KLD based algorithm is provided. Results showing the performance of the algorithms against real test signals captured over the air are also presented. Both sets of algorithms are simple, effective and have low computational complexity – implying that real-time implementations on platforms with limited processing power and energy are feasible. This is an important quality since location based services are expected to be an integral part of next generation cognitive radio handsets

    Optimisation of wireless communication system by exploitation of channel diversity

    Get PDF
    Communication systems are susceptible to degradation in performance because of interference received through their side lobes. The interference may be deliberate electronic counter measure (ECM), Accidental RF Interference (RFI) or natural noise. The growth of interference communication systems have given rise to different algorithms, Adaptive array techniques offer a possible solution to this problem of interference received through side lobes because of their automatic null steering in both spatial and frequency domains. Key requirement for space-time architecture is to use robust adaptive algorithms to ensure reliable operation of the smart antenna. Space division multiple access (SDMA) involves the use of adaptive nulling to allow two or more users (mobiles) in the same cell to share same frequency and time slot. One beam is formed for each user with nulls in the direction of other users. Different approaches have been used to identify the interferer from desired user. Thus a basic model for determining the angle of arrival of incoming signals, an appropriate antenna beam forming and adaptive algorithms are used for array processing. There is an insatiable demand for capacity in wireless data networks and cellular radio communication systems. However the RF environment that these systems operate in is harsh and severely limits the capacity of traditional digital wireless networks. With normal wireless systems this limits the data rate in cellular radio environments to approximately 200 kbps whereas much higher data rates in excess of 25Mbps are required. A common wireless channel problem is that of frequency selective multi-path fading. To combat this problem, new types of wireless interface are being developed which utilise space, time and frequency diversity to provide increasing resilience to the channel imperfections. At any instant in time, the channel conditions may be such that one or more of these diversity methods may offer a superior performance to the other diversity methods. The overall aim of the research is to develop new systems that use a novel combination of smart antenna MIMO techniques and an advanced communication system based on advanced system configuration that could be exploited by IEEE 802.20 user specification approach for broadband wireless networking. The new system combines the Multi-input Multi-output communication system with frequency diversity in the form of an OFDM modulator. The benefits of each approach are examined under similar channel conditions and results presented.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Semi-blind channel estimation for multiuser OFDM-IDMA systems.

    Get PDF
    M. Sc. Eng. University of KwaZulu-Natal, Durban 2014.Over the last decade, the data rate and spectral efficiency of wireless mobile communications have been significantly enhanced. OFDM technology has been used in the development of advanced systems such as 3GPP LTE and terrestrial digital TV broadcasting. In general, bits of information in mobile communication systems are conveyed through radio links to receivers. The radio channels in mobile radio systems are usually multipath fading channels, which cause inter-symbol interference (ISI) in the received signal. The ability to know the channel impulse response (CIR) and Channel State Information (CSI) helps to remove the ISI from the signal and make coherent detection of the transmitted signal at the receiver end of the system easy and simple. The information about CIR and CSI are primarily provided by channel estimation. This thesis is focused on the development of multiple access communication technique, Multicarrier Interleave Division Multiple Access (MC-IDMA) and the corresponding estimation of the system channel. It compares various efficient channel estimation algorithms. Channel estimation of OFDM-IDMA scheme is important because the emphasis from previous studies assumed the implementation of MC-IDMA in a perfect scenario, where Channel State Information (CSI) is known. MC-IDMA technique incorporates three key features that will be common to the next generation communication systems; multiple access capability, resistance to multipath fading and high bandwidth efficiency. OFDM is almost completely immune to multipath fading effects and IDMA has a recently proposed multiuser capability scheme which employs random interleavers as the only method for user separation. MC-IDMA combines the features of OFDM and IDMA to produce a system that is Inter Symbol Interference (ISI) free and has higher data rate capabilities for multiple users simultaneously. The interleaver property of IDMA is used by MC-IDMA as the only means by which users are separated at the receiver and also its entire bandwidth expansion is devoted to low rate Forward Error Correction (FEC). This provides additional coding gain which is not present in conventional Multicarrier Multiuser systems, (MC-MU) such as Code Division Multiple Access (CDMA), Multicarrier-Code Division Multiple Access (MC-CDMA) systems, and others. The effect of channel fading and both cross-cell and intra-cell Multiple Access Interference (MAI) in MC-IDMA is suppressed efficiently by its low-cost turbo-type Chip-by-Chip (CBC) multiuser detection algorithm. We present the basic principles of OFDM-IDMA transmitter and receiver. Comparative studies between Multiple Access Scheme such as Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), CDMA and IDMA are carried out. A linear Minimum Mean Square Error (MMSE)-based estimation algorithm is adopted and implemented. This proposed algorithm is a non-data aided method that focuses on obtaining the CSI, remove ISI and reduce the complexity of the MMSE algorithm. However, to obtain a better and improved system performance, an improved MMSE algorithm and simplified MMSE using the structured correlation and reduced auto-covariance matrix are developed in this thesis and proposed for implementation of semi-blind channel estimation in OFDM-IDMA communication systems. The effectiveness of the adopted and proposed algorithms are implemented in a Rayleigh fading multipath channel with varying mobile speeds thus demonstrating the performance of the system in a practical scenario. Also, the implemented algorithms are compared to ascertain which of these algorithms offers a better and more efficient system performance, and with less complexity. The performance of the channel estimation algorithm is presented in terms of the mean square error (MSE) and bit error rate (BER) in both slow fading and fast fading multipath scenarios and the results are documented as well

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries
    corecore