3,320 research outputs found

    Proper Motion of H2O Masers in IRAS 20050+2720 MMS1: An AU Scale Jet Associated with An Intermediate-Mass Class 0 Source

    Full text link
    We conducted a 4 epoch 3 month VLBA proper motion study of H2_2O masers toward an intermediate-mass class 0 source IRAS 20050+2720 MMS1 (d=700 pc). From milli-arcsecond (mas) resolution VLBA images, we found two groups of H2O maser spots at the center of the submillimeter core of MMS1. One group consists of more than ∼50\sim 50 intense maser spots; the other group consisting of several weaker maser spots is located at 18 AU south-west of the intense group. Distribution of the maser spots in the intense group shows an arc-shaped structure which includes the maser spots that showed a clear velocity gradient. The spatial and velocity structures of the maser spots in the arc-shape did not significantly change through the 4 epochs. Furthermore, we found a relative proper motion between the two groups. Their projected separation increased by 1.13+/-0.11 mas over the 4 epochs along a line connecting them. The spatial and velocity structures of the intense group and the relative proper motions strongly suggest that the maser emission is associated with a protostellar jet. Comparing the observed LSR velocities with calculated radial velocities from a simple biconical jet model, we conclude that the most of the maser emission are likely to be associated with an accelerating biconical jet which has large opening angle. The large opening angle of the jet traced by the masers would support the hypothesis that poor jet collimation is an inherent property of luminous (proto)stars.Comment: 14 pages, 10 figures, Fig.3 was downsized significantly. accepted for publication in A&

    A near IR imaging survey of intermediate and high-mass young stellar outflow candidates

    Full text link
    We have carried out a near-infrared imaging survey of luminous young stellar outflow candidates using the United Kingdom Infrared Telescope. Observations were obtained in the broad band K (2.2 mu) and through narrow band filters at the wavelengths of H_2 v=1--0 S(1) (2.1218 mu) and Br gamma (2.166 mu) lines. Fifty regions were imaged with a field of view of 2.2 X 2.2 arcmin^2. Several young embedded clusters are unveiled in our near-infrared images. 76% of the objects exhibit H_2 emission and 50% or more of the objects exhibit aligned H_2 emission features suggesting collimated outflows, many of which are new detections. These observations suggest that disk accretion is probably the leading mechanism in the formation of stars, at least up to late O spectral types. The young stellar objects responsible for many of these outflows are positively identified in our images based on their locations with respect to the outflow lobes, 2MASS colours and association with MSX, IRAS, millimetre and radio sources. The close association of molecular outflows detected in CO with the H_2 emission features produced by shock excitation by jets from the young stellar objects suggests that the outflows from these objects are jet-driven. Towards strong radio emitting sources, H_2 jets were either not detected or were weak when detected, implying that most of the accretion happens in the pre-UCHII phase; accretion and outflows are probably weak when the YSO has advanced to its UCHII stage.Comment: 64 pages, 53 figures, Accepted for publication in the MNRA

    On the Structure of the Small Quantum Cohomology Rings of Projective Hypersurfaces

    Full text link
    We give an explicit procedure which computes for degree d≤3d \leq 3 the correlation functions of topological sigma model (A-model) on a projective Fano hypersurface XX as homogeneous polynomials of degree dd in the correlation functions of degree 1 (number of lines). We extend this formalism to the case of Calabi-Yau hypersurfaces and explain how the polynomial property is preserved. Our key tool is the construction of universal recursive formulas which express the structural constants of the quantum cohomology ring of XX as weighted homogeneous polynomial functions in the constants of the Fano hypersurface with the same degree and dimension one more. We propose some conjectures about the existence and the form of the recursive formulas for the structural constants of rational curves of arbitrary degree. Our recursive formulas should yield the coefficients of the hypergeometric series used in the mirror calculation. Assuming the validity of the conjectures we find the recursive laws for rational curves of degree 4 and 5.Comment: 32 pages, changed fonts, exact results on quintic rational curves are added. To appear in Commun. Math. Phy

    Decomposition of Differential Games

    Full text link
    This paper provides a decomposition technique for the purpose of simplifying the solution of certain zero-sum differential games. The games considered terminate when the state reaches a target, which can be expressed as the union of a collection of target subsets; the decomposition consists of replacing the original target by each of the target subsets. The value of the original game is then obtained as the lower envelope of the values of the collection of games resulting from the decomposition, which can be much easier to solve than the original game. Criteria are given for the validity of the decomposition. The paper includes examples, illustrating the application of the technique to pursuit/evasion games, where the decomposition arises from considering the interaction of individual pursuer/evader pairs.Comment: 10 pages, 2 figure

    Unveiling the nature of INTEGRAL objects through optical spectroscopy. VIII. Identification of 44 newly detected hard X-ray sources

    Full text link
    (abridged) Hard X-ray surveys performed by the INTEGRAL satellite have discovered a conspicuous fraction (up to 30%) of unidentified objects among the detected sources. Here we continue our identification program by selecting probable optical candidates using positional cross-correlation with soft X-ray, radio, and/or optical archives, and performing optical spectroscopy on them. As a result, we identified or more accurately characterized 44 counterparts of INTEGRAL sources: 32 active galactic nuclei, with redshift 0.019 < z < 0.6058, 6 cataclysmic variables (CVs), 5 high-mass X-ray binaries (2 of which in the Small Magellanic Cloud), and 1 low-mass X-ray binary. This was achieved by using 7 telescopes of various sizes and archival data from two online spectroscopic surveys. The main physical parameters of these hard X-ray sources were also determined using the available multiwavelength information. AGNs are the most abundant population among hard X-ray objects, and our results confirm this tendency when optical spectroscopy is used as an identification tool. The deeper sensitivity of recent INTEGRAL surveys enables one to begin detecting hard X-ray emission above 20 keV from sources such as LINER-type AGNs and non-magnetic CVs.Comment: 22 pages, 14 figures, 6 tables, accepted for publication on A&A, main journa

    Conformational Instability of Rodlike Polyelectrolytes due to Counterion Fluctuations

    Full text link
    The effective elasticity of highly charged stiff polyelectrolytes is studied in the presence of counterions, with and without added salt. The rigid polymer conformations may become unstable due to an effective attraction induced by counterion density fluctuations. Instabilities at the longest, or intermediate length scales may signal collapse to globule, or necklace states, respectively. In the presence of added-salt, a generalized electrostatic persistence length is obtained, which has a nontrivial dependence on the Debye screening length. It is also found that the onset of conformational instability is a re-entrant phenomenon as a function of polyelectrolyte length for the unscreened case, and the Debye length or salt concentration for the screened case. This may be relevant in understanding the experimentally observed re-entrant condensation of DNA.Comment: 8 pages, 4 figure

    On skillful decadal predictions of the subpolar North Atlantic

    Get PDF
    The North Atlantic is a crucial region for the prediction of weather and climate of North America and Europe and is the focus of this analysis. A skillful decadal prediction of the surface temperature was shown for several Earth system models, with the North Atlantic standing out as one region with higher predictive skill. This skill assessment concentrates on the rapid increase of the annual mean sea surface temperature of the North Atlantic subpolar gyre by about 1 K in the mid‑1990s and the adjacent years. This event-oriented analysis adds creditability to the decadal predictions and reveals the potential for improvements. The ability to simulate the observed sea surface temperature in the North Atlantic is quantified by using four versions of decadal predictions, which differ in model resolution, initialization technique, and the reanalysis data used in the assimilation run. While all four versions can reproduce the mid-1990s warming of the subpolar North Atlantic, the characteristics differ with lead time and version. The higher vertical resolution in the atmosphere and the higher horizontal resolution in the ocean improve the decadal prediction for longer lead times, and the anomaly initialization outperforms the full-field initialization for short lead times. The effect from the two different ocean reanalysis products on the predictive skill is strongest in the first two prediction years; a substantial cooling instead of the warming in the central North Atlantic reduces the skill score for the North Atlantic sea surface temperature in one version, whereas a too large interannual variability, compared with observations, lowers the skill score in the other version. The cooling patches are critical since the resulting gradients in sea surface temperature and their effect on atmospheric dynamics deviate from observations, and, moreover, hinder the skillful prediction of atmospheric variables
    • …
    corecore