556 research outputs found

    Fast Temporal Wavelet Graph Neural Networks

    Full text link
    Spatio-temporal signals forecasting plays an important role in numerous domains, especially in neuroscience and transportation. The task is challenging due to the highly intricate spatial structure, as well as the non-linear temporal dynamics of the network. To facilitate reliable and timely forecast for the human brain and traffic networks, we propose the Fast Temporal Wavelet Graph Neural Networks (FTWGNN) that is both time- and memory-efficient for learning tasks on timeseries data with the underlying graph structure, thanks to the theories of multiresolution analysis and wavelet theory on discrete spaces. We employ Multiresolution Matrix Factorization (MMF) (Kondor et al., 2014) to factorize the highly dense graph structure and compute the corresponding sparse wavelet basis that allows us to construct fast wavelet convolution as the backbone of our novel architecture. Experimental results on real-world PEMS-BAY, METR-LA traffic datasets and AJILE12 ECoG dataset show that FTWGNN is competitive with the state-of-the-arts while maintaining a low computational footprint. Our PyTorch implementation is publicly available at https://github.com/HySonLab/TWGNNComment: arXiv admin note: text overlap with arXiv:2111.0194

    High speed VLSI architectures for DWT in biometric image compression: A study

    Get PDF
    AbstractBiometrics is a field that navigates through a vast database and extracts only the qualifying data to accelerate the processes of biometric authentication/recognition. Image compression is a vital part of the process. Various Very Large Scale Integration (VLSI) architectures have emerged to satisfy the real time requirements of the online processing of the applications. This paper studies various techniques that help in realizing the fast operation of the transform stage of the image compression processes. Various parameters that may involve in optimizations for high speed like computing time, silicon area, memory size etc are considered in the survey

    Applied Harmonic Analysis and Data Science (hybrid meeting)

    Get PDF
    Data science has become a field of major importance for science and technology nowadays and poses a large variety of challenging mathematical questions. The area of applied harmonic analysis has a significant impact on such problems by providing methodologies both for theoretical questions and for a wide range of applications in signal and image processing and machine learning. Building on the success of three previous workshops on applied harmonic analysis in 2012, 2015 and 2018, this workshop focused on several exciting novel directions such as mathematical theory of deep learning, but also reported progress on long-standing open problems in the field
    corecore