9 research outputs found

    How Do Centrality Measures Choose the Root of Trees?

    Get PDF
    Centrality measures are widely used to assign importance to graph-structured data. Recently, understanding the principles of such measures has attracted a lot of attention. Given that measures are diverse, this research has usually focused on classes of centrality measures. In this work, we provide a different approach by focusing on classes of graphs instead of classes of measures to understand the underlying principles among various measures. More precisely, we study the class of trees. We observe that even in the case of trees, there is no consensus on which node should be selected as the most central. To analyze the behavior of centrality measures on trees, we introduce a property of tree rooting that states a measure selects one or two adjacent nodes as the most important, and the importance decreases from them in all directions. This property is satisfied by closeness centrality but violated by PageRank. We show that, for several centrality measures that root trees, the comparison of adjacent nodes can be inferred by potential functions that assess the quality of trees. We use these functions to give fundamental insights on rooting and derive a characterization explaining why some measure root trees. Moreover, we provide an almost linear time algorithm to compute the root of a graph by using potential functions. Finally, using a family of potential functions, we show that many ways of tree rooting exist with desirable properties

    The position value as a centrality measure in social networks

    Get PDF
    The position value, introduced by Meessen (1988), is a solution concept for cooperative games in which the value assigned to a player depends on the value of the connections or links he has with other players. This concept has been studied by Borm et al. (1992) and characterised by Slikker (2005). In this paper, we analyse the position value from the point of view of the typical properties of a measure of centrality in a social network. We extend the analysis already developed in Gomez et al. (2003) for the Myerson centrality measure, where the symmetric effect on the centralities of the end nodes of an added or removed edge is a fundamental part of its characterisation. However, the Position centrality measure, unlike the Myerson centrality measure, responds in a more versatile way to such addition or elimination. After studying the aforementioned properties, we will focus on the analysis and characterisation of the Position attachment centrality given by the position value when the underlying game is the attachment game. Some comparisons are made with the attachment centrality introduced by Skibski et al. (2019).Depto. de Estadística e Investigación OperativaFac. de Ciencias MatemáticasInstituto de Matemática Interdisciplinar (IMI)FALSEMinisterio de Ciencia e Innovaciónunpu

    Network partitioning algorithms as cooperative games

    Get PDF
    International audienceThe paper is devoted to game-theoretic methods for community detection in networks. The traditional methods for detecting community structure are based on selecting dense subgraphs inside the network. Here we propose to use the methods of cooperative game theory that highlight not only the link density but also the mechanisms of cluster formation. Specifically, we suggest two approaches from cooperative game theory: the first approach is based on the Myerson value, whereas the second approach is based on hedonic games. Both approaches allow to detect clusters with various resolutions. However, the tuning of the resolution parameter in the hedonic games approach is particularly intuitive. Furthermore, the modularity-based approach and its generalizations as well as ratio cut and normalized cut methods can be viewed as particular cases of the hedonic games. Finally, for approaches based on potential hedonic games we suggest a very efficient computational scheme using Gibbs sampling

    A POWER INDEX BASED FRAMEWORKFOR FEATURE SELECTION PROBLEMS

    Get PDF
    One of the most challenging tasks in the Machine Learning context is the feature selection. It consists in selecting the best set of features to use in the training and prediction processes. There are several benefits from pruning the set of actually operational features: the consequent reduction of the computation time, often a better quality of the prediction, the possibility to use less data to create a good predictor. In its most common form, the problem is called single-view feature selection problem, to distinguish it from the feature selection task in Multi-view learning. In the latter, each view corresponds to a set of features and one would like to enact feature selection on each view, subject to some global constraints. A related problem in the context of Multi-View Learning, is Feature Partitioning: it consists in splitting the set of features of a single large view into two or more views so that it becomes possible to create a good predictor based on each view. In this case, the best features must be distributed between the views, each view should contain synergistic features, while features that interfere disruptively must be placed in different views. In the semi-supervised multi-view task known as Co-training, one requires also that each predictor trained on an individual view is able to teach something to the other views: in classification tasks for instance, one view should learn to classify unlabelled examples based on the guess provided by the other views. There are several ways to address these problems. A set of techniques is inspired by Coalitional Game Theory. Such theory defines several useful concepts, among which two are of high practical importance: the concept of power index and the concept of interaction index. When used in the context of feature selection, they take the following meaning: the power index is a (context-dependent) synthesis measure of the prediction\u2019s capability of a feature, the interaction index is a (context-dependent) synthesis measure of the interaction (constructive/disruptive interference) between two features: it can be used to quantify how the collaboration between two features enhances their prediction capabilities. An important point is that the powerindex of a feature is different from the predicting power of the feature in isolation: it takes into account, by a suitable averaging, the context, i.e. the fact that the feature is acting, together with other features, to train a model. Similarly, the interaction index between two features takes into account the context, by suitably averaging the interaction with all the other features. In this work we address both the single-view and the multi-view problems as follows. The single-view feature selection problem, is formalized as the problem of maximization of a pseudo-boolean function, i.e. a real valued set function (that maps sets of features into a performance metric). Since one has to enact a search over (a considerable portion of) the Boolean lattice (without any special guarantees, except, perhaps, positivity) the problem is in general NP-hard. We address the problem producing candidate maximum coalitions through the selection of the subset of features characterized by the highest power indices and using the coalition to approximate the actual maximum. Although the exact computation of the power indices is an exponential task, the estimates of the power indices for the purposes of the present problem can be achieved in polynomial time. The multi-view feature selection problem is formalized as the generalization of the above set-up to the case of multi-variable pseudo-boolean functions. The multi-view splitting problem is formalized instead as the problem of maximization of a real function defined over the partition lattice. Also this problem is typically NP-hard. However, candidate solutions can be found by suitably partitioning the top power-index features and keeping in different views the pairs of features that are less interactive or negatively interactive. The sum of the power indices of the participating features can be used to approximate the prediction capability of the view (i.e. they can be used as a proxy for the predicting power). The sum of the feature pair interactivity across views can be used as proxy for the orthogonality of the views. Also the capability of a view to pass information (to teach) to other views, within a co-training procedure can benefit from the use of power indices based on a suitable definition of information transfer (a set of features { a coalition { classifies examples that are subsequently used in the training of a second set of features). As to the feature selection task, not only we demonstrate the use of state of the art power index concepts (e.g. Shapley Value and Banzhaf along the 2lines described above Value), but we define new power indices, within the more general class of probabilistic power indices, that contains the Shapley and the Banzhaf Values as special cases. Since the number of features to select is often a predefined parameter of the problem, we also introduce some novel power indices, namely k-Power Index (and its specializations k-Shapley Value, k-Banzhaf Value): they help selecting the features in a more efficient way. For the feature partitioning, we use the more general class of probabilistic interaction indices that contains the Shapley and Banzhaf Interaction Indices as members. We also address the problem of evaluating the teaching ability of a view, introducing a suitable teaching capability index. The last contribution of the present work consists in comparing the Game Theory approach to the classical Greedy Forward Selection approach for feature selection. In the latter the candidate is obtained by aggregating one feature at time to the current maximal coalition, by choosing always the feature with the maximal marginal contribution. In this case we show that in typical cases the two methods are complementary, and that when used in conjunction they reduce one another error in the estimate of the maximum value. Moreover, the approach based on game theory has two advantages: it samples the space of all possible features\u2019 subsets, while the greedy algorithm scans a selected subspace excluding totally the rest of it, and it is able, for each feature, to assign a score that describes a context-aware measure of importance in the prediction process

    Axiomatic Characterization of Game-Theoretic Centrality

    No full text
    corecore