
A Power Index Based Framework
for Feature Selection Problems

Corrado Mio

Corso di Dottorato in Informatica

Dipartimento di Informatica “Giovanni Degli Antoni”

Università degli Studi di Milano

XXXII Ciclo

Supervisore: Prof. Ernesto Damiani

Supervisore: Dr. Gabriele Gianini

Coordinatore Programma di Dottorato: Prof. Paolo Boldi

Anno Accademico: 2018-2019

Settore scientifico-disciplinare: INF/01

January 30, 2020

This thesis is dedicated to
Dr. Jean-Luc Widlowski

per avermi spinto ad intraprendere questa avventura
Dr. Gabriele Gianini e Prof. Alessandro Rizzi

per aver creduto nella fattibilità di questa avventura
Dr. Jiany Lin e Dr. Leopold Ghemmogne Fossi

per avermi aiutato a superare gli infiniti dubbi che questa avventura ha
generato

i miei genitori,
per avermi supportato in questa avventura

Abstract

One of the most challenging tasks in the Machine Learning context is the
feature selection. It consists in selecting the best set of features to use in the
training and prediction processes. There are several benefits from pruning
the set of actually operational features: the consequent reduction of the
computation time, often a better quality of the prediction, the possibility to
use less data to create a good predictor.

In its most common form, the problem is called single-view feature selec-
tion problem, to distinguish it from the feature selection task in Multi-view
learning. In the latter, each view corresponds to a set of features and one
would like to enact feature selection on each view, subject to some global
constraints.

A related problem in the context of Multi-View Learning, is Feature Parti-
tioning : it consists in splitting the set of features of a single large view into
two or more views so that it becomes possible to create a good predictor
based on each view. In this case, the best features must be distributed be-
tween the views, each view should contain synergistic features, while features
that interfere disruptively must be placed in different views.

In the semi-supervised multi-view task known as Co-training, one requires
also that each predictor trained on an individual view is able to teach some-
thing to the other views: in classification tasks for instance, one view should
learn to classify unlabelled examples based on the guess provided by the
other views.

There are several ways to address these problems. A set of techniques is
inspired by Coalitional Game Theory. Such theory defines several useful
concepts, among which two are of high practical importance: the concept of
power index and the concept of interaction index. When used in the con-
text of feature selection, they take the following meaning: the power index
is a (context-dependent) synthesis measure of the prediction’s capability of a
feature, the interaction index is a (context-dependent) synthesis measure of
the interaction (constructive/disruptive interference) between two features:
it can be used to quantify how the collaboration between two features en-
hances their prediction capabilities. An important point is that the power

index of a feature is different from the predicting power of the feature in
isolation: it takes into account, by a suitable averaging, the context, i.e. the
fact that the feature is acting, together with other features, to train a model.
Similarly, the interaction index between two features takes into account the
context, by suitably averaging the interaction with all the other features.

In this work we address both the single-view and the multi-view problems as
follows.

The single-view feature selection problem, is formalized as the problem of
maximization of a pseudo-boolean function, i.e. a real valued set function
(that maps sets of features into a performance metric). Since one has to
enact a search over (a considerable portion of) the Boolean lattice (without
any special guarantees, except, perhaps, positivity) the problem is in general
NP-hard. We address the problem producing candidate maximum coalitions
through the selection of the subset of features characterized by the highest
power indices and using the coalition to approximate the actual maximum.
Although the exact computation of the power indices is an exponential task,
the estimates of the power indices for the purposes of the present problem
can be achieved in polynomial time.

The multi-view feature selection problem is formalized as the generalization
of the above set-up to the case of multi-variable pseudo-boolean functions.

The multi-view splitting problem is formalized instead as the problem of max-
imization of a real function defined over the partition lattice. Also this prob-
lem is typically NP-hard. However, candidate solutions can be found by
suitably partitioning the top power-index features and keeping in different
views the pairs of features that are less interactive or negatively interactive.
The sum of the power indices of the participating features can be used to
approximate the prediction capability of the view (i.e. they can be used as
a proxy for the predicting power). The sum of the feature pair interactivity
across views can be used as proxy for the orthogonality of the views.

Also the capability of a view to pass information (to teach) to other views,
within a co-training procedure can benefit from the use of power indices based
on a suitable definition of information transfer (a set of features – a coalition
– classifies examples that are subsequently used in the training of a second
set of features).

As to the feature selection task, not only we demonstrate the use of state
of the art power index concepts (e.g. Shapley Value and Banzhaf along the

2

lines described above Value), but we define new power indices, within the
more general class of probabilistic power indices, that contains the Shapley
and the Banzhaf Values as special cases. Since the number of features to
select is often a predefined parameter of the problem, we also introduce some
novel power indices, namely k-Power Index (and its specializations k-Shapley
Value, k-Banzhaf Value): they help selecting the features in a more efficient
way.

For the feature partitioning, we use the more general class of probabilistic
interaction indices that contains the Shapley and Banzhaf Interaction Indices
as members.

We also address the problem of evaluating the teaching ability of a view,
introducing a suitable teaching capability index.

The last contribution of the present work consists in comparing the Game
Theory approach to the classical Greedy Forward Selection approach for
feature selection. In the latter the candidate is obtained by aggregating one
feature at time to the current maximal coalition, by choosing always the
feature with the maximal marginal contribution.

In this case we show that in typical cases the two methods are complementary,
and that when used in conjunction they reduce one another error in the
estimate of the maximum value.

Moreover, the approach based on game theory has two advantages: it sam-
ples the space of all possible features’ subsets, while the greedy algorithm
scans a selected subspace excluding totally the rest of it, and it is able, for
each feature, to assign a score that describes a context-aware measure of
importance in the prediction process.

Corrado Mio

Milano, January 2020

3

Abstract

Una delle principali attività richieste nell’utilizzo degli algoritmi di Ma-
chine Learning è la feature selection. Questa attività consiste nel selezionare
l’insieme delle feature migliori da utilizzare sia nella fase di training degli
algoritmi, sia durante il processo di predizione. Si ottengono molti benefici
nel ridurre l’insieme delle feature da utilizzare: una riduzione dei tempi di
elaborazione, spesso una migliore qualità della predizione, la possibilità di
utilizzare una quantità inferiore di dati per ottenere un buon predittore.

Nella sua forma più comune, il problema è chiamato single-view feature se-
lection, per distinguerlo dallo stesso problema ma nel contesto del multi-view
learning. In quest’ultimo caso, ciascuna vista corrisponde ad un insieme di
feature le quali devono essere selezionate soddisfacendo un certo numero di
contraint globali.

Un problema correlato, nel contesto del multi-view learning è il feature par-
titioning : l’operazione consiste nel suddividere le feature, appartenenti ad
un’unico dataset, in due o più view in modo tale che con i dati di ogni view
sia possibile creare un buon predittore. In questo caso, le feature migliori de-
vono essere distribuite tra le diverse view, inoltre, ogni view deve contenere
feature che collaborano in modo sinergico, mentre feature che interferiscono
negativamente devono essere poste in view diverse.

Nel contesto del co-training, una delle attività nell’ambito del semi supervised
multi-view learning, oltre al partizionamento delle feature in diverse view, è
richiesto anche che ogni view sia in grado di insegnare qualcosa alle altre view:
in particolare le istanze del dataset non ettichettate di una view possono
essere classificate usando le predizioni offerte dalle altre view.

Ci sono molti modi per affrontare le attività appena descritte. Diverse tec-
niche sono ispirate dalla Coalitional Game Theory (Teoria dei Giochi Coop-
erativi). Questa teoria mette a disposizione molti concetti utili, tra i quali
due sono di importanza pratica: il concetto di Power Index ed il concetto di
Interaction Index. Quando usati nel contesto della feature selection, pren-
dono il seguente significato: il power index è una misura sintetica (dipedente
dal contesto) della capacità di predizione, mentre l’interaction index e’ una
misura sintetica (sempre dipendente dal contesto) dell’interazione (positiva

o negativa) tra due o più feature: per questo motivo, può essere usato per
quantificare come, la collaborazione tra due feature, migliora (o peggiora)
la loro capacità di predizione. Un punto importante da tenere in consider-
azione è che il power index è differente dalla capacità predittiva della featura
considerata singolarmente: il power index prende in considerazione, mediante
un’opportuna media pesata, il contesto, cioè l’interazione con le altre feature.
Similmente, l’interaction index tra due o più feature prende in considerazione
il contesto, anche in questo caso mediante una media pesata, dell’interazione
con le altre feature.

In questo lavoro affrontiamo i problemi associati al single-view ed al multi-
view learning nel seguente modo.

La feature selection nel contesto del single-view learning è formalizzata come
un problema di massimizzazione di una funzione pseudo-booleana, cioè una
funzione con dominio i possibili sottoinsiemi di feature, e con codominio i nu-
meri reali. La funzione ha il compito di mappare ogni sottoinsieme di feature
in una misura della qualità della predizione. Dal momento che si deve mettere
in atto una ricerca (su una parte considerevole) del reticolo booleano (senza
garanzie particolari, tranne, forse, la positività), il problema è generalmente
NP-hard. Quindi, affrontiamo il problema identificando le coalizioni migliori
attraverso la selezione del sottoinsieme di feature caratterizzate dai più alti
power index, ed utilizzando tale coalizione per approssimare il massimo effet-
tivo. Sebbene l’esatto calcolo dei power index sia un compito esponenziale,
le stime, ai fini del presente problema, possono essere raggiunte in tempi
polinomiali.

La feature selection, nel contesto del multi-view learning, e’ formalizzata
come una generalizzazione del problema precedente.

Il problema del multi-view splitting, invece, è formalizzato come un problema
di massimizzazione di una funzione reale definita sul reticolo delle partizioni.
Anche questo problema è tipicamente NP-hard. In ogni caso, soluzioni can-
didate possono essere trovate mediante un opportuno utilizzo delle feature
con il miglior power index e mettendo le feature che non interagiscono, o
interagiscono negativamente, in differenti view. La somma dei power index
associati alle singole feature può essere usata per approssimare la capacità di
predizione della view. La somma degli interaction index di coppie di feature
può essere usata per valutare l’ortogonalità delle view.

Anche la capacità di una view di trasferire informazioni (di insegnare) ad

2

un’altra view, nel contesto del co-training, può beneficiare dell’uso di power
index basati su un’opportuna definizione di trasferimento di informazione.

Per quanto riguarda l’attività di selezione delle feature, non solo dimostriamo
l’uso dei concetti di power index maggiormente conosciuti (lo Shapley Value e
Banzhaf Value), ma definiamo nuovi power index, all’interno della classe più
generale dei probabilistic power index, che contiene Shapley e Banzhaf Value
come casi speciali. Poichè il numero di feature da selezionare è spesso un
parametro predefinito del problema, introduciamo anche alcuni nuovi power
index, vale a dire l’indice k-Power Index (e le sue specializzazioni k-Shapley
Value, k-Banzhaf Value): questi indici permettono di selezionare le feature
in un modo più efficiente.

Per il feature partitioning, utilizziamo la classe più generale dei probabilistic
interaction index che contiene, come casi speciali, gli Interaction Index di
Shapley e Banzhaf.

Affrontiamo anche il problema della valutazione della capacità di insegna-
mento di una vista, introducendo un opportuno teaching capability index.

L’ultimo contributo del presente lavoro consiste nel confrontare l’approccio
basato sulla Game Theory con il classico approccio Greedy Forward Selection
per la selezione delle feature. In quest’ultimo caso l’insieme delle feature
viene ottenuto aggregando una feature alla volta, aggiungendola alle feature
già trovate, scegliendo sempre la feature con il massimo contributo marginale.

In questo caso mostriamo che, in casi tipici, i due metodi sono complementari
e che, se usati insieme, si riducono a vicenda l’errore nella stima del valore
massimo.

Inoltre, l’approccio basato sulla Game Theory presenta due vantaggi: cam-
piona lo spazio di tutti i possibili sottoinsiemi di feature, mentre l’algoritmo
greedy esegue la scansione di un sottospazio selezionato, escludendo total-
mente il resto, ed è in grado, per ogni feature, di assegnare un punteggio che
descrive una misura dell’importanza della feature nel processo di predizione.

Corrado Mio

Milano, January 2020

3

Contents

1 Introduction 17

1.1 Context and Problems . 17

1.1.1 Machine Learning algorithms 17

1.1.2 Feature selection . 18

1.1.3 Feature Partitioning and Co-training 23

1.2 Summary of the Contributions 28

1.2.1 Feature selection . 28

1.2.2 Feature Partitioning for Multi-view Learning and Co-
training . 30

1.2.3 Effectiveness of Power Index based methods 33

1.3 Structure of the document . 34

2 Definitions 37

2.1 Introduction . 37

2.1.1 Notations . 37

2.1.2 Subset lattice . 41

2.1.3 Set representation . 42

1

2.2 Set Functions . 47

2.2.1 Definitions . 47

2.2.2 Discrete Derivative . 48

2.2.3 Set Functions representation 50

2.2.4 Set Functions Space 50

2.3 Pseudo Boolean Functions . 52

2.3.1 Definitions . 52

2.3.2 Dirac basis . 52

2.3.3 Unanimity Game basis 54

2.3.4 Walsh basis . 55

2.3.5 Discrete Derivatives . 57

2.4 Partition functions . 58

2.4.1 Definitions . 58

2.4.2 Derivative on a partition 59

2.4.3 Mixed derivative . 59

2.5 Graphs . 61

2.6 Conclusions . 63

3 Coalitional Game Theory 64

3.1 Introduction . 64

3.2 Coalitional Games . 65

3.3 Power Indices . 66

3.3.1 Probabilistic Values . 66

2

3.3.2 Cardinal-Probabilistic Values 67

3.3.3 Shapley Value . 68

3.3.4 Chaining Value . 69

3.3.5 Player-probabilistic values 70

3.3.6 Banzhaf Value . 70

3.3.7 Weighted Banzhaf Value 71

3.4 Interaction Indices . 71

3.4.1 Probabilistic Interaction Indices 73

3.4.2 Cardinal-Probabilistic Interaction Index 74

3.4.3 Shapley Interaction Index 75

3.4.4 Chaining Interaction Index 75

3.4.5 Player-Probabilistic Interaction Index 76

3.4.6 Banzhaf Interaction Index 76

3.4.7 Weighted Banzhaf Interaction Index 77

3.5 Set Functions Transforms . 77

3.5.1 Function Transforms based on Interaction Indices . . . 78

3.5.2 Shapley Transform . 79

3.5.3 Chaining Transform 80

3.5.4 Banzhaf Transform . 80

3.5.5 Weighted Banzhaf Transform 80

3.6 Axiomatization of Power and Interaction Indices 81

3.6.1 Definitions . 81

3.6.2 Axioms for power indices 84

3

3.6.3 Axioms for interaction indices 85

3.6.4 Characterization of the Probabilistic Values and Inter-
action Indices . 86

3.6.5 Characterization of Shapley, Banzhaf, Chaining Values
and Interaction Indices 87

3.6.6 How to use the axioms: an open problem 87

3.7 Interpretation of the Banzhaf and Shapley Value 88

3.8 Conclusions . 89

4 Approximate algorithms for power and interaction indices 90

4.1 Introduction . 90

4.2 General structure of the algorithms 91

4.3 Banzhaf Value and Interaction Index 94

4.4 Weighted Banzhaf Value and Interaction Index 95

4.5 Shapley Value and Interaction Index 95

4.6 Chaining Value and Interaction Index 100

4.7 Probabilistic Value and Interaction Index 101

4.8 Considerations on the Probabilistic Indices approximations . . 101

4.9 Selecting the random generator 102

4.10 Generating a random permutation 103

4.11 Generating a random subset 104

4.12 Generating a random subset with a selected distribution . . . 107

4.13 Approximate algorithms based on elements order 110

4.14 Approximate algorithms using parallelism and local maximum 112

4

4.15 Conclusions . 117

5 The approximation of set functions 118

5.1 Introduction . 118

5.2 Set families . 119

5.2.1 Properties . 120

5.3 Function approximation . 122

5.3.1 General approximation 124

5.4 Player-based approximation 126

5.4.1 Introduction . 126

5.4.2 Orthonormal basis for L(F) 128

5.4.3 Function transforms 129

5.4.4 Player-probabilistic interaction transform 131

5.4.5 Player-probabilistic based approximation 131

5.4.6 Banzhaf-based approximation 132

5.5 Cardinal-based approximation 134

5.5.1 Shapley-based approximation 134

5.6 Conclusions . 143

6 New Interaction Indices 144

6.1 Introduction . 144

6.2 Selecting some lattice’s levels 144

6.3 K-Cardinal-Probabilistic Interaction Indices 146

6.3.1 K-Shapley Interaction Index 147

5

6.3.2 K-Chaining Interaction Index 148

6.4 K-Player-Probabilistic Interaction Indices 149

6.4.1 K-Banzhaf Interaction Index 149

6.5 Approximate algorithms . 150

6.6 Closed formula for K-Banzhaf Value 150

6.6.1 First order approximation 150

6.6.2 Determination of βi . 151

6.6.3 Determination of α0 152

6.6.4 Wrap up . 154

6.6.5 General expression of the first order approximation in
the Möbius basis . 154

6.6.6 General expression of α and βi in terms of f and ∆if . 156

6.6.7 Second order approximation 157

6.6.8 Determination of γij 158

6.6.9 Determination of βi . 159

6.6.10 Determination of α0 160

6.6.11 Wrap up . 161

6.6.12 General expression of the second order approximation
in the Möbius basis . 162

6.7 Conclusions . 163

7 Feature Partitioning and Co-Training 164

7.1 Introduction . 164

7.2 Feature partitioning in multi-view learning 166

6

7.2.1 The optimization problem 168

7.2.2 Splitting and feature selection 169

7.2.3 Feature Partitioning as an integer programming problem169

7.2.4 Partitioning as graph partitioning problem 172

7.3 Feature partitioning for Co-training 179

7.3.1 View teaching . 179

7.3.2 How to evaluate the ability of teaching 180

7.3.3 Prediction quality for classification 180

7.3.4 Prediction quality for regression 182

7.3.5 Prediction quality and ability of teaching 182

7.3.6 To evaluate the view’s ability of teaching 183

7.3.7 Partition with the best ability of teaching 184

7.3.8 Approximation of the ability of teaching 184

7.3.9 The co-training optimization problem 186

7.3.10 Co-training as quadratic programming problem 187

7.3.11 Co-training as graph partitioning problem 188

7.4 Feature partitioning with different algorithms 188

7.4.1 The 2nd degree mixed interaction index 188

7.4.2 Partitioning as quadratic programming problem 189

7.5 Conclusions . 190

8 Effectiveness of Power Index based methods 191

8.1 Introduction . 191

7

8.2 Accuracy behaviour . 192

8.3 Accuracy properties . 195

8.4 Approximation of Power Indices 197

8.5 Power and Interaction Indices 202

8.6 Feature Selection . 208

8.7 Power Indices vs Greedy Method 218

8.8 Feature Partitioning . 223

8.9 Generated predictions . 236

8.10 Teaching ability . 239

8.11 When the CGT based methods are not useful 241

8.12 When the CGT based methods are useful 243

9 Conclusions 246

9.1 Current work . 246

9.2 Future works . 249

A Proofs 250

A.1 Dirac basis . 250

A.2 Unanimity Game basis . 251

A.3 Walsh Function basis . 251

A.4 The Möbius transform . 253

A.5 From function to derivative 254

B K-means Clustering in Dual Space for Unsupervised Feature
Partitioning in Multi-view Learning 257

8

B.1 Authors . 257

B.2 Published in . 257

B.3 Abstract . 258

B.4 Introduction . 258

B.4.1 Motivations and problem 259

B.4.2 General approach . 260

B.5 Overview of the method and issues 261

B.5.1 Issues . 262

B.6 Formalization of the Method 263

B.6.1 Notation . 263

B.6.2 A dual-space approach to unsupervised MVG 264

B.6.3 The consensus clustering task 266

B.7 Results . 268

B.7.1 The dataset . 268

B.7.2 The process . 269

B.7.3 The outcomes . 269

B.8 Validation . 270

B.8.1 Requirement 1: Predicting power. 271

B.8.2 Requirement 2: Unique information on targets 271

B.9 Discussion, conclusions and outlook 272

B.10 Acknowledgements . 273

Bibliography 277

9

List of Figures

2.1 The Hasse diagram of {1, 2, 3, 4} 42

2.2 Cardinality in the binary representation of a set 44

2.3 Cardinality in the CNS representation of a set 45

3.1 Parts of a permutation . 69

3.2 Interactions between i and j in the coalition S 73

7.1 Views interactions . 167

7.2 Reduced views interactions . 168

8.1 Subset relation . 243

B.1 Illustration of the overall process based on the reference example.274

B.2 Left: the first 25 images of the MNIST dataset. Right: the
average gray-level taken over the whole set: the pictures hints
at a ”background” region little or not used by the handwritten
digits. 275

10

B.3 Outcome of the view splitting process for three different res-
olutions. Each color corresponds to a cluster of pixels and
represents a view. The parameter k is the number of views.
The number of instances used for the task was n = 60000. The
parameters r is the number of independent k-means clustering
processes obtained by sectioning the data, then reconciliated
in a single clustering partition. Finally, s = n/r. See also text
of the Results Section. 275

B.4 Accuracies for Näıve Bayes classifiers trained on individual
views (colored bars) and performance of the bagged classi-
fier (gray bars), for the different targets (digits 0 to 9, ten
rightmost groups) and averaged over all the targets (first, i.e.
leftmost group of bars). From the top to the bottom: k = 3
views (with r = 3000 and s = 20); k = 5 views (with r = 120
and s = 500). 276

11

List of Tables

2.1 Cardinality in the binary representation of a set 43

2.2 Cardinality in the CNS representation of a set 45

2.3 Dirac basis properties . 54

2.4 Unanimity Game basis properties 55

2.5 Walsh function properties . 57

4.1 Function values for pi(T) and some values of n and t 96

5.1 Family’s lower/upper cardinality 121

5.2 Family’s cardinality . 122

8.1 Accuracy properties . 196

8.2 Stopping criteria . 201

8.3 Feature Partitioning properties 225

8.4 Available teaching instances 239

12

Notation

N set of natural integers

N+ set of positive integers (excluding 0)

Z set of integer numbers

R set of real numbers

{0, 1} set of boolean/binary values

[a, b] closed interval of integers or reals

[a, b) semi-open interval of integers or reals

[A,B] closed interval of subsets C : A ⊆ C ⊆ B

{a, b, . . .} set of elements

〈a, b, . . .〉 sequence of elements

|S|, s set or sequence cardinality

N set {1, 2, . . . , n}

2N powerset of N

N [0,k] family of sets with cardinality ≤ k

i, ij when used in set operations, sets {i} and {i, j}

Si, S(i) boolean value that says if i is in the set S or not

Pm(N) partitions of N in m blocks

π permutation

13

Π(N) permutations of N

Π(Nk) permutations of N of length k

Si(π) set of elements preceding i in the permutation π

Si, S[i] ith element of the sequence S

S[l : u] sequence of elements with indices in the range [l, u)

x column vector of binary values

xT row vector of binary values

1S binary representation of the set S

〈·, ·〉 inner product

〈·, ·〉µ weighted inner product

(n)k failing factorial(
n
k

)
combinatorial coefficient(

n
k

)∗
sum of combinatorial coefficients

i⊕ j modular + with integer values in the range [1, n]

M maximal chain

C(N) set of maximal chains

MS,M [S] smallest set in M containing S

ξ, ζ set functions with domain 2N

f, g pseudo boolean functions with domain {0, 1}n

∆Kξ(S) discrete derivative

L(2N) space of set functions defined on N

µ(S) probability distribution used in inner products

fξ pseudo boolean function induced by ξ

ξf set function induced by f

14

δT (x) Dirac basis

eT (x) Unanimity Game basis

wT (z) Walsh basis

∆Kf(x) derivative of a pseudo boolean function

G TU game

GN space of all TU games defined on N

S solution concept

pi(T) weights used in power indices

φξ(i) probabilistic value

φShξ (i) Shapley Value

φChξ (i) Chaining Value

φBξ (i) Banzhaf Value

φPξ (i) Weighted Banzhaf Value

pS(T) weights used in interaction indices

Iξ(S) probabilistic interaction index

IShξ (S) Shapley Interaction Index

IChξ (S) Chaining Interaction Index

IBξ (S) Banzhaf Interaction Index

IPξ (S) Weighted Banzhaf Interaction Index

mξ(S) Möbius transform

aS Möbius coefficient

G graph

Tτ teaching function

V graph vertices

15

E graph edges

Ncut graph edges normalized cut

w graph weight function

deg(v) vertex’s degree

vol(V) volume of the vertex set

cut graph edges cut

RatioCut graph edges ratio cut

Wcut graph edges weighted cut

L Laplacian matrix

W Adjacent matrix

D Degree matrix

Q(·) prediction’s quality

H(p) entropy

D dataset

L labelled dataset

U unlabelled dataset

AL Machine Learning algorithm

d dataset instance

p classification prediction

Dp dataset restricted to the view p

Lp labelled dataset restricted to the view p

Up unlabelled dataset restricted to the view p

ApL Machine Learning algorithm restricted to the view p

dp dataset instance restricted to the view p

p(p) classification prediction restricted to the view p

IpqΞ (ij) mixed interaction index of a partition function

16

Chapter 1

Introduction

1.1 Context and Problems

1.1.1 Machine Learning algorithms

The last years have seen a large development of Machine Learning, the area
of the Artificial Intelligence responsible for creating algorithms capable of
learning, in an automatic way, from some provided data (the dataset) and
making autonomous decisions after the acquisition of such experience.

There are a large number of Machine Learning algorithms that can be clas-
sified in several different ways. A criterion for such classification is based on
the presence/absence in the training of the desired outcome of the learning
process, the so called target (e.g. the labels for a classification process):

• supervised algorithms: the algorithm uses for its training a labeled
dataset, a set of data containing the required result. The task of the
algorithm is to learn the best function capable of replicating the be-
haviour described in the dataset. They can be further subdivided into
classification algorithms if the result is a category, and regression algo-
rithms if the result is a numerical value

• unsupervised algorithms: the algorithm does not require labels for
training. It tries to extract specific properties from the data. This class
of algorithms contains, for example the clustering algorithms.

17

• semi-supervised algorithms: only part of the target information is
available. Typically only some instances in the dataset have a label:
the algorithm uses them for its initial training, then it utilizes this
knowledge to compute and propagate the labels to the remaining unla-
beled part of the dataset. Examples of these algorithms are self-training
algorithms and co-training algorithms.

1.1.2 Feature selection

Motivations. One of the main problems with the supervised and semi-
supervised learning algorithms is the selection of the best features to use in
the training and prediction phases. Such a selection is necessary for the
following reasons

• the quality of the training depends on the samples’ quality in the fea-
tures’ domain. The problem is that the number of samples for having
a good domain’s sampling increases exponentially with the number of
feature (the curse of the dimensionality)

• the presence of useless features increases the computation time and the
space required for storing the data, without increasing the quality of
the learning and predictions

• the presence of poor quality features reduces the overall quality of the
training and the prediction capability of the algorithm

In short, in the task of feature selection we are given a large set of features,
and we would like to select a small subset of it so as to retain most of the
information.

General framing. This task can be formalized as the task of the maxi-
mization of a set function. A set function is a function that maps a subset
to a real number: in the present case the set is the set of features whereas
the real number represents a performance metric of the algorithm (e.g. the
accuracy of a classification algorithm).

Such problem is in general NP-hard: it requires to analyze the 2n possible
subsets, operation feasible only for small number of features.

18

The problem of feature selection is typically formalized as a cardinality-
constrained monotone sub-modular (positive) set function maximization prob-
lem in the value oracle setting. Indeed typically out of n features one aims
at the selection:

• of a fixed number k of features (cardinality constraint),

• in a setting where adding a new feature to an given feature-set always
increments (never decrements) the modeling power (monotonicity)

• where, as we consider larger sets, the marginal benefit of adding a new
feature decreases (sub-modularity)

• and where the function is accessible through a “black box” (the value
oracle) returning the value f(S) for a given set S (the analytic form
– boolean polynomial form – of the function is not known and would
require exponentially many queries to the oracle).

An analogous problem is the so called Sensor Placement problem [58, 59],
where one is given a large number n of locations, and would like to choose k
locations where to place sensors so as to maximize some objective function,
such as the coverage.

A wide literature addresses optimization problems for sub-modular objective
functions: in the case of unconstrained minimization, polynomial time algo-
rithms are available [60, 61]; for instance the Min-Cut problem in graphs is
polynomial-time solvable.

On the contrary, even the simplest maximization problems of sub-modular
functions turn out to be NP-hard [62–65]; for instance, the Max-Cut and
Max-Direct-Cut problems (not necessarily monotones), and the Max-k-Cover
problem (of which Sensor Placement is an instance) are known to be NP
hard. As a consequence, in those optimization problems one has to resort to
approximated/sub-optimal solutions.

This is even more motivated by the fact that with real datasets and with
typical learned models the set function (a performance metric) is not in gen-
eral endowed by strict monotonicity, sub-modularity or other nice properties.
Only in very rare cases, the dataset has nice properties and the algorithms
work very well. The literature tends to deal only with nice datasets.

19

Embedded, filter and wrapper methods. There are several approxi-
mate methods for addressing the feature selection task: Blum and Mitchel
[123] classify them into the following categories:

• filter methods : these methods use the statistical properties of the fea-
tures (the correlation between a feature and the target or among the
features themselves) or use a projection of the space of the features
onto a space with a lower dimension

• embedded methods the selection of the best set is embedded into the
algorithm itself during the phase of predictor’s creation (this is the case
of the decision trees, which choose the feature for spitting based on Gini
index, entropy, information gain, etc.)

• wrapper methods : the methods use the machine learning algorithm as a
black box that returns a measure of the prediction’s quality computed
by means of a given metric (for example the accuracy in the classi-
fication algorithms). The goal is to find the set of features with the
highest value for that metric. The selection of the best set is based on
an optimization algorithms over that metric.

Notable examples of algorithms using the wrapper approach are Greedy For-
ward Selection (GFS) and Greedy Backward Elimination (GBE). Both apply
a greedy hill climbing search strategy.

In GFS one evaluates sets of features of increasing size, adding one feature at
time: each time the feature chosen is the feature that best enhances the per-
formance of the current feature set over the training dataset. The algorithm
starts with one feature and stops when the number k of desired features has
been reached.

In GBE one evaluates sets of features of decreasing size, starting from the
set of all features and removing one feature at time the number k of desired
features has been reached: each time the feature chosen to be dropped is
the one whose removal minimally reduces the performance of the remainder
feature set.

Frame of Contributions. The present work studies an approach to fea-
ture selection that can be framed within the area of the wrapper methods,
but – differently from GFS and GBE – performs a complex evaluation of

20

the individual features, based on Coalitional Game Theory (CGT) concepts,
then assembles the most performing features to yield a candidate “coalition”
of features. The performance of individual features is not computed by con-
sidering the predictive power of the feature in isolation (the näıve approach),
but rather by averaging its contributions to an adequately large number of
coalitions: this average corresponds to the CGT concept of the power in-
dex, a measure of the feature/player ability to be useful in the prediction.
The most well-known power indices are the Shapley Value and the Banzhaf
Value: we return on their definition below. A CGT concept related to the
one of power index is the one of interaction index : one such index quantifies
the effectiveness of pairs of features/players in the context of all the possible
coalitions comparative to their individual effectiveness; it measures whether
two features are redundant, positively or negatively synergistic.

Related work. The use of power indices in feature selection has been de-
veloped in the latest fifteen years by a small number of authors starting from
a paper by Cohen, Dror and Ruppin [125, 126] (variations around the same
ideas can be found in [130]), however the concept has a long history in the
Economic literature and has been used very often in the Computer Science
literature. The Shapley Value, particularly, since its introduction in 1953,
has generated a large number of papers [4], where it was alternatively inter-
preted as a solution of the fare division problem [168], as a power index [18],
as a centrality measure [3] or as a transform endowed of desirable proper-
ties within the Dempster-Shafer evidence theory [2] (a.k.a. theory of belief
functions). By analogy to its interpretation as a power index, it has been
used to assess the importance of components in a composite entity (a system
or a process); among the recent examples, we can mention its application
in algorithm portfolio selection [16], tag sense disambiguation [15], neural
network pruning [5]. It has also been used in model interpretation [10,12].

The Shapley Value has been used also in the context of explanation and in-
terpretation of prediction models. The earliest work using the Shapley Value
to address such problem of interpretability is the work [12] by Lipovetsky
and Conklin, who use the SV to quantify the relative importance of the
predictors in linear regression and show that the approach is robust with
respect to the presence of collinearity. In the work [10] Lundberg and Lee
address the problem of interpretability of the results of a prediction model.
They consider an explanation model g to be a simple approximations of a
prediction models f and focus on local additive explanation models: the lo-
cal aspect corresponds to the fact that they aim at explaining a prediction

21

f(x) based on a single input x; the additivity implies that the explanation
model attributes an effect to each feature and summing the effect of each
feature attribution one gets the approximation of the original model; they
show that the Shapley Value allows deriving a class of additive importance
measures fulfilling a set of desirable requirements. The accent of the paper is
on formulating explanation models: the authors define a class of explanation
models which unifies six major methods (the class is named additive feature
attribution methods) and they validate their work by means of a user study
showing that the approach is aligned with human intuition. An earlier work
by Strumbelj and Kononenko [14] also address the problem of the explana-
tion of prediction models. They focus on the situational importance of a
feature: this is defined as the difference between what a feature contributes
in average what it contributes when it takes a specific value (the average
contribution represents the contribution when the value of a feature is not
known or missing). Such a concept represents a useful explanation only if the
prediction model is additive. The authors find that a convenient explanation
model for non-additive cases is provided by a weighted average of the situ-
ational importance with respect to all the possible sets of missing features.
The solution turns out to correspond to the Shapley Value of the situational
importance.

The Shapley Value has several useful properties and one of them is that it
can be used as linear approximation of the set function. Mikenina and Zim-
mermann [124] use the Möbius transform, one of several possible transforms
for the set functions, limited to the terms of the first and second degree. Liu
and Wang [131] use the Shapley Value in a two phases’ algorithm: in the
first phase, they use the mutual information to identify a good super-set of
features, then, they use the Shapley Value for selecting the best subset. Sun
et al. [128] use the Shapley value and a discretized version of the conditional
mutual information. Gore et al. [130] use the Shapley Value applied to the
Relief algorithm [156]. Mokdadl et al. [132] use the Shapley Value and a
ranking agreement. Sun et al. ([127]), in another article, use the Banzhaf
Value as an alternative to the Shapley Value. Kulynych et al. [129] use the
Banzhaf Value in combination with a neural network.

Contributions in a nutshell. With respect to the above concepts, the
contributions of the present work can be synthesized as follows. We model
the feature selection problem as a problem of optimization on the Boolean
lattice and carry a systematic experimental study (by real data-sets and
simulation) on the the effectiveness of the most prominent existing power

22

indices, such as the Shapley and Banzhaf values (in the simulation we use
also different assumptions on the property of the set function). We highlight
the rationale behind their use in optimization: while the existing literature is
based only on the analogy between the CGT concept of power and the related
concept of influence on the results, we provide a frame of interpretation which
involves pseudo-boolean function optimization. We define new power and
interaction indices and study their CGT properties. Furthermore we use
the power indices in conjunction with their interaction index (e.g. Shapley
Value with Shapley Interaction Value) to build a bi-dimensional view of the
features and assess the quality of information that pairs bring together (to
be used in multi-view learning problems). Those contributions are reported
in a more detailed summary below. We also contributed some methods for
the approximate estimate of the power indices (whose exact computation
would be exponential in the number of features): the novelty of our methods
(which have polynomial complexity) is that they are tailored to achieve a
value sufficient for supporting the feature selection process.

1.1.3 Feature Partitioning and Co-training

A common issue in the context of the Machine Learning is the high cost
of providing the required labeled dataset for training. Very often dataset are
only partially labeled, and finding labels for the missing instances can be very
expensive, or even impossible, because experts capable to provide examples
that can be used for labeling are not available.

Semi-supervised learning. self-training. To address this issue a class
of semi-supervised algorithms has been designed. These algorithms initially
learn a model using the labeled data (initial labelled training set), then the
learned algorithm itself is used to predict the label for the unlabeled data.
Subsequently, the best predictions (called weakly labelled training set) are
used to extend the collection of labeled instances and to extend the current
labelled training set. The process is iterated until all the data have been
labelled. The simplest semi-supervised procedure of this kind is known as
self-training (see for instance [57]).

Multi-view learning, Co-training. In self-training the learning process
involves all the features considered as a single unified view of the data. How-

23

ever, often the different statistical properties of subsets of features can be
better exploited splitting the feature set into two or more “views”, and hav-
ing each view train different models, that can subsequently be made to in-
teract or can be integrated. This area goes under the name of multi-view
learning [1].

A class of multi-view algorithms that proved to be effective are the co-training
algorithms, which represent a simple generalization of self-training to two or
more views: each view is used to train a prediction algorithm, then the
prediction capability of an algorithm is used for “teaching” the other ones
how classify instances on which they might have weak confidence.

Blum and Mitchell [148] specify the properties of the views for obtaining a
good co-training algorithm:

• each view must be sufficient : using this view it is possible to obtain a
good predictor: thus one of the objectives is to maximize the predicting
power of individual views

• the views must be consistent : the predictors obtained from each view
must predict the same class, if the prediction has a high confidence

• conditional independence in relation to the target, that is, the views
must be independent

Multi-view splitting. The co-training algorithms assume the existence
two or more views. Sometimes the features are already organized into distinct
views naturally available and distinguishable in the application field. This is
the case for instance for the text properties and the links’ properties of a web
page. Other times a single large view has to be split into smaller views, not
only for practical computational reasons but sometimes for improving the
learning process. Indeed, one may decide to split a view in two – instead of
training a predictor on the whole set of available features – as a consequence
of the fact that some features interact with some other destructively: in that
case, isolating a subset of features (the view) from the negative influence of
other features (the other view) can be beneficial for the training.

The simplest method to enact the splitting consists in selecting the features
for each view randomly, as described in Nigam and Ghani [150]. Zhang
and Zheng [154] describe the TSFS (Two-view Subspace Feature Splitting)
algorithm. Chen et al. [137] describe the Pseudo Multi-view Co-training,

24

an algorithm that selects the features such that the ε-expanding property is
ensured. We go beyond the random splitting and model the problem of view
splitting as a problem of optimization on the partition lattice.

Multi-view feature selection. Related to the splitting of the feature set
into two or more views is the problem of dropping the features that are
less useful, to enhance the computational performance of the procedure. We
model also this problem as a problem of optimization on the partition lattice,
with the special constraint that one partition block has no consequence (is
assigned zero weight) on the overall objective function.

Both in multi-view splitting and in multi-view feature selection the three re-
quirements listed above represent a guide to the construction to the relevant
objective function, so it is worth considering their rationale and their rela-
tionships. We examine first the second property, then the first and the third.
For the sake of simplicity here we assume that the task consists in splitting
the whole set of features in exactly two views.

Rationale of requirements: 2 - Consistency. Consistency is a natural
requirement, we would like the views to yield the same predictions over any
given target. Considering that often to a prediction can be associated a
confidence level, one would like that at least the views’ predictions agree
when they are highly confident. A way for resolving conflicts is that of
choosing the prediction of the view endowed with the highest confidence.

Rationale of requirements: 1 - Predicting Power The first property,
sufficiency, corresponds to the requirement that each individual view has a
non-negligible “predicting power” on its own. This is the basic requirement
for any classifier/predictor and it is reasonable that it should hold also for
the individual views. In the two views case, in principle the predicting power
of the pair of views – if the aggregation mechanics is reasonable – should be
monotonically increasing (or at least non-decreasing) w.r.t. each individual
view’s predicting power. So, in principle, “the higher the predicting power
of each view, the better the multi-view predicting power”.

However, as an objective function one should not just consider simply the
sum (or the probabilistic sum) of the two views’ predicting power: that

25

sum does not represent fully the actual predicting power of the whole. This
happens only in the extreme case in which the two views have strictly unique
information. In the oppositely extreme case in which the views are completely
redundant, on the contrary, the power of the whole is equal to the power of
one part.

Ideally the same value of the sum of predicting powers can correspond to
different configurations more or less valuable in terms of overall performance.
This leaves room for expressing further requirements.

Rationale of requirements: 3 - Independence and conditional inde-
pendence. In the process of splitting one would like to reduce redundancy.
Redundancy, in turn, materializes a form of probabilistic dependence. Re-
ducing probabilistic dependence (by suitably partitioning the features) from
some level of redundancy to a state of independence of the views, would
be beneficial. Consider accuracy. In principle, should one achieve the inde-
pendence of two views, one could count on the “probabilistic sum” of the
individual accuracies.1

The unconditional independence requirement is however at odds with the
consistency requirement: one would like the views to agree as much as possi-
ble in their predictions! So when a view says something the other is expected
to say the same. This of course implies high redundancy. The requirement
of conditional independence of the views given the value of the target2 en-

1Consider this stylized example, where we will aggregate the prediction of the two views
by choosing the most confident one. Let model 1 and model 2 be trained respectively on
view 1 and 2.
For the sake of illustration suppose the models are linear separator based classifiers and
that the views are two dimensional euclidean plane representations of a nearly linearly
separable dataset. It is reasonable to assume that when a point is far from the separator
line, it has a higher confidence of being correctly classified, whereas if it is close to the
separator line it has a smaller confidence: so correct classification and high confidence are
highly correlated.
Let the models trained on view 1 and 2 have respectively probability p1 and p2 of being
correct. Then the probability that either one or the other are correct is P = 1 − (1 −
p1)(1 − p2). Since, for the sake of simplicity, we assume that correct predictions have
higher confidence than wrong predictions, if we choose the highest-confidence prediction
from the two views we get the right result, thus P is also the predicting power of the
multi-view classifier.

2While the requirement of independence can also be translated by saying that knowing
the prediction of one view does help in guessing the prediction of the other, the requirement
of conditional independence can be spelled by saying even when the target is known,
knowing the prediction of one view does help in guessing the prediction of the other. So

26

forces a redundancy reduction compatible with the consistency requirement,
by demanding that each view brings independent information to each target
value. This also enhances the possibility that the diverse information from
the two views brings different confidence.

Relative teaching power. The requirement of independence conditional
to the target is rather strong and very difficult to obtain in real data sets.
However Balcan et al. [149] argue that this condition is not strictly necessary:
it is sufficient for a view to be capable of predicting the correct class with a
confidence higher than a wrong class predicted by the other (the authors call
this the ε-expanding property). Indeed this is one of the many ways in which
one can require that a view holds unique information, i.e. information non
available to the other view. We will return to the facets of this definition in
the appropriate chapter. For now, we informally define the teaching power
of a first view w.r.t. a second view, as the fraction of times the former is
capable to predict the correct class with a confidence higher than a wrong
class predicted by the latter. Notice that this teaching relation is directed
and that in general is not symmetric. Since it is a relative property we call it
overall relative teaching power. Notice also that this definition, pragmatically,
displaces the emphasis from the relative properties of the views given a target
value, to the effectiveness of the views when the target is the right one.

Synthesis of contributions. In this work we address the problems of view
splitting and the related problem of feature selection in a multi-view context.
We model the view splitting problem as a problem of optimization of partition
functions, i.e. as optimization over the partition lattice. In this context the
requirement of optimizing the views’ prediction power can be approached
again using the a power index as a proxy for individual prediction power of
the individual features and the two-feature interaction index as a measure
of what is gained from synergy within a view, or lost when two features
are assigned to distinct views. Those contributions are reported in a more
detailed summary below.

in a sense, to every target value the views bring unique information.

27

1.2 Summary of the Contributions

1.2.1 Feature selection

Based on the analogy between the individual power in determining the out-
come of the collaborative effort of a coalition and the individual role of a
feature in contributing to the performance of a learning model, the power
indices from Game Theory have been used in recent years to assign to each
feature a share of the total power: then the features with the highest power
have been selected to build the “candidate best” coalition. The papers that
used this approach offer anecdotic evidence of its effectiveness.

We go beyond the game theoretical analogy and – modeling the feature se-
lection task as an optimization problem on the Boolean lattice, in the space
of real-valued set functions – we argue that the effectiveness of the approach
lies in the fact that the power indices are the coefficients of a first-order ex-
pansion of the relevant function. It is known, for instance that the Banzhaf
Values of the elements with respect to a given set function are the first-degree
coefficients of the approximating polynomial which minimizes the Euclidean
distance (L2 distance or mean square error). Selecting the k elements corre-
sponding to the top k coefficients for building the candidate best coalition of
size k is equivalent to choose the set maximizing the approximating function
and use it as a candidate of maximum set of the target set function.

We demonstrate that the different power indices are the best first order ap-
proximation, based on a weighted mean square error. Using different weights,
yields different indices.

Based on this observation we develop a number of new power index definitions
and frame them into a larger picture. It turns out that the power indices
relevant to the problem of feature selection are instances of a general class
of probabilistic indices. This class is very wide, and would be difficult to
use in practice because it needs a lot of configuration parameters. However,
two if its sub-classes, the cardinal-probabilistic power indices and the player-
probabilistic power indices which contain Shapley and Banzhaf Value require
only a little number of parameters. We focus on them.

Furthermore, we observe that very often, we need to select a predefined
number of features. This means that we are interested on the behavior of
the set function defined only on a level, say level k of the Boolean lattice.

28

In this case the approximating function must not approximate the entire
function, but only the selected part. Based on this idea, we have defined a
new class of power indices, the “K-Power Indices”. We have extended the
previous algorithms to support these new indices.

Those extensions of the list of available power indices introduces the problem
of choosing the most appropriate for a given context. The choice can be
made base on the axioms that each index satisfies, and on their practical
interpretation. The choice can also be based on practical experimentation.

We carry a systematic experimental study (by real data-sets and simulation)
on the the effectiveness of the most prominent existing power indices (in the
simulation we try different assumptions on the property of the set underlying
function).

In passing, during the experimental study we show using benchmark datat-
sets, that the properties of monotonicity, non-additivity and submodularity
do not hold strictly. We also characterize the behavior of the set functions
with readily defined metrics which quantify the degree of compliance with
the conditions of monotonicity non-additivity and submodularity.

We also contribute some methods for the approximate estimate of the power
indices (whose exact computation would be exponential in the number of
features): the novelty of our methods (which have polynomial complexity) is
that they are tailored to achieve a value sufficient for supporting the feature
selection process. Indeed, in the power index based features selection, it is
not necessary to know the exact or even approximate value of the power in-
dex. Power index values are used only to order the features. This allows to
simplify the implementation of the indices’ algorithms. For example, given
we are interested only on the order, the implementation can continue the
computation only to obtain a stable order. Also this goal can be relaxed:
very often it is important to separate some features with a high index value
from the rest, so that the exact order of the selected features is not impor-
tant. Using these ideas, we have defined some algorithms focused on keeping
efficient the searching order, disregarding the value of the indices.

Furthermore, we use the power indices in conjunction with their interaction
index (e.g. Shapley Value with Shapley Interaction Value) to build a bi-
dimensional view of the features and assess the quality of information that
pairs bring together (to be used in multi-view learning problems). The power
index provides a measure of the predicting power of the feature in a context,

29

the interaction index tells whether this power is redundant or synergistic.

1.2.2 Feature Partitioning for Multi-view Learning and
Co-training

In the context of the Multi View Learning, when starting from a single view,
the first step to take consists in splitting the dataset in two or more parts
that meet the above mentioned Blum and Mitchell or Balcan conditions.

To this purpose, considering power indices is not enough, since we need to
fulfill some extra properties, which involve at least the relationship between
pairs of features:

• features should be assigned to the same view when they work construc-
tively together

• features interfering destructively, or with a low level of constructive
interference, should be assigned to different views

• each view should hold enough unique information to be able to “teach”
the others, i.e. to help other views to improve

Interaction and the interference can be modelled using the interaction indices,
such as the Shapley Interaction Value or the Banzhaf Interaction Value.
Interaction indices can be obtained as coefficients of the second degree terms
of the second order approximation of the set function polynomial. We can
use the interaction indices to evaluate:

• the level of collaboration collaboration between the features in the same
view

• the destructive interference of the features assigned to different views

• the ability of a view to “teach” to another view

The first and second point relate to the maximization of the predicting power
of the individual views and are relevant to all the multi-view learning pro-
cesses, the third refers specifically to the co-training process. We summarize

30

the formalization of the problem and of the solution involving the interaction
indices that we adopted w.r.t. the two problems.

We model both maximization problems as problems of optimization of par-
tition function over the partition lattice.

Maximization of the views’ predicting power. Two-view case. The
prediction power of an individual view (measured for instance in terms of a
classification performance metrics such as the accuracy) is in principle the
results of the power of individual features, plus interactions at pair level, at
triplet level and so on, up to the level k, where k is the size of the view. If we
split the whole set of n features in two views, the second view’s prediction
power will be the result of the power of individual features, plus interactions
at pair level, at triplet level and so on, up to the level (n−k), which is also the
size of the view. By splitting we deactivate all the cross-interactions between
pairs of features belonging to distinct views and all the cross-interactions
within sets which turn out to be split by the partition.

In principle finding the best splitting in this case corresponds to a search
over the Boolean lattice, where for every set (a view) is associated a unique
complementary set (the other view). Suppose for the sake of simplicity that
the objective function is the sum of the predicting power of the two views: the
problem of maximizing the sum can be mapped into the problem of removing
the least useful interactions (among which, the most damaging interactions).
Being the search over the Boolean lattice non feasible in general, one can
resort to the approximation approach. One can project the set function on
the first two levels, i.e. we can find the second degree approximation of the
set function: the higher-order interactions of the graph will disappear from
the approximation and be summarized by the interaction levels up to two in
the approximating function. At this point the value of the set function for
any subset (view) is approximated by the sum of the zero-th order coefficient,
the first order coefficients of the elements belonging to the set and the second
order interactions of the pairs that they define.

Thus the problem of maximizing the sum of the predicting power of the
views is the problem of maximizing the sum of the set function values and
can be mapped into the problem of removing the smallest value second order
interactions. This is a problem of Min-Cut. In this problem the zero-th
order, constant, term does not play any role, but the first order terms make
the formulation slightly different from the classical one of the Weighted Min-

31

Cut problem, where the nodes of the graph do not have any weight, and
only the edges have a weight. By interpreting the first order coefficients as
weights of a self-loop edge we can restore the classical form of the problem
and apply an algorithm for Weighted Min-Cut. In this way the problem of
finding the best splitting becomes polynomial problem.

Maximization of the views’ predicting power. Many-view case.
The approach can be generalized to an finite number of views: the problem
of splitting in k views is mapped into a k-way weighted Min-Cut problem:
again polynomial algorithms exist for this task.

Maximization of the views’ “teaching power”. When one deals with
the relatively complex process of co-training, maximizing the predicting power
of the views is not enough. The (models trained on the) views will interact
during several iterations by progressively improving one’s another prediction
power. Thus one can stipulate that also the diversity of the knowledge held
by the different views is important: thus one can try also to maximize their
“teaching power”: to this purpose we count the number of times that a view
can “teach” to the other one (how many times a view makes a correct pre-
diction with a confidence higher than the one by which the other view makes
a wrong prediction on the same instance). From the count one can obtain
a rate: the teaching power of a view w.r.t. another. Using this metric, the
power indices and the interaction indices, we can define an integer program-
ming optimization problem to distribute the features between the views that
satisfy the required list of properties.

An issue to consider, w.r.t. the the ability of a view to “teach” to another
view, is the number of interactions among views to consider. If we have only
two views, it’s simple: the first view teaches the second and the second one
to the first. If we have v views, the number of interactions is v(v − 1). A
simple solution, to reduce the number of interactions, is to assign an order
to the views and consider only the interactions between one view and the
next one (and the last view with the first one). In this way, the number of
interactions to consider is only v.

32

1.2.3 Effectiveness of Power Index based methods

The last problem is to understand when Power Index based methods rep-
resent a comparative advantage in terms of classification performance and
computational performance. The greedy approach, used in several Machine
Learning algorithms, is very efficient, because it considers only the best lo-
cal choices at each step. But it totally excludes a lot of other possibilities.
Greedy methods work well only if the best local choices are also the best
global ones. But this is true only in a very small number of cases. We have
observed, in some experiments, that very often the behaviour of the qual-
ity metrics used to evaluate the Machine Learning algorithms has no special
properties. Thus, the hypothesis used by greedy algorithms are not necessary
satisfied.

Contrary to Greedy methods the CGT methods based on power indices have a
global approach: they sample the whole support of the function using suitable
weight, then synthesize the global behaviour by a low degree approximation
function. This function is used to resolve the problems in feature selection
and feature partitioning.

In practice, set functions can be organized in four sub-spaces:

• a subspace where greedy methods work well, because the functions
satisfy the greedy hypotheses, and power-index based methods fail

• the sub space where and power-index based methods work well, but
the greedy approach fails

• the subspace where and power-index based methods and greedy meth-
ods return the same result

• the subspace where both and power-index based methods and greedy
methods fail

Identifying precisely those sub-spaces is an open challenge, however simu-
lation based investigations seem to indicate that the two approaches are to
a good extent complementary. Thus, for instance using both (since both
admit polynomial time implementations or approximations), can lead to a
polynomial time algorithm with improved prediction power.

The design of a suitable Monte Carlo generator for set function is one of the
challenges undertaken by this thesis.

33

1.3 Structure of the document

The structure of this document is the following.

The Chapter 2 introduces the definitions of the mathematical objects used
in the rest of the document. After the standard notations for integers, reals,
intervals, sets, etc, it defines the concepts of set function, pseudo boolean
function and set function space. Since the set function space is a vector space,
it defines some very often used basis. There is also the discrete version of
function derivative. The set functions are defined on sets, but there exist also
functions defined on partitions of a set. Here it is used a special definition:
a partition function induced by a partition and by the set functions assigned
to each partition block. The last part of the chapter introduces a minimal
set of definitions for graphs.

The Chapter 3 introduces the main objects used in the document: the power
indices and the interaction indices. The classes of these indices can be orga-
nized in a hierarchical structure where the class of probabilistic indices is the
root, the classes of cardinal-probabilistic indices and the player-probabilistic
indices are two children, and the popular Shapley Value, Banzhaf Value (and
related interaction indices) are instances of the previous ones. The chapter
shows also that there is a bidirectional relation between set functions and
power/interaction indices: they form an invertible transformation. The last
part of the chapter shows that the indices can be defined using an axiomatic
approach: selected a set of axioms, these define in an unique way a specific
index. To know the axioms that define a index is important to understand
which index to select for a specific problem.

The Chapter 4 shows the algorithms used to compute the power and in-
teraction indices. Since the indices are combinatorial objects (to compute
their values it is necessary to consider all possible subsets of a given set),
it is not possible to compute the exact values, but it is necessary to use
approximated methods. The chapter shows how these approximations are
been implemented. There are described also some more efficient algorithms
variants used when it is not necessary to know the power index values but
only the values order.

The Chapter 5 shows why it is possible to use the power and interaction
indices for feature selection. Here it is demonstrated that the power indices
are the best linear approximation of the set function based on a weighted
mean square error. Using different weights we obtain different power indices.

34

If it is necessary to approximate the original set function with a reduced
number of terms, the best terms to use are the features with the highest
power index value.

The Chapter 6 defines a new class of indices. The original indices try to
approximate the entire set function. But in the problems of feature selection,
we are interested on the values of the function defined on sets in limited
cardinality range. The idea is to approximate a restricted set function to the
selected sets. The chapter shows how to change the definitions of the original
indices to consider only these cardinality. We have also derived the closed
formula for the most simple power index (the Banzhaf Value) starting from
scratch. The same approach can be used to find the closed formulas for the
other indices.

The Chapter 7 analyzes another problem: the feature partitioning. In the
Multi View Learning based on a single dataset, a problem is to split the
dataset in two o more views such as: each view is able to predict well, each
view contains collaborating features and features that interfere negatively are
in different views. There are several algorithms available but here we use the
concepts of Game Theory: the power and interaction indices. The chapter
shows how to use the indices to define an optimization problem where the
solution is the required views. It shows also that the feature partitioning
problem can be defined as a graph partitioning problem. It describes how to
adapt two of most used approaches (the spectral clustering and the multilevel
graph partitioning) to the original problem. The chapter extends the feature
partitioning in two extra directions: feature partitioning applied to the co-
training, and when each view uses a different prediction algorithm.

In the feature partitioning for co-training, we have two goal to satisfy: each
view must predict well, each view must teaches something to the other ones.
The chapter defines the concept of ability of teaching of a view respect to
another, and how to evaluate this ability. Then, the problem is modelled
as an integer optimization problem. At the moment, it is not possible to
convert the problem in a graph partitioning problem because the ability of
teaching is a very strange object: it has a direction and must be considered
only with the cut-edges selected in the partitioning. Furthermore, it change
the original undirected graph in a directed one, and this change totally the
type of the problem to resolve and the graph’s algorithms to use.

The last extension is how to model the behaviour of a multi view learning
algorithm when each view has a different prediction algorithm, and how to

35

define the ability of teaching. The chapter introduces the concept of partition
function induces by a partition and set function, and the concept of mixed
derivative, necessary to measure the teaching ability.

The Chapter 8 tries to answer, in some extremely simple cases, to the ques-
tion: when the Game Theory is better than a Greedy methods. The question
was born reading the articles, that use power indices (Shapley Value, Banzhaf
Value, Möbius coefficients) that say: “using this index we obtain better re-
sults than with a greedy method”, “this index is better because it has nice
properties”, etc. We have observed that this is not true. There is not an
evidence that an index is better than another. The quality of the results
depends totally by the data. Very often, the results obtained using different
indices are very similar. However it is sure that there are cases where an
approach based on the Game Theory is better than one based on Greedy
method. This is related to how a greedy algorithm works: it extends the
current solution only with solutions that contain the current one, exclud-
ing all others. Instead, a game theoretic method uses a global approach: it
analyzes several possible solutions an tries to collect information about the
importance of the solution’s elements, to create a final solution that contains
the most important elements. In another way, the greedy method works well
when the function has nice properties (and in this case a game theoretic
method returns the same results), where a game theoretic approach doesn’t
require special properties in the function.

The second part of the chapter contains a list of plots and properties (mono-
tonicity, sub/super additivity, sub/super modularity) obtained tabulating
the set function accuracy of a Decision Tree, applied to real datasets. These
plots show that it is not possible to assume nice properties, as for example,
the monotonicity. All functions are sub additive and sub modular, but these
properties are too generic to be useful.

The Chapter 9 contains the conclusions of this work, and the open problems.
The main open problems are: to understand when a game theoretic method
is better than a greedy method, how to select the indices to use.

The last Chapter B contains a published paper on a clustering using a not
conventional approach: using a transposed version of the dataset.

36

Chapter 2

Definitions

2.1 Introduction

This chapter introduces the main mathematical concepts used in the rest of
the document.

2.1.1 Notations

The set of natural integers in denoted by N, the positive integers (excluding
0) by N+, the set of integers by Z, the real numbers by R. With

i⊕ j = ((i+ j − 1) mod n) + 1

we denote the modular + with integer values in the range [1, n].

The closed interval is denoted by [a, b], the open interval by (a, b), and the
semi-open interval by (a, b] and [a, b). We use the same syntax for real and
integer intervals. If a and b are integers, also c in a ≤ c ≤ b is an integer
value.

The set is denoted by {a, b, . . .} or by an uppercase letter, as S, N , etc. N
is used also for the set {1, 2, . . . , n}. The cardinality of the set S is denoted
by |S| or by the correspondent lowercase letter (s = |S|, n = |N |, etc).

37

The powerset of N , the family of all possible its subsets, is denoted by 2N =
{S : S ⊆ N} (note that S ⊆ N is equivalent to S ∈ 2N). The family of sets
with cardinality exactly k is denoted by Nk = 〈S : S ⊆ N, |S| = k〉. The
family of sets with cardinality less or equal k by N [0,k] = 〈S : S ⊆ N, |S| ≤ k〉.
The family of sets with cardinality in the range [kmin, kmax] by N [kmin,kmax]

(2N is equivalent to N [0,n]). The cardinality of 2N is 2n. Given A and
B with A ⊆ B, the family of all subsets between A and B is denoted as
[A,B] = [C : A ⊆ C ⊆ B]. The notation is reminiscent of the fact that in
set space the family is the analog to an interval. Note that if A ∩ B = Ø,
the family [A,B] is empty.

We will use i, ij, etc, as notation for sets containing one ({i}), two ({i, j})
(or a small number of) element(s). Union, intersection and difference of two
sets are denoted by: A ∪B,A ∩B,A \B.

The symmetric difference is denoted by

A∆B ≡ (A \B) ∪ (B \ A) = (A ∪B) \ (A ∩B).

Some other operations are

A \B \ C = (A \B) \ C
A \B ∪ C = (A \B) ∪ C

In a set, the order of the elements is not important: {a, b, c} = {c, a, b}. A
sequence is a list of elements where the order is important: 〈a, b, c〉 6= 〈c, a, b〉:
they are called also ordered tuples (ordered pairs, ordered triplets and so on).
In general, we will use sequences without duplicated elements. Elements in
the sequence have an index starting from 1. The i-th element of the sequence
S is denoted as Si or S[i]. The length of a sequence is denoted by |S|. The
subsequence S[l : u] is the sequence composed of elements with index in the
range [l, u) = [l, u− 1] (with l ≤ u). Note that S[i : i] is the empty sequence,
S[i : i+1] is the sequence of one element, where S[i] is the element in position
i. The concatenation of two sequences is denoted by S ∪ T .

The family of partitions of N in m blocks is denoted by Pm(N): it is a list
of subsets Pi ⊆ N such that

38

Pi ∩ Pj = Ø ∀i 6= j
m⋃
i=1

Pi = N

often denoted as P = 〈P1, . . . , Pm〉.

The Stirling numbers of the second kind [173] is the number of ways in which
one can partition a set of n elements into k subsets

{
n

k

}
=

{
n− 1

k − 1

}
+ n

{
n− 1

k

}
=

1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n

Note that

{
n

1

}
=

{
n

n

}
= 1

The Bell numbers [174] counts the total number of partitions of the set

Bn =
n∑
k=0

{
n

k

}

The indicator function of a set S ⊆ N) is

1S : N → {0, 1}

1S(i) =

{
1, if i ∈ S
0, otherwise.

Another simple representation of the indicator function is

Si =

{
1, if i ∈ S
0, otherwise.

39

1S = 〈Si : i ∈ N〉

The inverse of the indicator function is denoted by:

Nx = {i : xi = 1, i ∈ N}

A permutation of a set is a sequence made of the elements from the set,
without duplication. There are n! permutations of n elements. The number
of different permutations of k elements taken from n is n!

(n−k)!
. The collection

of all permutations of the set N is denoted by Π(N). The collection of
permutations of length k is denoted by Π(N [0,k]). A permutation is denoted
by π ∈ Π(N). The sequence of elements preceding i in the permutation π is
denoted by Si(π).

A column vector is denoted by a boldface lowercase letter x. The row vector
is denoted by xT . The vector composed by zeros is denoted by 0, whereas
1 denoted the vector composed by ones. The elements of the vector by xi.
The dot/inner product is denoted by

〈x,y〉 = xT · y =
n∑
i=1

xi · yi

By convention:

•
∑

i∈Ø xi = 0

•
∏

i∈Ø xi = 1

•
∑

i∈Ø

∏
i∈Ø xi = 1

The factorial of n is denoted n!. The falling factorial (n)k is defined as:

(n)k =
k∏
t=1

(n− t− 1) =
k−1∏
t=0

(n− t) =
n!

(n− k)!

The binomial coefficient
(
n
k

)
is defined as

40

(
n

k

)
=

n!

k!(n− k)!

It can be defined with the recurrent formula

(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
(2.1)

If k < 0 or n < k,
(
n
k

)
= 0.

The sum of binomial coefficient from 0 to k is denoted

(
n

k

)∗
=

k∑
i=0

(
n

i

)

with the property

(
n

n

)∗
=

n∑
k=0

(
n

k

)
= 2n

2.1.2 Subset lattice

The relation proper subset A ⊂ B, where A,B ⊆ N , is a partial order
between the sets in the family 2N . The relation can be represented as a
lattice (L(N)) where the nodes represent the sets and the edges the inclusion
relation between pairs of sets. It can be visualized using the Hasse diagram,
a graph where sets are ordered by increasing cardinality (each cardinality
corresponds to one level). The bottom element is Ø (the empty set, with
cardinality 0) and the top element is N (the full set, with cardinality n).

A maximal chain is an ordered collection of n + 1 nested distinct sets such
that

M = 〈Ø = S0 ⊂ S1 ⊂ . . . ⊂ Sn = N〉

41

Ø

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Figure 2.1: The Hasse diagram of {1, 2, 3, 4}

The maximal chain can be defined also using a permutation π with the
convention

M = 〈Si = π[1 : i+ 1] : i ∈ [0, n]〉

(in the figure: 〈2, 4, 1, 3〉).

The set of maximal chains is denoted by C(N). Its cardinality is n!.

Given M ∈ C(N) a maximal chain and S ⊆ N a set, MS (or M [S]) is the
smallest set in M containing S.

2.1.3 Set representation

The indicator function is a map between a set S ⊆ N and the integers l ∈ N
with n bits:

• we use the natural ordering of the elements i

42

• this order defines a unique map between the element i and its bit po-
sition (i− 1). The element 1 has position 0.

The operations on sets or between pairs of sets can be mapped onto opera-
tions on or between binary numbers:

• set union → bitwise or

• set intersection → bitwise and

• set complement → bitwise not

• set difference → bitwise and between the first set and the comple-
ment of the second set

The cardinality of the set is the number of bits with value 1.

Natural vs. Combinatorial Number system ordering. The problem
with this representation is that the sets with a lower cardinality are mixed
with sets with higher cardinality.

integer binary rep. set cardinality

0 0000 Ø 0

1 0001 {1} 1

2 0010 {2} 1

3 0011 {1, 2} 2

4 0100 {3} 1

5 0101 {1, 3} 2

.

Table 2.1: Cardinality in the binary representation of a set

In some algorithms we need to order the sets based on their cardinality, that
is, we need to have first the empty set, then the sets with cardinality 1, the
sets with cardinality 2, and so on.

43

0 200 400 600 800 1,000
0

2

4

6

8

10

set encode

ca
rd

in
al

it
y

Figure 2.2: Cardinality in the binary representation of a set

To achieve this result, we can use another integer representation, based on
the Combinatorial Number System (CNS) [66]. Using this representation,
any integer l can be represented in an unique way as ordered sequence of
digits 〈C1, C2, . . . Cr〉 where each digit Ci is an integer in the range [0, n− 1],
with the property

0 ≤ Ci < Cj ∀ i < j

i.e. the lexicographic order property, and

l =
r∑
i=1

(
Ci
i

)

The sequence can be converted into the correspondent set changing the digit
Ci with the element Ci + 1.

44

integer CNS rep. cardinality

0 〈〉 0

1 〈1〉 1

2 〈2〉 1

3 〈3〉 1

4 〈4〉 1

5 〈1, 2〉 2

.

Table 2.2: Cardinality in the CNS representation of a set

0 200 400 600 800 1,000
0

2

4

6

8

10

set encode

ca
rd

in
al

it
y

Figure 2.3: Cardinality in the CNS representation of a set

The following algorithm implements the direct transform (from the set S to

45

integer l).

Function LexicographicIndex(S, n)

input : S a set
input : n number of elements in the full set

S ← sort the elements of S in ascending order
s← |S|
l← 0
for i ∈ [1, s] do

ci ← S[i]

l← l +
(
ci
i

)
end

return l

To compute the inverse transform (from the integer l to the set S) we use a
simple greedy algorithm.

Function LexicographicSet(l, n)

input : l an integer
input : n number of elements in the set

r ← the largest integer such that l ≤
(
n
r

)
S ← 〈〉
for i ∈ [r, 1] do

ci ← the largest integer such that
(
ci
i

)
≤ l

S ← S ∪ ci
l← l −

(
ci
i

)
end

return S

46

2.2 Set Functions

2.2.1 Definitions

A set function ξ on N is a mapping between 2N and R:

ξ : 2N → R

It assigns a real value to each subset of N .

A set function can be:

• monotone if ξ(A) ≤ ξ(B) for A ⊆ B

• grounded if ξ(Ø) = 0

• normalized if ξ(N) = 1

• non-negative if ξ(S) ≥ 0 for ∀S ⊆ N

For ∀A,B ⊆ N , and A ∩B = Ø, the set function can be:

• additive if ξ(A ∪B) = ξ(A) + ξ(B)

• sub-additive if ξ(A ∪B) ≤ ξ(A) + ξ(B)

• super-additive if ξ(A ∪B) ≥ ξ(A) + ξ(B)

For ∀A,B ⊆ N (including also A ∩B 6= Ø), the set function can be:

• modular if ξ(A ∪B) + ξ(A ∩B) = ξ(A) + ξ(B)

• sub-modular if ξ(A ∪B) + ξ(A ∩B) ≤ ξ(A) + ξ(B)

• super-modular if ξ(A ∪B) + ξ(A ∩B) ≥ ξ(A) + ξ(B)

Note that the modularity is equivalent to the additivity when A ∩B = Ø.

There are some special terms for set functions with the selected properties:

47

• measure: a grounded, non-negative, additive set function

• probability measure: a grounded, non-negative, additive, normalized set
function

• capacity : a grounded, monotone set function. The capacity can be
normalized. Other terms for the capacity are: fuzzy measure, non-
additive measure, monotonic measure.

• game: a grounded set function

2.2.2 Discrete Derivative

Let ξ a set function on N , a set S ⊆ N and an element i ∈ N . The (first
order) derivative of ξ on S with respect to i is defined as:

∆iξ(S) = ξ(S ∪ i)− ξ(S \ i)

In this definition, it is irrelevant the fact that i is in S or not.

Some more common definitions are:

∆iξ(S) = ξ(S ∪ i)− ξ(S)

if it is ensured that i is not member of S (i 6∈ S), and

∆iξ(S) = ξ(S)− ξ(S \ i)

if it is ensured that i is member of S (i ∈ S).

This value is also known as the marginal contribution of i in S with respect
to ξ.

The second order derivative of ξ on S with respect to {i, j} is defined as:

48

∆ijξ(S) = ξ(S ∪ ij)− ξ(S \ i ∪ j)− ξ(S \ j ∪ i) + ξ(S \ ij)
= ∆i(∆jξ(S))

= ∆j(∆iξ(S))

This is also known as the net marginal contribution of the pair {i, j} on S
with respect to ξ.

It is possible to generalize to the kth order derivative, where k is the cardi-
nality of the set K ⊆ N of elements used to compute the derivative:

∆Kξ(S) = ∆i

(
∆K\iξ(S)

)
=
∑
L⊆K

(−1)|K\L|ξ(S \K ∪ L)

with the convention

∆Øξ(S) = ξ(S)

This is the net marginal contribution of the elements in K on S with respect
to ξ.

Note that

∆Kξ(S) 6= ξ(S ∪K)− ξ(S)

We can observe that

ξ(A ∪ S) =
∑
T⊆S

∆T ξ(A)

and

ξ(S) =
∑
T⊆S

∆T ξ(Ø)

49

2.2.3 Set Functions representation

Let ξ a set function on N . There exist several methods to represent it [78].
The simplest method is to consider the function’s value ξ(S) directly, that
is, to use a map between S and ξ(S)

S → ξ(S)

The second method uses the Möbius coefficients (or Harsanyi dividends)
aT [76, 109]

ξ(S) =
∑
T⊆S

aT S ⊆ N

were aT is computed as

aT =
∑
S⊆T

(−1)t−sξ(S)

The two definitions form the Möbius Transform.

The Möbius representation of a set function is used very often. Several other
representations are available and some of them are defined and used in the
following chapters.

2.2.4 Set Functions Space

Let L(2N) the space of the set functions defined onN . This is a 2n-dimensional
linear space. Let ξ, ζ ∈ L(2N), we can define

∆ijξ(S)(ξ + ζ)(S) = ξ(S) + ζ(S) ∀S ⊆ N

(αξ)(S) = α · ξ(S) ∀S ⊆ N, ∀α ∈ R

The inner product is defined as

50

〈ξ, ζ〉 =
∑
S⊆N

ξ(S)ζ(S)

and the norm, induced by the inner product, is defined as

‖ξ‖ =
√
〈ξ, ξ〉

Let µ a probability distribution function

µ : 2N → [0, 1]∑
S⊆N

µ(S) = 1

with the condition that

µ(S) > 0 ∀S ⊆ N

the weighted inner product is defined as

〈ξ, ζ〉µ =
∑
S⊆N

µ(S)ξ(S)ζ(S)

and the weighted norm, induced by the weighted inner product, is defined as

‖ξ‖µ =
√
〈ξ, ξ〉µ

Note that if µ(S) = 0 for some S 6= Ø the function 〈·, ·〉µ may not have the
properties of a inner product. However, if µ(S) = 0 and ξ(S) = 0, properties
are not lost.

51

2.3 Pseudo Boolean Functions

2.3.1 Definitions

As defined previously, a set function ξ on N is a function from the 2N into R

ξ : 2N → R

Using the indicator function, each set S ⊆ N , can be mapped into a vector
of bits. This allow to define the function also as a pseudo boolean function
from {0, 1}n into R:

fξ : {0, 1}n → R
fξ(x) = ξ({i ∈ N : xi = 1})

The inverse is

ξf (S) = f(1S)

Because there is an equivalence between S ⊆ N and x ∈ {0, 1}n, we can
write f(S) instead of f(1S).

The space {0, 1}n is a 2n-dimensional vector space equivalent to the set func-
tions’ vector space [75].

For this space, there are several bases available.

2.3.2 Dirac basis

The most simple basis is Dirac basis [75], defined as

δT (x) =
∏
i∈T

xi
∏

i∈N\T

(1− xi)

52

δT (S) =
∏
i∈T

Si
∏

i∈N\T

(1− Si)

where

Si =

{
1, if i ∈ S
0, otherwise

with the property

δT (S) =

{
1, if T = S

0, otherwise.

(sometimes 1− xi is written as x̄i). Using the Dirac basis, the function can
be defined as

f(x) =
∑
T⊆N

ξ(T)δT (x)

This basis is orthonormal

〈δT , δT 〉 = 1

〈δT , δU〉 = 0 T 6= U

Other properties are available in the following table.

53

value note

δØ(S) 1 ∀S ⊆ N

δS(Ø) 0 S ⊃ Ø

δS(S) 1

δS(T) 0 ∀T 6= S

δS(T)δS(T) δS(T)

δS(R)δT (R) 0 ∀S 6= T

∆iδS(T) (−1)|{i}\S|δS\i(T)

∆KδS(T) (−1)|K\S|δS\K(T)

Table 2.3: Dirac basis properties

2.3.3 Unanimity Game basis

Another useful basis is the Unanimity Game basis [75], defined as

eT (x) =
∏
i∈T

xi

eT (S) =
∏
i∈T

Si

where

Si =

{
1, if i ∈ S
0, otherwise

The Unanimity Game basis has the property that

eT (S) =

{
1, if S ⊇ T

0, otherwise.

Using this basis, the function can be defined as

54

f(x) =
∑
T⊆N

aT eT (x)

where aT are the Möbius coefficients.

The basis is not orthonormal :

〈eT , eT 〉 =
∑
S⊇T

eT (S) = 2n−t

〈eT , eU〉 =
∑

S⊇T∪U

eT∪U(S) = 2n−|T∪U |

Other properties are available in the following table.

value note

eØ(S) 1 ∀S ⊆ N

eS(Ø) 0 S 6= Ø

eS(S) 1

eS(T) 1 ∀T ⊇ S

eS(T)eS(T) eS(T)

eS(R)eT (R) eS∪T (R)

∆ieS(T) eS\i(T) i ∈ S
0 i 6∈ S

∆KeS(T) eS\K(T) S ∩K 6= Ø

0 S ∩K = Ø

Table 2.4: Unanimity Game basis properties

2.3.4 Walsh basis

Another basis is the Walsh function [75]. We define

55

zi = 2xi − 1 =

{
+1, if xi = 1

−1, if xi = 0

then, the function basis wT is defined as

wT (z) =
∏
i∈T

zi

If we use Si in a similar way as in eT (S) but with the convention that

Si =

{
+1, if i ∈ S
−1, otherwise

the property of the basis is that

wT (S) =
∏
i∈T∩S

Si
∏
i∈T\S

= (−1)|T\S|

Note that:

wS(z)wT (z) =
∏
i∈S

zi
∏
i∈T

zi

=
∏
i∈S∩T

zi
∏
i∈S\T

zi
∏
i∈T\S

=
∏
i∈S\T

zi
∏
i∈T\S

= wS∆T (z)

Using the weighted inner product with the weight function µ(S) = 1
2n

, the
basis is orthonormal

〈wT , wT 〉µ = 1

〈wT , wU〉µ = 0

56

Using the Walsh functions, the function can be defined as

f(x) =
∑
T⊆N

(∑
S⊇T

aS
2s

)
wT (z)

where aS are the Möbius coefficients. Other properties are available in the
following table.

value note

wØ(S) 1

wS(Ø) (−1)s

wS(S) 1

wS(T) (−1)|T\S|

wS(T)wS(T) 1

wS(R)wT (R) wS∆T (R)

∆iwS(T) wS\i(T) i ∈ S
0 i 6∈ S

∆KwS(T) wS\K(T) S ∩K 6= Ø

0 S ∩K = Ø

Table 2.5: Walsh function properties

2.3.5 Discrete Derivatives

The first-order derivative of a pseudo boolean function f on i is defined as

∆if(x) = f(x)|xi=1 − f(x)|xi=0

The second -order derivative (on ij) is defined as:

∆ijf(x) = ∆jif(x) = ∆i∆jf(x) = ∆j∆if(x)

= f(x)|xi=1,xj=1 − f(x)|xi=0,xj=1 − f(x)|xi=1,xj=0 + f(x)|xi=0,xj=0

57

It is possible to generalize to the kth order derivative as

∆i1...ikf(x) = ∆i1 · · ·∆ikf(x)

∆Kf(S) =
∑
T⊆K

(−1)|K\T |f(S \K ∪ T)

2.4 Partition functions

2.4.1 Definitions

Let R ⊆ N , we define the restricted set function ξ on R as

ξR(T) = ξ(T ∩R)

A property of ξR is that the derivative on S, when S ∩ R = Ø is zero. For
example, let i 6∈ R

∆iξ
R(T) = ξR(T ∪ i)− ξR(T)

= ξ((T ∪ i) ∩R)− ξ(T ∩R)

= ξ(T ∩R)− ξ(T ∩R)

= 0

(2.2)

This property can be extended to all elements in S.

Let Pm(N) the partitions space of N in m blocks, and P ∈ Pm(N) a par-
tition. We suppose to assign a set function ξr to each partition’s block.
We define the partition function ΞP , induced by the set functions ξr and the
partition P as

ΞP : Pm(N)→ R

ΞP (T) =
m∑
r=1

ξPr
r (T) =

m∑
r=1

ξr(T ∩ Pr)

58

2.4.2 Derivative on a partition

The main property of ΞP is that the derivative on S, when S is a subset of
a partition’s block Pt, for the 2.2, is equal to the derivative on ξt

∆SΞP (T) =
m∑
r=1

∆Sξ
Pr
r (T)

= ∆Sξ
Pt
t (T)

= ∆Sξ(T ∩ Pt)
= ∆Sξ(T)

Now, we must define the mixed derivative, the derivative on S when S has
not empty intersection with some partition’s blocks. It can be defined as

∆SΞP (T) =
m∑
r=1

∆Sξ
Pr
r (T)

=
m∑
r=1

Pr∩S 6=Ø

∆Sξ
Pr
r (T)

=
m∑
r=1

Pr∩S 6=Ø

∆Sξr(T ∩ Pr)

(2.3)

If we compute the derivative on {i, j}, with i ∈ Ps and j ∈ Pt, we have

∆ijΞ
P (T) =

m∑
r=1

∆Sξ
Pr
r (T)

= ∆iξ
Pr
r (T) + ∆jξ

Ps
s (T)

= ∆iξr(T ∩ Pr) + ∆jξs(T ∩ Ps)

2.4.3 Mixed derivative

The previous definitions of derivative is based on a selected partition P . We
must consider all partitions (with m blocks) but with an extra constraint: we

59

want to select the blocks where S (the set used to compute the derivative)
has a not empty intersection.

For now, let S = {i, j} and we want to use i with Pr and j with Ps. We use
the symbol

∆rs
ij

with the meaning:

• i is used only with the block Pr: it is added to, and removed from Pr

• j is used only with the block Ps: it is added to, and removed from Ps

Using this symbol, we define the mixed derivative on i ∈ Pr, j ∈ Ps and the
permutation P as

∆rs
ijΞP (T) =

m∑
t=1

∆rs
ij ξ

Pt
t (T)

= ∆iξ
Pr
r (T) + ∆jξ

Ps
s (T)

= ∆iξr(T ∩ Pr) + ∆jξs(T ∩ Ps)

The mixed derivative on i ∈ Pr, j ∈ Ps can be defined as

∆rs
ijΞ(T) =

∑
P∈Pm(N\ij)

pij(P)∆rs
ijΞP (T)

where

〈pij(P) : P ∈ Pm(N \ ij)〉

is a probability distribution. The most simple distribution is

pij(P) =
1

|Pm(N \ ij)|
=

1{
n−2
m

}
60

This definition has two properties

• it has a direction

• the partition’s blocks used are only the blocks with not empty inter-
section with the set used for the derivative.

Its generalization is

∆KΞ(T) =
∑

P∈Pm(N)

pK(P)∆KΞP (T)

where

∆KΞP (T) =
m∑
i=1

∆K∩Pi
ξi(T ∩ Pi)

2.5 Graphs

A graph G = (V,E,w) [178] is an mathematical object composed by

1. V = {v1, . . . , vn} a set of vertices

2. E = {eij = (vi, vj)} a set of edges, where an edge describes the existence
of a relation between two vertices

3. w : V ∪ E → R a function that assign a weight to vertices and edges.
The most simple function assign 1 to all objects

A edge eij = (vi, vj) can be

• an undirected edge if it describes a symmetric relation: eij = eji. In
this case, vi and vj are the endpoints and can be extracted from eij
with v1(eij)→ vi and v2(eij)→ vj

61

• a directed edge if it has a direction (the relation is not symmetric), that
is eij 6= eji. In this case, vi is the tail and vj the head of the edge. They
can be extracted with tail(eij)→ vi and head(eij)→ vj

• a loop (or a self-edge) if the two vertices are the same: eii = (vi, vi)

A graph is

• an undirected graph if it contains only undirected edges

• a directed graph if it contains only directed edges

• a simple graph if it contains only undirected edges and there is at most
one edge between two vertices

• a complete graph if each vertex is connected to all the others

• a multi graph if there multiple edges between two vertices

• a pseudo graph if it contains loops or multiple edges

An undirected graph can be converted in a directed graph replacing the undi-
rected edges with two directed edges in the opposite directions.

A graph can be modelled in several way. A common method is to use the
adjacent matrix A, a squared matrix where the rows and the columns are
the vertices and the element at the coordinates Aij contains the weight of
the edge eij. The matrix has several properties:

• the element at the coordinates ij is 0 (zero) if there is not an edge
between the vertices vi and vj

• it is symmetric if the graph is undirected

• the elements of the diagonal are 0 (zero) if the graph has no loops

The matrix creates a bridge between the world of the graphs and the world
of the linear algebra. The Spectral Graph Theory studies the properties of
the graphs analyzing the properties of the adjacent matrices [187,188].

62

2.6 Conclusions

In this chapter, we introduced the standard terminology and notation used
in the rest of the document. We started with the standard notation for
numbers, sets and set operations. Then, we described the subset lattice,
the objects’ domain of this work. We described some representations of sets,
useful in the algorithms’ implementation. We also defined the concepts of set
function, pseudo boolean function, the relation between the two functions’
classes, the concept of derivative and some basis used to represent the pseudo
boolean functions. We have seen that the basis have specific properties. The
demonstration of these properties and some representation transformations
are available in the appendices.

63

Chapter 3

Coalitional Game Theory

3.1 Introduction

Coalitional Game Theory with Transferable Utilities (TU) [162, 163] is
the study of the statics and dynamics of coalitions of players when the coali-
tion’s worth (e.g. the value generated by the coalition) can be divided and
distributed, in some way, as payoff (a reward), to the members.

This branch of Game Theory focuses on the problems related to the coalition
formation and stability and on the mechanisms to distribute the worth to
the coalition’s members. In the terminology of set functions, a coalition is a
subset S of a set N (the grand coalition), the players are the set’s members.

If the worth of the coalition depends only on the members, it can be mod-
elled by a set function (the utility function, that in this context is called
characteristic function). If the worth of a coalition depends also on the way
in which the non-members are organized, it can be modeled in general using
partition functions.

There exist several methods to distribute the worth to individual players
(i.e. to assign a value to a player), typically aiming at a fair division goal.
Most methods are based on the concept of power index or, in addition, to a
generalization of the concept to the concept of interaction index. 1

1 In most of them, to determine the value to be assigned to a member one evaluates the
marginal contribution of the player in each possible coalition, then computes a weighted
mean of the contributions. The different power indices definitions follow this pattern: they

64

There exist different types of power and interaction indices [171]: we are inter-
ested only in the class of probabilistic values [81] and probabilistic interaction
indices [85] that includes some of the most important power indices: Shap-
ley Value [79,82], Shapley Interaction Index [96], Banzhaf Value [80],
Banzhaf Interaction Index [89], Chaining Interaction Index [86].

3.2 Coalitional Games

LetN a set of players, a coalitional game with transferable utilities G (also TU
game, or simply game) on N is a pair composed by N (the grand coalition)
and a set function ξ (the characteristic function) that maps each subset
S ⊆ N (the coalition) to a real value (the worth of S). The function must be
grounded (ξ(Ø) = 0), non-negative (ξ(S) ≥ 0 ∀S ⊆ N). Sometimes, but it
is not mandatory, normalized (ξ(N) = 1).

G = 〈N, ξ〉
ξ : 2N → R

ξ(Ø) = 0

ξ(S) ≥ 0 ∀S ⊆ N

The set function can have other properties (super/sub/-additive, super/sub/-
modular, monotone, normalized, etc), but this is not necessary.

The space of all games on N (all set functions ξ defined on N) is denoted by
GN .

are specified by different domain dependent constraints.
Based on the different coalitions’ worth, it is also possible to evaluate the interaction

between the subsets of players, that measures the degree by which the players collaborate
or interfere when all of them are in the same coalition. Most of the time

• the method used to evaluate the interaction index is valid also for a single player,
that is, the power index is a special case of the interaction index

• it is possible to recreate the original function using the interaction indices evaluated
on all subsets of the grand coalition N

since the interaction indices are defined using the function and the function can be
recreated using the interaction indices, this bidirectional mapping defines an interaction
transform.

65

3.3 Power Indices

For the class of coalitional games GN , a solution concept is a method to divide
the worth of the coalitions among their members

S : GN → Rn

The solution of the solution concept is the power index, a vector that assign
to each player a score based on the influence that the player hold inside the
coalitions.

Two well known power indices are the Shapley Value and the Banzhaf
Value: they are instances of the more larger class of probabilistic values [81].

The solution concept does not only assign a score to a single players. It is
possible to define rules to assign scores to each possible player’s subset. For
those cases one uses the term interaction index. The class of solutions related
to the probabilistic values is the class of probabilistic interaction indices [85].

3.3.1 Probabilistic Values

The probabilistic value [81] of a gameG = 〈N, ξ〉 is a class of solution concepts
based on the general formula

φξ(i) =
∑
T⊆N\i

pi(T)∆iξ(T) (3.1)

with 〈pi(T) : T ⊆ N \ i〉 a probability distribution.

That is:

• pi(T) is the weight assigned to the coalition T

• ∆iξ(T) is the marginal contribution of i inside the coalition T

• φξ(i) is the expected payoff of the i’s marginal contributions

66

It is useful to change slightly the definition as follows

φξ(i) =
n−1∑
t=0

φξ(t, i)

φξ(t, i) =
∑
T∈N\i
|T |=t

pi(T)∆iξ(T)

where φξ(t, i) is the component of the probabilistic value evaluated on the
coalitions with cardinality t. This allow to consider the power index as a sum
of indices evaluated on sets with selected cardinality.

The probability distribution 〈pi〉, used in the definition, is not endowed with
a special structure: all 2n−1 values can be different. If the number of players
is very high, it is impossible to obtain all possible values. A solution is to
assign a structure to the distribution such that the value for each coalition
can be computed using a function and a small number of parameters.

The literature describes two simple structures:

1. cardinal-probabilistic values [118]: the distribution depends only on the
coalition cardinality

2. player-probabilistic values [102]: the distribution depends only on the
coalition members

3.3.2 Cardinal-Probabilistic Values

The cardinal-probabilistic value is a class of probabilistic values where the
weight assigned to a coalition depends only on the coalition cardinality [118]:

pi(T) = pi(t)

with

∑
T⊆N\i

pi(T) =
n−1∑
t=0

(
n− 1

t

)
pi(t) = 1

67

Note that the definition uses n probability distributions (one for each player)
and each distribution is composed of n − 1 values, that is, we need n(n −
1) values. In general this is not necessary: all players can use the same
probability distribution.

3.3.3 Shapley Value

The most famous member of cardinal-probabilistic value is the Shapley
Value, introduced by Lloyd Shapley in the 1953 [79,82], defined as

φShξ (i) =
∑
T⊆N\i

t!(n− 1− t)!
n!

∆iξ(T) (3.2)

where the weight pi(t) is

pi(t) =
t!(n− 1− t)!

n!

This definition can be interpreted in the following way: the weight is com-
posed by two factors:

pi(t) =
t!(n− 1− t)!
n(n− 1)!

=
1

n
·
(
n− 1

t

)−1

1. the first factor (1/n) is the probability to select a coalition with car-
dinality t: there are n different cardinality (from 0 to n − 1) and the
probability is uniform (same probability for all cardinality)

2. the second factor is the probability to select a coalition with the selected
cardinality: there are

(
n−1
t

)
coalitions with cardinality t

There exists another definition based on permutations:

φShξ (i) =
∑

π∈Π(N)

1

n!
∆iξ(Si(π))

68

where Si(π) is the set compose by the permutation’s elements that precede
the element i.

The definition can be interpreted in the following way: we divide the permu-
tation in three parts:

Si(π) i Ri(π)

Figure 3.1: Parts of a permutation

1. Si(π): the part before the element i

2. i: the part composed only by i

3. Ri(π): the remainder part after the element i

With Si(π) = T , the weight is composed by:

• t! : number of different configurations of Si(π)

• (n− t− 1)! : number of different configurations of Ri(π), set composed
by N \ (Si(π) ∪ i)

• n! : total number of permutations

this is the number of coalitions having i in that specific position.

3.3.4 Chaining Value

Another example of cardinal-probabilistic value is the Chaining Value in-
troduced by Marichal et al. in [86], and defined as

φChξ (i) =
∑
T⊆N\i

t!(n− 1− t)!
n!

∆iξ(T) (3.3)

Note that this definition is the same as the Shapley Value. As we will see
later, the two indices differ on the interaction indices ’ definitions.

69

3.3.5 Player-probabilistic values

The player-probabilistic value is a class of probabilistic values introduced by
Marichal et al. in [102] with the name Weighted Banzhaf Value. The
reason of the more standard denomination player-probabilistic value is the
following: in this case each player is assigned a probability to join a coalition,
and the weight of the coalitions are just the product of the individual player
probabilities.

Let 〈pj : j ∈ N〉 the probability of participation. We assume that those
probabilities are independent from one another. The probability assigned to
a coalition T , containing i, is

pi(T) =
∏
k∈T

pk
∏

k∈N\i\T

(
1− pk

)
(3.4)

It is straightforward to show that 〈pi(T) : T ⊆ N \ i〉 is a probability distri-
bution. Indeed, we can remove the element j from the expression:

∑
T⊆N\i

pi(T) =
∑
T⊆N\i

∏
k∈T

pk
∏

k∈N\i\T

(
1− pk

)
=

∑
T⊆N\ij

pj
∏
k∈T

pk
∏

k∈N\ij\T

(
1− pk

)
+
∑

T⊆N\ij

(1− pj)
∏
k∈T

pk
∏

k∈N\ij\T

(
1− pk

)
=

∑
T⊆N\ij

(pj + 1− pj)
∏
k∈T

pk
∏

k∈N\ij\T

(
1− pk

)
=

∑
T⊆N\ij

∏
k∈T

pk
∏

k∈N\ij\T

(
1− pk

)
Using the same method, we can remove all elements, with result 1.

3.3.6 Banzhaf Value

The most famous member of player-probabilistic values is the Banzhaf
Value [80], defined as

70

φBξ (i) =
∑
T⊆N\i

pi(T)∆iξ(T) (3.5)

with

pi(T) =
1

2n−1

This value is exactly the value obtained using pi = 1
2

for each player

pi(T) =
∏
j∈T

1

2

∏
j∈N\i\T

(
1− 1

2

)
=
∏
j∈N\i

1

2
=

1

2n−1

3.3.7 Weighted Banzhaf Value

The Weighted Banzhaf Value is the generalization of the Banzhaf Value,
and has the same definition of the player probabilistic value

φPξ (i) =
∑
T⊆N\i

pi(T)∆iξ(T) (3.6)

with the weights defined as in 3.4

3.4 Interaction Indices

The interaction indices [85,86,88,88,89,91,102] are the extensions of 2nd and
higher degree of the correspondent power indices.

To understand the usefullness and the meaning of a interaction index, we
consider two players i and j, and we compare their behaviour as single players
and as pair [118].

We consider the function’s value of the pair compared to the function’s value
of the single players. We can have

71

ξ({i, j}) = ξ(i) + ξ(j)

the players are independent, because the value of the pair is exactly the sum
of the single players’ values.

Alternatively, we can have

ξ({i, j}) < ξ(i) + ξ(j)

the players have a redundant collaboration, or they interfere because their
value as couple is less than the values as single elements. These means that,
if possible, it is better to keep the players separated.

Otherwise, we can have

ξ({i, j}) > ξ(i) + ξ(j)

the player collaborates constructively, that is, the value of the pair is great
than the single players’ value. In this case, if possible, it is better to keep
the players together.

The coefficient measuring the interaction can be evaluated as

ξ({i, j})− (ξ(i) + ξ(j))

But this coefficient consider only the pair and the single players. Instead
we need to consider the behaviour of i and j when they join the coalitions
S ⊆ N \ij. That is, we are interested on the marginal contribution of j when
i is present minus the marginal contribution of j when i is not present, in
presence of the players in S. Because the marginal contribution of a player h
is ∆hξ(S) = ξ(S∪h)−ξ(S), the interaction between i and j can be measured
as

(
ξ(S ∪ ij)− ξ(S ∪ i)

)
−
(
ξ(S ∪ j)− ξ(S)

)
but this value is exactly the derivative on ij:

72

ξ(S) ξ(S ∪ i)

ξ(S ∪ j) ξ(S ∪ ij)

∆iξ(S)

∆jξ(S)

∆iξ(S ∪ j)

∆jξ(S ∪ i)

Figure 3.2: Interactions between i and j in the coalition S

∆jξ(S ∪ i)−∆jξ(S) = ∆i

(
∆jξ(S)

)
= ∆ijξ(S)

The next step is to compute a weighted mean of this contribution in presence
of all possible coalitions S ⊆ N \ ij

Iξ(ij) =
∑

T⊆N\ij

pij(T)∆ijξ(T)

For extension, it is possible to define the interactions among all players’
subsets

Iξ(S) =
∑

T⊆N\S

pS(T)∆Sξ(T) ∀S ⊆ N

As before, we are interested into the probabilistic interaction indices, that is,
indices where the probability distributions 〈pij〉 and 〈pS〉 have a structure.

3.4.1 Probabilistic Interaction Indices

By analogy with the probabilistic values, a probabilistic interaction index is
defined as [118]

Iξ(S) =
∑

T⊆N\ij

pS(T)∆Sξ(T) ∀S ⊆ N (3.7)

73

with 〈pS(T) : T ⊆ 2N\S〉 a probability distribution. That is:

• pS(T) is the weight assigned to the coalition T

• ∆Sξ(T) is the marginal contribution of players in S in presence of the
players in T

• Iξ(S) is the expected payoff of the S’s marginal contributions

It is useful to change a little the definition in the following way

Iξ(S) =
n−s∑
t=0

Iξ(t, S)

Iξ(t, S)
∑

T⊆N\S
|T |=t

pS(T)∆Sξ(T)

where Iξ(t, S) is the component of the index evaluated on the coalitions with
cardinality t.

Adding the same structures as before to 〈pS〉, we can define two sub-classes:

1. cardinal-probabilistic interaction indices [118]: the weight depends only
on the coalition cardinality

2. player-probabilistic interaction indices [102]: the weight depends only
on the coalition members

3.4.2 Cardinal-Probabilistic Interaction Index

The cardinal-probabilistic interaction index is the class of interaction indices
where the weight assigned to each coalition depends only on the coalition
cardinality

pS(T) = pS(t)

74

with

∑
T⊆N\S

pS(T) =
n−s∑
t=0

(
n− s
t

)
pS(t) = 1

3.4.3 Shapley Interaction Index

The most famous member of this class is the Shapley Interaction Index.
It is the extension of the Shapley Value, introduced in [84, 118] and defined
as

IShξ (S) =
∑

T⊆N\S

pS(T)∆T ξ(S) (3.8)

with

pS(T) =
(n− s− t)!t!
(n− s+ 1)!

=
1

n− s+ 1

(
n− s
t

)−1

where

1

n− s+ 1

is the probability to select a level in the range [0, n− s].

3.4.4 Chaining Interaction Index

The Chaining Interaction Index [86] is another member of this class. It is
defined as

IChξ (S) =
∑

T⊆N\S

pS(T)∆T ξ(S) (3.9)

75

with

pS(T) =
s(n− s− t)!(s+ t− 1)!

n!
=

(
s− 1 + t

s− 1

)(
n− s
t

)−1

It differs by the Shapley Interaction Index on the probability to select a set’s
cardinality, that it is

(
s− 1 + t

s− 1

)

3.4.5 Player-Probabilistic Interaction Index

The player-probabilistic interaction index is the extension to a generic player’s
coalition of the player-probabilistic value. It was introduced by Marichal et
al in [86] with the name Weighted Banzhaf Interaction Index.

The weight assigned to each coalition is computed as in the player-probabilistic
value:

pS(T) =
∏
j∈T

pj
∏

j∈N\S\T

(1− pj) (3.10)

3.4.6 Banzhaf Interaction Index

The most famous member of this class in the Banzhaf Interaction Index.
It is the extension of the Banzhaf Value, introduced in [115,118], and defined
as

IBξ (S) =
∑

T⊆N\S

pS(T)∆T ξ(S) (3.11)

with

76

pS(T) =
1

2n−s

3.4.7 Weighted Banzhaf Interaction Index

The Weighted Banzhaf Interaction Index is the generalization of the
Banzhaf Interaction Index and it is defined as

IPξ (S) =
∑

T⊆N\S

pS(T)∆T ξ(S) (3.12)

with the weights defined in Section 3.10.

3.5 Set Functions Transforms

The Möbius Transform, defined in 2.2.3, is only one of several possible trans-
forms. Several other transformations are available, as, for example, the Co-
Möbius Transform [167], the Fourier Transform [75], and the transforms
based in power and interaction indices.

A transform T is an invertible high-order function such that, for each ξ ∈
L(2N) exists a function ζ such that

ζ = T (ξ)

ξ = T −1(ζ)

The transform can be defined in terms of the function or its derivatives. We
are interested only on the definitions based on the derivatives: this because
its implementation is more efficient.

The function used to compute the Möbius coefficients is the Möbius Trans-
form [109]. It is a set function defined as

77

mξ(S) =
∑
T⊆S

(−1)s−tξ(T) = aS (3.13)

The original set function can be recreated summing the Möbius coefficients
assigned to the subsets of the set where the function must be evaluated

ξ(S) =
∑
T⊆S

mξ(T) (3.14)

The first-order derivative, for S ⊆ N \ i, can be expressed in terms of Möbius
coefficients

∆iξ(S) = ξ(S ∪ i)− ξ(S)

=
∑
T⊆S∪i

mξ(T)−
∑
T⊆S

mξ(T)

=
∑
T⊆S

mξ(T) +
∑
T⊆S

mξ(T ∪ i)−
∑
T⊆S

mξ(T)

=
∑
T⊆S

mξ(T ∪ i)

The k-order derivative, for S ⊆ N \K, is

∆Kξ(S) =
∑
T⊆S

mξ(T ∪K) S ∩K = Ø

3.5.1 Function Transforms based on Interaction Indices

In the previous paragraphs, we defined several power and interaction indices,
based on the set function ξ. We have seen that the interaction indices are
the generalization of the correspondent power index, and the power index is
the special case of interaction index when the last one is applied to the set
with only one element.

Starting from interaction indices evaluated on all possible subsets, it is pos-
sible to recreate the original function using an expression like the following

78

ξ(S) =
∑
T⊆N

b(S, T) · Iξ(T)

where b(S, T) can be considered as a basis of L(2N).

3.5.2 Shapley Transform

The Shapley Transform is composed by the Shapley Interaction Indices,
defined in Section 3.2 and Section 3.8, and the inverse transform, defined as

ξ(S) =
∑
T⊆N

β
|K|
|S∩T | · I

Sh
ξ (T) (3.15)

with

b(S, T) = βst =
t∑

j=0

(
t

k

)
Bs−j t ≤ s

where Bm is the m-th Bernoulli number.

The Bernoulli number is defined as [17,96,175]

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 = − 1

42
, . . .

and, more in general, as:

Bm = 1−
m−1∑
k=0

(
m

k

)
Bk

m− k + 1
= − 1

m+ 1

m−1∑
k=0

(
m+ 1

k

)
Bk

Note: the relation between the Bernulli numbers and the Shapley Interaction
Indices can be found in ?? and [161], section 2.12.5, pag. 65.

79

3.5.3 Chaining Transform

The Chaining Transform is composed by Chaining Interaction Indices,
defined in Section 3.3 and Section 3.9, and the inverse transform, defined as

ξ(S) =
∑
T⊆N

(
1

t

|T∩S|∑
j=0

((|T ∩ S|
j

)
(−1)t−jj

))
· IChξ (T) (3.16)

with

b(S, T) =
1

t

|T∩S|∑
j=0

((|T ∩ S|
j

)
(−1)t−jj

)

3.5.4 Banzhaf Transform

The Banzhaf Transform is composed by Banzhaf Interaction Indices, de-
fined in Sections 3.5 and 3.11, and the inverse transform, defined as

ξ(S) =
∑
T⊆N

1

2t
(−1)|T\S| · IBξ (T) (3.17)

with

b(S, T) =
1

2t
(−1)|T\S|

3.5.5 Weighted Banzhaf Transform

The Weighted Banzhaf Transform is composed by Banzhaf Interaction
Indices, defined in Sections 3.6 and 3.12, and the inverse transform, defined
as

80

ξ(S) =
∑
T⊆N

∏
i∈T

(Si − pi) · IPξ (T) (3.18)

where

Si =

{
1, if i ∈ S
0, otherwise

with

b(S, T) =
∏
i∈T

(Si − pi)

3.6 Axiomatization of Power and Interaction

Indices

The power and interaction indices are solution concepts for the games in
GN , that is, they are methods to distribute the worth of the coalitions to
the players. These methods must have some properties as, for example, the
linearity.

It is possible to demonstrate that, with specific properties (defined as mathe-
matical axioms), the solution concept must be a specific power or interaction
index [115,118].

The list of axioms is not unique: there are several possible alternatives [112,
113,120]. However, we are interested only on the more classic ones.

3.6.1 Definitions

A dummy player i is a player such that

ξ(S ∪ i)− ξ(S) = ξ(i) ∀S ⊆ N \ i

81

that is

∆iξ(S) = ξ(i) ∀S ⊆ N \ i

A null player i is a dummy player with ∆iξ(S) = 0

Two players {i, j} are symmetric if

ξ(S ∪ i) = ξ(S ∪ j) ∀S ⊆ N \ ij

that is

∆iξ(S) = ∆jξ(S) ∀S ⊆ N \ ij

For extension, a dummy coalition P is a coalition such that

ξ(S ∪ P)− ξ(S) = ξ(P) ∀S ⊆ N \ P

and a null coalition P is a dummy coalition with ξ(P) = 0.

A partnership is a coalition P such as

ξ(S ∪ T)− ξ(S) = 0 ∀T ⊂ P

that is, if S does not contain all members of P , the worth of the coalition
S ∪ T does not change.

A permuted game, denoted by πξ (it is a name composed by two symbols) is
the game defined as

πξ(π(S)) = ξ(S) ∀S ⊆ N

where π is the permutation function:

82

π : N → N

π(S) = 〈π(i) : i ∈ S〉

A restricted game ξR on R ⊂ N is a game member of GR such that

ξR(S) = ξ(S) ∀S ⊆ R

Let P a coalition of players, and ξ ∈ GN a game. A reduced game ξ[P] with
respect to P is a game defined as follow:

• let [P] a new symbol and N[P] the new grand coalition defined as

N[P] = (N \ P) ∪ {[P]}

• let ξ[P] a new game in GN[P] , defined as follow:

ξ[P](S) =

{
ξ(S), if [P] 6∈ S
ξ(S ∪ P), otherwise.

An alternative definition is

ξ[P](S) =

{
ξ(S), if S ∩ P = Ø

ξ(S ∪ P), otherwise.

Note that N[P] contains n− p+ 1 elements.

That is, the function ξ[P] considers each subset of P as representative of P :
if some player of P is in S, the function automatically aggregates all players
in P .

A power index, defined as

φξ(i) =
∑
T⊆N\i

(
ξ(S ∪ i)− ξ(S)

)

when applied to [P] became

83

φξ[P]
([P]) =

∑
T⊆N\P

(
ξ(S ∪ P)− ξ(S)

)

Remember that ξ(S ∪ P)− ξ(S) 6= ∆P ξ(S).

3.6.2 Axioms for power indices

Let ξ, ζ ∈ GN two games, and φν a power index. Some of the most used
axioms [81, 115,118] are

• linearity (L): φν is a linear function on GN , that is

φξ+ζ = φξ + φζ

φc·ξ = c · φξ

• dummy (D): if i is a dummy player, then

φξ(i) = ξ(i)

• monotonicity (M): if ξ is monotonic, then

φξ(i) ≥ 0 ∀i ∈ N

• symmetry (S): for ∀ξ ∈ GN , for ∀π ∈ Π(N), we have

φξ(i) = φπξ(π(i))

• efficiency (E): for ∀ξ ∈ GN∑
i∈N

φξ(i) = ξ(N)

• 2-efficiency (2-E), a.k.a. delegation neutrality or collusion neutrality :
for ∀i, j ∈ N , we have

φξ[ij]([ij]) = φξ(i) + φξ(j)

• equal treatment (ET) or marginal contributions (M) if i and j are sym-
metric, then

φξ(i) = φξ(j)

84

3.6.3 Axioms for interaction indices

Let Iν an interaction index. Some of the most used axioms [81,115,118] are

• linearity (LI): Iν is a linear function on GN , that is

Iξ+ζ = Iξ + Iζ

Ic·ξ = c · Iξ

• dummy (DI): if i is a dummy player, then

Iξ(S ∪ i) = 0 ∀Ø ⊂ S ⊆ N \ i

Iξ({i}) = ξ(i)

• dummy partnership (DP): if P is a dummy partnership, then

Iξ(S ∪ P) = 0 ∀Ø ⊂ S ⊆ N \ P

Iξ(P) = ξ(P)

This axiom is the generalization of the dummy axiom D.

• partnership-allocation (PA): if P is a partnership in ξ ∈ GN , then

Iξ(P)IeP (i) = Iξ(i) ∀i ∈ P

• k-monotonicity (MK): if ξ is k-monotonic, then

Iξ(S) ≥ 0 ∀S ⊆ N [0,k]

• symmetry (SI): for ∀ξ ∈ GN , for ∀π ∈ Π(N), we have

Iξ(i) = Iπξ(π ◦ S)

• recursion (RI): Iξ can be defined by the recursive formula

Iξ(S) = Iξ[S]
([S])−

∑
Ø⊂K⊂S

IξN\K (S \K)

• 2-efficiency (2-EI): for ∀i, j ∈ N , we have

Iξ[ij](S ∪ [ij]) = Iξ(S ∪ i) + Iξ(S ∪ j)

• limit condition (LIM): for ∀S ⊂ N

IξS(S) = ∆Sξ
S(Ø)

85

3.6.4 Characterization of the Probabilistic Values and
Interaction Indices

In the article [118], Fujimot et al. showed that

• Iξ satisfies the axiom LI if and only if there exists a list of constants
〈µS(T)〉 such that, for ∀ξ ∈ GN

Iξ(S) =
∑
T⊆N

µS(T)ξ(T)

• Iξ satisfies the axioms LI and DI if and only if there exists a list of
constants 〈µS(T)〉 such that, for ∀ξ ∈ GN

Iξ(S) =
∑

T⊆N\S

µS(T)∆Sξ(T)

• Iξ satisfies the axioms LI, DI and SI if and only if there exists a list of
constants 〈µs(t)〉 such that, for ∀ξ ∈ GN

Iξ(S) =
∑

T⊆N\S

µs(t)∆Sξ(T)

• Iξ satisfies the axioms LI, DI and MK if and only if there exists a list
of constants 〈µS(T)〉 such that, for ∀ξ ∈ GN

Iξ(S) =
∑

T⊆N\S

µS(T)∆Sξ(T)

∑
T⊆N\S

µS(T) = 1

• Iξ satisfies the axioms LI, DI, SI and MK if and only if there exists a
list of constants 〈µS(T)〉 such that, for ∀ξ ∈ GN

Iξ(S) =
∑

T⊆N\S

µs(t)∆Sξ(T)

∑
T⊆N\S

µs(t) = 1

86

3.6.5 Characterization of Shapley, Banzhaf, Chaining
Values and Interaction Indices

It the article [81], Weber shows that

• the unique power index that satisfy the axioms L, D, S and E is the
Shapley Value

In the article [115], Grabish et al. show that

• the unique power index that satisfy the axioms L, D, S and 2-E is the
Banzhaf Value

In the article [115], Grabish et al. show that

• the unique interaction index that satisfy the axioms LI, DI, SI and RI
is the Shapley Interaction Index

• the unique interaction index that satisfy the axioms LI, DI, SI, 2-EI
and LIM is the Banzhaf Interaction Index

In the article [118], Fujimot et al. show that

• the unique interaction index that satisfy the axioms LI, MK, DP, SI,
EI and PA is Chaining Interaction Index

3.6.6 How to use the axioms: an open problem

In theory, axioms should be used to decide the index to use with a specific
Machine Learning problem. At the moment this is an open problem. As
we have seen previously, power indices are used to order the features, while
specific index properties (for example, the Shapley Value properties) are not
used.

Currently, it is unclear how to map and axiom with a problem’s requirement.
Some axioms, such as, linearity, have a direct consequence: we are using
a linear approximation of the set function. But for the other ones, it is
necessary to have a deeper understanding on their role in the definitions.

87

3.7 Interpretation of the Banzhaf and Shap-

ley Value

We consider the definition of the Banzhaf Value:

φBξ (i) =
∑
S⊆N\i

1

2n−1
∆iξ(S)

=
1

2n−1

∑
S⊆N\i

∆iξ(S)

this is the mean of the marginal contribution of i among all the coalitions.
Because the weight depends on the elements in the coalition and on the
elements not contained in it, in some sense, when we analyze a coalition, we
are considering all elements of the grand coalition. The Weighted Banzhaf
Value is a simple generalization.

Now, we consider the definition of Shapley Value:

φShξ (i) =
∑
S⊆N\i

s!(n− 1− s)!
n!

∆iξ(S)

=
n−1∑
s=0

∑
S⊆N\i
|S|=s

1

n

(
n− 1

s

)−1

∆iξ(S)

=
1

n

n−1∑
s=0

(
n− 1

s

)−1 ∑
S⊆N\i
|S|=s

∆iξ(S)

it is the the mean of the marginal contributions’ average of i for each lattice’s
level. Indeed, from the equation, we can see that

• for each level, we sum the marginal contributions of the player i

• then we compute the mean by dividing the previous sum by the cardi-
nality of the level

88

• as last step we sum the previous means and we divide it by the number
of levels

These ideas can be applied to all player and cardinal probabilistic indices,
replacing the mean with the expected value based on some probability distri-
bution, and replacing the first-order derivative with the derivatives of higher
order.

3.8 Conclusions

In this chapter we introduced some of the most used power and interaction
indices. We have seen that Shapley Value, Banzhaf Value and related inter-
action indices, are members of the more general classes cardinal-probabilistic
indices and player-probabilistic indices. We have seen that these indices sat-
isfies specific axioms. These axioms are useful to understand when to select
an index or another for the feature selection.

89

Chapter 4

Approximate algorithms for
power and interaction indices

4.1 Introduction

From the analysis of the definition of power and interaction indices, we can
observe that to compute the exact value it is necessary to consider all 2n

subsets or n! permutations: the complexity of these computations are re-
spectively O(2n) and O(n!) ≈ O(2n logn).

If the set function has specific properties as, for example, a binary value
({0, 1}, the class of voting games and weighted voting games), there are sev-
eral efficient algorithms available [98,101,103,107].

Unfortunately, in this work, the set functions return an arbitrary positive
real value. In this case, the solution is to use approximate algorithms, based
on the random generation of subsets or permutations, with some selected
distributions.

The computational complexity of a approximation algorithm Aξ depend,
obviously, on the complexity of ξ. The global complexity can be computed
as:

O(Aξ) = O(A) · O(ξ)

90

where O(A) is the net complexity of A, excluding the evaluation of ξ.

The analysis of this approach can be found in [97,99,100,105,108]

However, in this work, we are not interested on the index values, but on the
elements’ order induced by the values. This simplify the requirements on
approximation’s quality.

4.2 General structure of the algorithms

As specified previously:

• Shapley Value, Chaining Value, and related interaction indices, are
members of cardinal-probabilistic indices

• Banzhaf Value, Weighted Banzhaf Value, and related interaction in-
dices, are members of player-probabilistic indices

• cardinal and player-probabilistic indices are members of the more gen-
eral class probabilistic indices

By using these regularities, we can implement all indices with algorithms
having the same structure.

The general definition of a power index is

φξ(i) =
∑
T⊆N\i

pi(T) ·∆iξ(T)

since it is not possible to use all 2n−1 sets, we can use a sampling of the
subsets space. There are two possible ways to implement this definition

• we sample the space in a uniform way (we must be sure not gener-
ating the same set more than once), then we multiply the marginal
contribution ∆iξ(T) by pi(T)

• we sample the space in a weighted way, where the coefficient pi(T), is
converted into a probability to select T

91

The general structure of the algorithms using these approaches is:

Function ProbabilisticValue(ξ, n,m, p)

input : ξ set function
input : n number of elements in the set
input : m number of samples to use
input : p weight function
output: array of probabilistic values

v ← 0 ∈ Rn ;; cumulative values
for t ∈ [1,m] do

T ← RandomSubset(n)
R← N \ T
for i ∈ R do

vi ← vi + pi(T) ·∆iξ(T)
end

end

return v

Function ProbabilisticValue(ξ, n,m,D)

input : ξ set function
input : n number of elements in the set
input : m number of samples to use
input : D distribution used by the set generator
output: array of probabilistic values

v ← 0 ∈ Rn ;; cumulative values
c← 0 ∈ Zn ;; set counts
for t ∈ [1,m] do

T ← RandomSubset(n,D)
R← N \ T
for i ∈ R do

vi ← vi + ∆iξ(T)
ci ← ci + 1

end

end

return v/c ;; element wise division

where D is the parameter used by the set generator to generate the sets with
a selected distribution.

92

The computational complexity of these algorithms is

O(ProbabilisticValue) = O(m · n)

and the complexity of RandomSubset is linear (O(n)).

The interaction index has a similar definition:

Iξ(ij) =
∑

T⊆N\ij

pij(T) ·∆ijξ(T)

The structure of algorithms is the same.

Function ProbabilisticInteractionIndex(ξ, n,m, p)

input : ξ set function
input : n number of elements in the set
input : m number of samples to use
input : p weights function
output: array of probabilistic indices

v ← 0 ∈ Rn×n ;; cumulative values
for t ∈ [1,m] do

T ← RandomSubset(n)
R← N \ T
for ij ⊆ R do

vij ← vij + pij(T) ·∆ijξ(T)
end

end

return v

93

Function ProbabilisticInteractionIndex(ξ, n,m,D)

input : ξ set function
input : n number of elements in the set
input : m number of samples to use
input : D parameters for the set generator
output: array of probabilistic indices

v ← 0 ∈ Rn×n ;; cumulative values
c← 0 ∈ Zn×n ;; set counts
for t ∈ [1,m] do

T ← RandomSubset(n,D)
R← N \ T
for ij ⊆ R do

vij ← vij + ∆ijξ(T)
cij ← cij + 1

end

end
return v/c ;; element wise division

Because we must consider the 1
2
t(t − 1) (≈ t2) subsets (with cardinality 2)

of a given set T with cardinality t, the computational complexity of the
algorithms is

O(ProbabilisticInteractionIndex) = O(m · n2)

4.3 Banzhaf Value and Interaction Index

The Banzhaf Value and Banzhaf Interaction Index are the most simple indices
to implement. The weight functions used are

pi(T) =
1

2n−1

and

pij(T) =
1

2n−2

94

Because the number of subsets of N \ i is 2n−1, the weight used in the def-
inition, we have a simple way to generate the sets: we can use an uniform
random set generator.

4.4 Weighted Banzhaf Value and Interaction

Index

The Weighted Banzhaf Value and related Interaction Indices are the direct
generalization of the Banzhaf Indices. The weight functions used are

pi(T) =
∏
k∈T

pk
∏

k∈N\i\T

(1− pk)

and

pij(T) =
∏
k∈T

pk
∏

j∈N\ij\T

(1− pk)

where 〈pk : k ∈ N〉 is the probability of each element k ∈ N to be inside a
coalition (in the Banzhaf Value, pk = .5).

The implementation can use a simple generalization of the uniform random
set generator: a random set generator where the probability of each member
is pk and not .5.

4.5 Shapley Value and Interaction Index

The Shapley Value and Shapley Interaction Index can be implemented using
the weight functions

pi(T) =
t!(n− 1− t)!

n!
=

1

n

(
n− 1

t

)−1

and

95

pij(T) =
t!(n− 2− t)!

(n− 1)!
=

1

n− 1

(
n− 2

t

)−1

As for the Banzhaf Value/Index, we can use an uniform random set genera-
tor.

The main problem of the weight functions is that the computed value decrease
very quickly with the values of n and t, introducing numerical problems. In
the following table one can observe this behaviour.

n/t 1 2 3 4 5 6 n/2

1 1. 1.

2 .5 .5 .5

3 .3333 .1667 .3333 .1667

4 .25 .0833 .0833 .25 .0833

5 .2 .05 .0333 .05 .2 .0333

10 .1 .0111 .0028 .0012 .0008 .0008 .0008

40 .025 .0006 3.37e-5 2.74e -6 3.04e -7 4.34e -8 3.63e-13

100 .01 .0001 2.06e-6 6.38e -8 2.66e -9 1.40e-10 1.98e-31

Table 4.1: Function values for pi(T) and some values of n and t

However, there are two alternative implementations. The first one is the

96

classical implementation based on permutations

Function ShapleyValue(ξ, n,m)

input : ξ set function
input : n number of elements in the set
input : m number of permutations to use
output: array of Shapley Values

v ← 0 ∈ Rn ;; cumulative values
c← 0 ∈ Nn ;; set counts
for t ∈ [1,m] do

P ← RandomPermutation(n)
for k ∈ [1, n] do

T ← P [1 : k]
i← Pk

vi ← vi + ∆iξ(T)
ci ← ci + 1

end

end
return v/c ;; element wise division

The second one is based on the structure of pi(T) that can be interpreted in
the following way

1. 1/n is the (uniform) probability to select a set with a cardinality in
the range [0, n− 1] (n distinct values)

2.
(
n−1
t

)−1
is the (uniform) probability to select a set with the selected

cardinality t (
(
n−1
t

)
distinct sets)

The algorithm’s implementation is based on a weighted random set generator

97

that select the cardinality with the specified distribution.

Function ShapleyValue(ξ, n,m)

input : ξ set function
input : n number of elements in the set
input : m number of permutations to use
output: array of Shapley Values

C ← 〈1/n : k ∈ [0, n− 1]〉 ∪ 〈0〉 ;; probability distribution for cardinality
v ← 0 ∈ Rn×n ;; cumulative values, distinguished by cardinality
l← 0 ∈ Rn ;; cardinality counts
for k ∈ [1,m] do

T ← RandomSubset(n, C)
t← |T |
R← N \ T
for i ∈ R do

vt,i ← vt,i + ∆iξ(T)
lt ← lt + 1

end

end

s← 0 ∈ Rn

for i ∈ N do
si ← 〈v·,i/l,1〉 ;; element wise division and elements sum

end

return s

98

The (2nd order) Interaction Index has similar implementations

Function ShapleyInteractionIndex(ξ, n,m)

input : ξ set function
input : n number of elements in the set
input : m number of permutations to use
output: array of Shapley Interaction Indices

v ← 0 ∈ Rn×n ;; cumulative values
c← 0 ∈ Nn×n ;; set counts
for t ∈ [1,m] do

P ← RandomPermutation(n)
for k ∈ [1, n− 1] do

T ← P [1 : k]
i← Pk
j ← Pk+1

vij ← vij + ∆ijξ(T)
cij ← cij + 1

end

end
return v/c ;; element wise division

Function ShapleyInteractionIndex(ξ, n,m)

input : ξ set function
input : n number of elements in the set
input : m number of permutations to use
output: array of Shapley Values

C ← 〈1/(n− 1) : k ∈ [0, n− 2]〉 ∪ 〈0, 0〉 ;; probability distribution for
cardinality

v ← 0 ∈ R(n−1)×n×n ;; cumulative values, distinguished by cardinality
l← 0 ∈ Rn−1 ;; cardinality counts
for k ∈ [1,m] do

T ← RandomSubset(n, C)
t← |T |
R← N \ T
for ij ⊆ R do

vt,ij ← vt,ij + ∆ijξ(T)
lt ← lt + 1

end

end

s← 0 ∈ Rn×n

for ij ⊆ N do
sij ← 〈v·,ij/l,1〉 ;; element wise division and elements sum

end

return s

99

In all implementations, the value is a simple mean (sum of values divided by
the number of terms) and this resolve the numerical problems.

The key in this approach is the weighted random set generator, but we will
show, in the following sections, that its implementation is very simple.

The computation complexity is the same than the power and interaction
indices:

O(ShapleyValue) = O(m · n)

O(ShapleyInteractionIndex) = O(m · n2)

4.6 Chaining Value and Interaction Index

Chaining Value (and related Interaction Index), has the same implementation
problems than Shapley Value. However, it can be implemented using the
following weight function

pS(T) = s
(n− s− t)!(s+ t− 1)!

n!

=

(
n

s

)−1(
s+ t− 1

s− 1

)
By substituting s with 1 and 2, we obtain

pi(T) =

(
n

1

)−1(
t

0

)
and

pi(T) =

(
n

2

)−1(
t+ 1

1

)

100

4.7 Probabilistic Value and Interaction Index

In general, it is not possible to use a generic probabilistic index, since it
requires the knowledge of all 2n weights, and this number can be very large.
But the main problem is that it is very difficult, or impossible, to find all
values.

The solution is to use a weight function that can calculate the weight based
only on the player (or the pair), on the set used and on some extra parameters.

The cardinal-probabilistic indices and the player-probabilistic indices meet
this condition. The cardinal-probabilistic indices need only a probability for
each possible set’s cardinality (n values because the full set is not used),
the player-probabilistic indices need a probability for each player (n values).
Eventually, we can have an index that combine cardinal and player indices:
it needs 2n parameters.

Let 〈pi : i ∈ N〉 the weights assigned to the players, the coefficients to use
with the player-probabilistic value are:

pi(T) =
∏
l∈T

pl
∏

l∈N\i\T

(1− pl)

and for the related interaction index, the coefficients are:

pij(T) =
∏
l∈T

pl
∏

l∈N\ij\T

(1− pl)

4.8 Considerations on the Probabilistic In-

dices approximations

The power indices (Shapley Value, Banzhaf Value, their Interaction Indices
and more in general the probabilistic indices) are concepts with a rich liter-
ature. The algorithms to implements the indices are well known. However,
there are only a limited number of articles that analyze the approximation
algorithms for games based on real set functions. The majority of the ar-

101

ticles analyze the implementations for voting games, based on a binary set
functions.

In their article, Castro et al. [99] analyze the approximation of the Shapley
Value based on random permutations.

In their article, Maleki et al. [105] improve the bounds founded by Castro et
al. always for the Shapley Value based on random permutations.

The article of Krishna et al. [107] analyze the approximation of the Banzhaf
Value based on random sets.

We can summarize the previous articles in the following way

• all probabilistic indices are weighted means

• weights can be converted in a weighted sampling and the weighted
average became a simple average

• the error on the mean decreases with an exponential law e−λm: it de-
creases very quickly at the begin but slowly for large values of m (m
number of samples) [105–107]

The value of λ depends on the properties of the set function, but, in general,
these properties are totally unknown, and very rarely the function has nice
properties as monotonicity, super modularity or super additivity.

The last note is that, for use in this work, we are not interested on the
(approximated) value, but in the induced order. This allows us to use values
with a higher approximation error and to use a smaller number of samples.

4.9 Selecting the random generator

To generate random sets or random permutations it is necessary having a
good uniform random generator of integer or real values.

Each programming language, in its standard library, has a random generator,
and there are good third-part libraries. However, it is necessary to check
that the period of the generator is long enough for the application. If the

102

set/permutation is composed of 20 elements, it is necessary to ensure that
the generator has a period of 220 ≈ 106 or, better, 107 states.

In general, the standard random generator is based on the linear congruential
generator [159, 160] with a period of 231 − 1 states (sometimes with period
or 215− 1 states). However, there are better generators, as, for example, the
Mersenne Twister MT19937 [158], with a period of 219937 − 1 ≈ 4 · 106000

states.

Function RandomInteger(l, u)

input : l,u lower and upper integers
output: a random integer, selected in the uniform way, in the range

[l, u]

Function RandomReal()

output: a real number, selected in the uniform way, in the range [0, 1]

There exists a little problem with RandomReal() to consider: in general,
the implementation is based on RandomInteger() as

RandomReal() =
RandomInteger(0,M)

M

where M is the maximum integer value that the generator can generate. This
means that there exist a minimum distance between two adjacent real values,
equals to 1/M .

The implementation of these algorithm is very efficient and the computational
complexity is constant (O(1)).

4.10 Generating a random permutation

A random permutation of length n is a random ordering of integers in the
range [1, n] (or [0, n−1] depends on the context). A simple method to gener-
ate the permutation is to use the Knuth shuffle algorithm (computational

103

complexity O(n)) [157]1:

Function RandomPermutation(n)

input : n number of elements in the permutation
output: a random permutation

P ← 〈1, . . . , n〉 ;; permutation
for i ∈ [1, n− 1] do

j ← RandomInteger(i, n)
swap(Pi, Pj)

end

return P

Sometimes, it is necessary to generate a random permutation of length k < n.
In this case, the algorithm is very simple: to generate a random permutation,
and to take the prefix of length k:

Function RandomPermutation(n, k)

input : n number of elements in the permutation
input : k number of elements of the prefix
output: a random permutation of length k

P ← RandomPermutation(n)

return P [1 : k + 1]

Sometimes, it can be useful to keep the list of previous generated prefixes
and if the last prefix was already generated, generate a new one. This is
important when the length of the prefix is very small because there is a high
probability to generate the same prefix.

4.11 Generating a random subset

There are two algorithms to generate a random subset of the set N =
{1, . . . , n} (or {0, . . . , n − 1} it depends on the context), based on the map
between the set and the natural integers:

1. generating a random integer (in the uniform way) in the range [0, 2n−1]

1In general, it is a good idea reusing the last permutation to generate the new one.

104

2. generating a sequence of n bits, where each bit is 1 with probability 1
2

The first approach is possible only if the integers random generator has a
period several order of magnitude greater than 2n.

Function RandomSubset(n)

input : n number of elements in the set
output: a random subset

S ← {}
r ← RandomInteger(0, 2n − 1)
for i ∈ [1, n] do

if m mod 2i−1 = 1 then
S ← S ∪ i ;; remember that N = {1, . . . , n}

end

end

return S

The second approach is valid for each n: given the probability of a bit to
have the value 1 is 1

2
, the probability of a sequence with n bits is 1

2n
, where

2n is exactly the number of subsets for a set with n elements.

Function RandomSubset(n)

input : n number of elements in the set
output: a random subset

S ← {}
for i ∈ N do

r ← RandomReal()
if r ≤ 1

2
then

S ← S ∪ i
end

end

return S

It is possible to extend the last algorithm for the generation of subsets having

105

a predefined cardinality k:

Function RandomSubset(n, k)

input : n number of elements in the set
input : k cardinality of the subset
output: a random set of cardinality k

S ← {}
i← RandomInteger(1, n) ;; it starts from a random position
while |S| 6= k do

r ← RandomReal()
if r ≤ 1

2
then

S ← S ∪ i
end
i← i⊕ 1 ;; it cycles between 1 and n

end

return S

Note that the cardinality of S do not change by adding an element already
present.

The last algorithm is the random cardinality generator for generating a ran-
dom cardinality in the range [kmin, kmax]. In doing this, it is necessary con-
sider the numerosity of the sets with a given cardinality, that it is

(
n
k

)
:

Function RandomCardinality(kmin, kmax)

input : n number of elements in the set
input : [kmin, kmax] minimum/maximum cardinality of the subsets
output: a random cardinality

m←
∑kmax

k=kmin

(
n
k

)
k ← kmin

c←
(

n
kmin

)
r ← RandomReal()
while r > c

m
do

k ← k + 1

c← c+
(
n
k

)
end

return k

The computational complexity of these algorithms is linear (O(n)).

106

4.12 Generating a random subset with a se-

lected distribution

In the previous algorithms we have used a random set generator able of
generating set following a selected distribution D. The problem is how to
describe this distribution.

A simple approach, compatible with the previous algorithms, is to split the
distribution into two parts:

1. C: the probability distribution assigned to the set cardinality

2. P: the probability assigned to the set elements

The uniform random set generator uses the probabilities based on the mul-
tiplicity of the sets with a selected cardinality

C =

〈
1

2n

(
n

k

)
: k ∈ [0, n]

〉

and the same probability for the elements of the set

P =

〈
1

2
: i ∈ N

〉

The algorithm for generating a set based on P is very similar to the original

107

one:

Function RandomSubset(n,P)

input : n number of elements in the set
input : P probabilities assigned to the elements
output: a random subset

S ← {}
for i ∈ N do

r ← RandomReal()
if r ≤ Pi then

S ← S ∪ i
end

end

return S

Function RandomSubset(n, k,P)

input : n number of elements in the set
input : k cardinality of the subset
input : P probability assigned to the players
output: a random subset

S ← {}
i← RandomInteger(1, n) ;; start from a random position
while |S| 6= k do

r ← RandomReal()
if r ≤ Pi then

S ← S ∪ i
end
i← i⊕ 1 ;; it cycles between 1 and n

end

return S

108

Also, the algorithm for generating a random cardinality, based on the cardi-
nality probability distribution, is very similar to the original one

Function RandomCardinality(kmin, kmax, C)
input : n number of elements in the set
input : [kmin, kmax] minimum/maximum cardinality of the subset
input : C probability distribution assigned to the cardinality
output: a random cardinality

m←
∑kmax

k=kmin
Ck

k ← kmin

c← Ckmin

r ← RandomReal()
while r > c

m
do

k ← k + 1
c← c+ Ck

end

return k

Composing the previous algorithms, the generalized random set generator is
the following:

Function RandomSubset(n, kmin, kmax, C,P)

input : n number of elements in the set
input : [kmin, kmax] minimum/maximum cardinality of the subset
input : C probability distribution assigned to the cardinality
input : P probabilities assigned to the elements
output: a random subset

k ←RandomCardinality(kmin, kmax, C)
S ←RandomSubset(n, k,P)

return S

As for the previous implementations, the computational complexity of these
algorithms is linear (O(n)).

109

4.13 Approximate algorithms based on ele-

ments order

As specified at the beginning of the section, it is not possible computing the
exact value of the power indices. But it is not a problem because in general,
the value of the power index is used only to order, in a descending way, the
elements of the set. It is possible to do some extra observations:

• the order of elements with similar values is not important

• the order of elements with small values is not important

• it is important only the order of elements with highest index values

Sometimes, the problem consist of selecting the first k elements, with k inside
a little range [kmin, kmax]. In this case, the order of the elements can be used
in two different ways:

1. the order of the elements is computed only once, then the application
selects the first k1, k2, etc, elements

2. the order of the elements is computed for each k, but k is used only
to separate the first k elements from the rest. The exact order of the
selected elements is not important.

Another note is about how to evaluate the function ξ. In some works the
function is the performance (accuracy, precision, mean square error, etc.) of a
machine learning algorithm (Naive Bayes Classifier, Decision Tree Classifier,
Linear Regression, etc): computing this function can be very expensive.

These observations permit to relax the properties of the computed values: it
is not necessary to ensure specific properties on the values of the index, but
only on the order among the values.

To implement these ideas, we can use the following steps:

1. we subdivide the power index’s approximation in epochs, and in each
epoch we use a predefined number of random samples

110

2. after each epoch, we order the elements based on the power index, and
compare this order with the previous one

3. if the two orders are different, we continue the computation, otherwise
we check the stability of the order, that is, if the order is the same in
the last p epochs

4. if the order is stable for the specified number of epochs, we can consider
the order definitely stable and we stop the computation

Function SelectElements(ξ, n,m,D, nk, ne, np)
input : ξ set function
input : n number of elements in the set
input : m number of sets/permutations per epoch
input : D distribution to use

input : nk number of elements to consider in the order
input : ne number of epochs
input : np stability counter
output: elements order
output: power/interaction indices (optional)

p← 0 ;; patient counter
o← 〈1, . . . , n〉 ;; default order
op ← o[1 : nk] ;; previous selected elements order
for e ∈ [1, ne] and p < np do

;; loop ne times of until p ≥ np
v ← ProbabilisticValue(ξ, n,m,D)
ii← ProbabilisticInteractionIndex(ξ, n,m,D) ;; (optional)
o← argsort(v)
oc ← o[1 : nk] ;; current selected elements order
are-equals ← compare(op, oc)
if are-equals then

p← p+ 1
else

p← 0
op ← oc

end

end

return o(, ii)

111

where compare(op, oc) can be defined as

1. the sequences op and oc (considering the order) are equals or

2. the sets op and oc (independently by the order) are equals

The value of nk is problem dependent. In general, it is important to have
a stable order only for the most important elements. The computational
complexity is

O(SelectElements) = ne · O(ProbabilisticValue)

= O((ne ·m) · n)

We can use the same approach for the computation of the interaction in-
dices, because it is simple to compute the power indices during the same
computation. The complexity is

O(SelectElements) = ne · O(ProbabilisticInteractionIndex)

= O((ne ·m) · n2)

4.14 Approximate algorithms using parallelism

and local maximum

To improve the performance of the algorithms it is possible to evaluate the
function on the sets in a parallel way. In doing this, we generate previously
the set to use in computing the function values. Then, we evaluate the
function in a parallel way, and the results are saved in a data structure that
doesn’t need locks. At the end, we aggregate the results to obtain the final
value.

In general, it is not possible to generate the random sets in parallel, because
the random number generator has a state that changes after each generated

112

number.

Function ParallelProbabilisticValue(ξ, n,m,D)

input : ξ set function
input : n number of elements in the set
input : m number of samples to use
input : D probability distribution
output: array of probabilistic values

L← RandomSetsToUse(n,m,D)
v ← 0 ∈ Rm×n ;; cumulative values, distinguished by set
parallel for t ∈ [1,m] do

T ← Lt
vt,· ← EvaluateFunction(ξ, n, T)

end
p← AggregateValues(v)

return p

Because it is possible to evaluate ξ on different sets independently, we can
get a linear speedup using the parallel approach:

O(ParallelProbabilisticValue) ≈ 1

nt
O(ProbabilisticValue)

with nt the number of threads.

113

Function RandomSetsToUse(n,m,D)

input : n number of elements in the set
input : m number of samples to use
input : D distribution to use
output: list f random sets to use

L← 〈〉
for t ∈ [1,m] do

T ← RandomSubset(n,D)
L← L ∪ 〈T 〉

end

return L

Function EvaluateFunction(ξ, n, T)

input : ξ set function
input : n number of elements in the set
input : T set to use
output: list f random sets to use

v ← 0 ∈ Rn

R← N \ T
for i ∈ R do

vi ← ∆iξ(T)
end

return v

Function AggregateValues(v)

input : v ∈ Rm×n values to aggregate
output: aggregated values

p← 0 ∈ Rn

for i ∈ [1, n] do
for t ∈ [1,m] do

pi ← pi + vt,i
end

end

return p

114

Given we are interested into the best set of elements, an alternative way to
compute the indices is to use the best random sets. The idea is

• generate the list of sets to use

• for each set, search a closed set that it is a local maximum

• replace the original set with its best set

Function ProbabilisticValueByBestSet(ξ, n,m,D)

input : ξ set function
input : n number of elements in the set
input : m number of samples to use
input : D probability distribution
output: array of probabilistic values

L← BestSetsToUse(n,m,D)
v ← 0 ∈ Rm×n ;; cumulative values, distinguished by set

parallel for t ∈ [1,m] do
T ← Lt
vt,· ← EvaluateFirstDerivOnBestSet(ξ, n, T)

end

;; it aggregates the distinguished values in a single value
p← AggregateValues(v)

return p

115

Function BestSetsToUse(ξ, n,m,D)

input : ξ set function
input : n number of elements in the set
input : m number of samples to generate
input : D distribution used by the set generator
output: list of best sets

L← 〈〉
for i ∈ [1,m] do

S ← RandomSubset(n,D)
T ← find-best-set(ξ, S)
L← L ∪ 〈S〉

end
return L

where find-best-set() is a function that, starting from S, searches a
closed set, with the same cardinality, where the function has a local maximum.
It can be implemented using any algorithm in the family of discrete hill
climbing algorithms.

Using this approach, there are two observations to do:

1. starting from two different sets, we can find the same best set. And this
is a good news

2. the derivative must be computed in a little different way because now
the best set has the role of S ∪ i.

116

Function EvaluateFirstDerivOnBestSet(ξ, n, T)

input : ξ set function
input : n number of elements in the set
input : T set to use
output: list f random sets to use

v ← 0 ∈ Rn

for i ∈ T do
vi ← ∆iξ(T \ i)

end

return v

These approaches can be extended, in the obviously way, to compute the
interaction indices.

Function EvaluateSecondDerivOnBestSet(ξ, n, T)

input : ξ set function
input : n number of elements in the set
input : T set to use
output: list f random sets to use

v ← 0 ∈ Rn×n

for ij ⊆ T do
vij ← ∆ijξ(T \ ij)

end

return v

4.15 Conclusions

In this chapter we described the algorithms used to compute the approx-
imated values of power and interaction indices. Actually the algorithms
implement only the 2nd degree interaction indices, but it is simple to extend
the implementation for indices of any degree.

We have, also, introduced some extension to improve the computation per-
formances, using the parallel computation, and the approximations, using
the best sets.

117

Chapter 5

The approximation of set
functions

5.1 Introduction

In Chapter 3 we introduced many power and interaction indices. We have
seen that the power indices are interaction indices applied to coalitions with
only one player. We have seen, also, that set function and interaction indices
form a transform, that is, a couple of invertible functions. We have also seen
that the power indices are a score that quantify the marginal contribution of
a player inside its coalitions.

Most of the time, we are interested of searching the coalition, with a chosen
cardinality, where the function has the highest value. To look for this set
we can use the heuristic combinatorial optimization algorithms. These al-
gorithms have a computational complexity similar to the complexity of the
algorithms used to compute the indices. Furthermore, these algorithms use
the (discrete) derivative, as the definition of the indices. The questions are:
does the set, with the maximum function’s value, contain the players with
the highest score? Is it reasonable to select the k players with the highest
score as an alternative to search the set with the highest function’s value?

There is not a definitive answer. The main problem is, and it is possible to
demonstrate, that the power indices are the best linear approximation of the
set function using a weighted mean square error. And the interaction indices
are the approximations of a higher degree. Different weights describe different

118

indices. Obviously, in general, there is not a simple relation between the
maximum on the original function and the maximum on the approximated
one. But, we can find a relationship if we can conjecture that

• if a player collaborates with a coalition, it collaborates almost always

• if a player interferes with a coalition, it interferes almost always

Based on these conjectures, there are good chances that the best set of the
function contains the players with the highest scores.

In the following sections we will demonstrate the relationship between the
power and interaction indices and the approximation problem. To analyze
the function on selected sets’ cardinality, we will use some families of sets,
where a family of sets is a subset of 2N containing sets with some selected
property.

5.2 Set families

A set family F is a subset of 2N : it is a collection of sets S ⊆ N , with some
selected property. We are interested to the following families:

• F = 2N the family of all subsets of N

• F = Nk the family of subsets of N with cardinality exactly k

• F = N [0,k] the family of subsets of N with cardinality in the range [0, k]

We have already seen that L(2N) is a linear space. Also the set of functions
defined on Nk and N [0,k] is a linear space, because any linear combination
of functions in these spaces returns a function in the same space. Using the
Möbius representation of the set function, we have

119

ξ(3)(S) = α1ξ
(1)(S) + α2ξ

(2)(S)

= α1

(∑
T⊆N

a
(1)
T eT (S)

)
+ α2

(∑
T⊆N

a
(2)
T eT (S)

)
=
∑
T⊆N

(
α1a

(1)
T + α2a

(2)
T

)
eT (S)

=
∑
T⊆N

a
(3)
T eT (S)

Because we have used only unanimity games already used in the ξ(1) and
ξ(2), the degree of ξ(3) will be equal or less than ξ(1) and ξ(2).

5.2.1 Properties

For each i ∈ N , we have

F = Fi ∪ F−i

that is, the family F is composed by the sub-families

• Fi = {S ∈ F : i ∈ S}, the family of sets containing i

• F−i = {S ∈ F : i 6∈ S}, the family of sets don’t containing i

The family Fi can be defined also as

Fi = F−i ∪ i = {S ∪ i : S ∈ F−i}

The family F−ji is the family of sets containing i but not j, and it is equal
to the family F i

−j, the family of sets not containing j but containing i:

F−ji = F i
−j = {S ∈ F : i ∈ S, j 6∈ S}

For each ij ⊇ N , we have

120

F = Fij ∪ F−ij ∪ F i
−j ∪ F

j
−i

that is, the family F is composed by the sub-families

• Fij = {S ∈ F : i, j ∈ S} the family of sets containing i and j

• F−ij = {S ∈ F : i, j 6∈ S} the family of sets don’t containing i nor j

• F−ji = {S ∈ F : i ∈ S, j 6∈ S} the family of sets containing i but not j

• F−ij = {S ∈ F : i 6∈ S, j ∈ S} the family of sets containing j but not i

More in general, the families FT and F−T are defined as

FT = {S ∈ F : S ⊇ T}
F−T = {S ∈ F : S ∩ T = Ø}

and

FU
T = {S ∈ FT : S ⊇ U}

F−UT = {S ∈ FT : S ∩ U = Ø}

We denote with

• bFc = minS∈F |S| the minimum cardinality of the sets in the family

• dFe = maxS∈F|S| the maximum cardinality of the sets in the family

• F k = {S ∈ F : |S| = k} the family of the sets with cardinality exactly
k (with bFc ≤ k ≤ dFe)

bFc dFe

F = 2N 0 n

F = Nk k k

F = N [0,k] 0 k

Table 5.1: Family’s lower/upper cardinality

121

Obviously

F =

dFe⋃
k=bFc

F k

One important property of these families is their cardinality

family 2N Nk N [0,k] note

F 2n
(
n
k

) (
n
k

)∗
Fi 2n−1

(
n−1
k−1

) (
n−1
k−1

)∗
F−i 2n−1

(
n−1
k−1

) (
n−1
k−1

)∗
= |Fi|

Fij 2n−2
(
n−2
k−2

) (
n−2
k−2

)∗
F−ij 2n−2

(
n−2
k−2

) (
n−2
k−2

)∗
= |Fij|

FT 2n−t
(
n−t
k−t

) (
n−t
k−t

)∗
F−T 2n−t

(
n−t
k−t

) (
n−t
k−t

)∗
= |FT |

F
T\S
−S 2n−t

(
n−t
k−t

) (
n−t
k−t

)∗
= |FT |

Table 5.2: Family’s cardinality

5.3 Function approximation

As we have seen in the previous section, the families 2N , Nk and N [0,k] are
linear spaces with the unanimity games eT (x) as bases. The next results can
be applied to each space.

Let S = L(F) the space of linear functions defined on the family F, f, g ∈ S
and µ a probability distribution. In this space we define the pseudo inner
product

〈f, g〉µ =
∑
S∈F

µ(S)f(S)g(S)

and its induced norm

122

‖f‖µ =
√
〈f, f〉µ =

√∑
S∈F

µ(S)f(S)2

We have already seen that if µ(S) > 0 ∀S ∈ F the pseudo inner product has
the same properties than classic inner product.

We are interested of finding the best approximation of the function f ∈ L(2N)
using a function g ∈ S. Using the defined norm, we are searching a function
g such that

min
g∈S
‖f − g‖µ

If S = L(N [0,1]) (F = N [0,1])) we are searching the best linear approximation,
and with S = L(N [0,2]) (F = N [0,2])) the best second order approximation,
etc.

We already know that the solution of the problem is the orthogonal projection
gf of f into S, and the property of the projection is that the element f − gf
is orthogonal to all g in S:

〈f − g, h〉µ = 0 ∀h ∈ S

In particular, it is orthogonal to all bases of S, for example the unanimity
game basis eS:

〈f − g, eS〉µ = 0 ∀eS ∈ S

but this means also that

〈f, eS〉µ = 〈g, eS〉µ ∀eS ∈ S (5.1)

In the space S the function g has the form

g(x) =
∑
T∈F

βT eT (x)

123

For the linearity, the function g can be rewritten also as

g(x) =
∑
T⊆N

aTgT (x)

with gT (x) the best approximation of the unanimity game basis eT (x)

gT (x) =
∑
U∈F

βTUeU(x)

In this case, the 5.1 can be rewritten as

〈f, eS〉µ = 〈g, eS〉µ〈∑
T⊆N

aT eT , eS

〉
µ

=
〈∑
T⊆N

aTgT , eS

〉
µ

and, for the linearity of the inner product

∑
T⊆N

aT 〈eT , eS〉µ =
∑
T⊆N

aT 〈gT , eS〉µ (5.2)

5.3.1 General approximation

In their paper, Ding et al. [71] demonstrate how to create a weighted ap-
proximation of order k of a set function, based on a generic probability
distribution µ. To understand their approach we can analyze Equation 5.2
and to observe that

〈eT , eS〉µ =
∑
U∈F

µ(U)eT (U)eS(U)

Given eT (U) = 1 for each U ⊇ T and eS(U) = 1 for each U ⊇ S, we have

124

〈eT , eS〉µ =
∑
U∈F

U⊇T∪S

µ(U) = µ̄(T ∪ S)

The first part of Equation 5.1 can be rewritten as

〈f, eS〉µ =
∑
U∈F

f(U)eS(U)µ(U)

=
∑
U∈F

(∑
T⊆N

aT eT (U)eS(U)µ(U)

)

=
∑
T⊆N

aT

(∑
U∈F

eT (U)eS(U)µ(U)

)
=
∑
T⊆N

aT µ̄(T ∪ S)

= ηS

The second part of Equation 5.1 can be rewritten as

〈g, eS〉µ =
∑
U∈F

g(U)eS(U)µ(U)

=
∑
U∈F

(∑
T⊆N

βT eT (U)eS(U)µ(U)

)

=
∑
T⊆N

βT

(∑
U∈F

eT (U)eS(U)µ(U)

)
=
∑
T⊆N

βT µ̄(T ∪ S)

where βT are the unknown coefficients of the function g.

The general solution of the problem can be converted into the linear system

Mµ · β = η

with:

125

• Mµ a symmetric matrix |S| × |S| where

Mµ[S, T] = µ̄(T ∪ S) ∀S, T ∈ S

• β = 〈βS : S ∈ S〉 the unknown score’s vector

• η = 〈ηS : S ∈ S〉

To find the approximation of k-degree, the rows and columns of the matrix
must be ordered using the lexicographic order of the sets, and to include in
the approximation all sets with cardinality |S| ≤ k.

Since the matrix is symmetric, there exist efficient algorithms to solve the
linear system, for example the Cholesky’s method.

5.4 Player-based approximation

5.4.1 Introduction

In the player-probabilistic value (and related interaction index), a probability
pi to participate in a coalition S, is assigns to each player i ∈ N :

P = 〈pi : i ∈ N〉

The analysis of the power and interaction index (and related transform), has
been addressed by Ding et al. in [72] and in the articles [81,102].

If the probability of participation of each player in a coalition is independent,
the probability of the coalition S is computed as

µ(S) = P(S) =
∏
i∈S

pi
∏
i∈N\S

qi (5.3)

where qi = 1 − pi, that is: the product of players’ probability participating
in the coalition, multiplied by the probabilities of the remainder players do
not to be in the coalition.

126

The idea is to consider each player i as a independent Bernoulli random
variable Xi with P(Xi = 1) = pi and P(Xi = 0) = qi. If the probability pi is
not available, but it is available the weight function µ, it can be computed
as

pi = P(Xi = 1) =
∑
S∈Fi

µ(S)

(for a normalized µ over the Boolean lattice) and, obviously

qi = P(Xi = 0) =
∑
S∈F−i

µ(S) = 1− pi

The expected value and variance of the Bernoulli random variable Xi are:

Eµ[Xi] = pi

Varµ[Xi] = piqi = E[X2
i]

Using the transform

Zi =
Xi − pi√
piqi

∀i ∈ N

the random variable Xi can be standardized in a random variable Zi with
zero mean and unit variance:

E[Zi] = 0

Var[Zi] = 1 = E[Z2
i]

We can define the random variable ZS as

ZS =
∏
i∈S

Zi ∀S ⊆ N

Because Xi are mutually independent, also Zi and ZS will be mutually inde-
pendent, and we have (with c ∈ {0, 1}s)

127

P(ZS = c) = P(
∏
i∈S

Zi = ci) =
∏
i∈S

P(Zi = ci)

and

E[ZS] =
∏
i∈S

E[Zi] = 0

Var[ZS] =
∏
i∈S

Var[Zi] = 1

5.4.2 Orthonormal basis for L(F)

The 2n functions 〈zS : S ⊆ N〉, where zS is defined as

zS(x) =
∏
i∈S

xi − pi√
piqi

form a orthonormal basis for L(F) with respect to 〈·, ·〉µ, and µ defined as in
5.3. Indeed, we consider the inner product:

〈zR, zS〉µ =
∑
T⊆N

µ(T)zR(T)zS(T)

this is the definition of expected value of the random variable ZRZS. If R = S,
we have

E[ZSZS] = E[Z2
S] = Var[ZS] = 1

otherwise

E[ZRZS] = E[ZR]E[ZS] = 0

that is:

128

〈zS, zS〉µ = 1 ∀S ∈ F
〈zR, zS〉µ = 0 ∀R, S ∈ F,R 6= S

5.4.3 Function transforms

Given 〈zS : S ⊆ N〉 is an orthonormal basis for L(F), each function f ∈ L(F)
can be represented as a linear combination of this basis

f(x) =
∑
S⊆N

〈f, zS〉µzS(x)

since the basis is orthonormal, to approximate the function f ∈ L(F) with
another function fk of degree k, we can just consider the basis up to kth

degree:

fk(x) =
∑

S⊆N [0,k]

〈f, zS〉µzS(x)

The basis zS can be represented also using the unanimity games eT :

zS(x) =
∏
i∈S

(aixi + bi)

=
∑
T⊆S

(∏
i∈T

aixi
∏
i∈S\T

bi

)

=
∑
T⊆S

(∏
i∈T

ai
∏
i∈S\T

bi

)
eT (x)

=
∑
T⊆S

∏
i∈S\T (−pi)∏
i∈S
√
piqi

eT (x)

=
∑
T⊆S

(−1)|S\T |
∏

i∈S\T (pi)∏
i∈S
√
piqi

eT (x)

=
∑
T⊆S

αST eT (x)

129

with

ai =
1
√
piqi

, bi =
−pi√
piqi

and

αST = (−1)|S\T |
∏

i∈S\T (pi)∏
i∈S
√
piqi

The definition of the function f can be rewritten as

f(x) =
∑
S⊆N

〈f, zS〉µzS(x)

=
∑
S⊆N

〈f, zS〉µ
∑
T⊆S

αST eT (x)

=
∑
T⊆S

(∑
S⊆N

〈f, zS〉µ

)
αST eT (x)

=
∑
T⊆N

(∑
S⊇T

αST 〈f, zS〉µ

)
eT (x)

=
∑
T⊆N

αT eT (x)

with

αT =
∑
S⊇T

αST 〈f, zS〉µ

and its kth approximation as

fk(x) =
∑

T⊆N [0,k]

αkT eT (x)

with

130

αkT =
∑
T⊇S
|T |≤k

αST 〈f, zT 〉µ

5.4.4 Player-probabilistic interaction transform

Let IPf (S) the player-probabilistic interaction index of order s defined as:

IPf (S) =
1∏

i∈S
√
piqi
〈f, zS〉µ

=
∑
T⊆N

1∏
i∈S
√
piqi

µ(T)f(T)zS(T)

It can be rewritten also as

IPf (S) =
1∏

i∈S piqi

∑
T⊆N

µ(T)f(T)
∏
i∈S

(Ti − pi)

We have

〈f, zS〉µ = IPf (S)
∏
i∈S

√
piqi

5.4.5 Player-probabilistic based approximation

The definition of the function f can be rewritten as

131

f(x) =
∑
T⊆N

〈f, zT 〉µzT (x)

=
∑
T⊆N

IPf (T)

(∏
i∈T

√
piqi

)
zT (x)

=
∑
T⊆N

IPf (T)

(∏
i∈T

√
piqi

) ∏
i∈T xi − pi∏
i∈T
√
piqi

=
∑
T⊆N

IPf (T)

(∏
i∈T

(xi − pi)

)
(5.4)

and the best kth approximation as

fk(x) =
∑

T⊆N [0,k]

IPf (T)

(∏
i∈T

(xi − pi)

)
(5.5)

The equations 5.4 and 5.5 demonstrate that the Weighted Banzhaf Interac-
tion Index can be used to construct the k-order approximation of the set
function.

5.4.6 Banzhaf-based approximation

5.4.6.1 From Player-Probabilistic to Banzhaf Interaction Index

The Banzhaf Interaction Index is a player-probabilistic interaction index
where the probability assigned to the players is

P =

〈
1

2
: i ∈ N

〉

We have

132

IPf (S) =
1∏

i∈S piqi

∑
T⊆N

µ(T)f(T)
∏
i∈S

(Ti − pi)

=
1∏
i∈S

1
22

∑
T⊆N

1

2n
f(T)

(∑
R⊆S

∏
i∈R

Ti
∏
i∈S\R

(
−1

2

))

=
22s

2n

∑
T⊆N

f(T)
∑
R⊆S

(
−1

2

)s−r
eR(T)

=
2s

2n−s

∑
R⊆S

∑
T⊇R

f(T)
(
−1

2

)s−r
eR(T)

=
2s

2n−s

∑
R⊆S

∑
T⊇R

f(T)

(
(−1)s−r

2s−r

)
2r

2r
eR(T)

=
1

2n−s

∑
R⊆S

∑
T⊆N\R

2rf(T ∪R)(−1)s−reR(T ∪R)

We can use the trick:

∑
T⊆N\R

2rf(T ∪R) =
∑
T⊆N

f(T ∪R)

then

IPf (S) =
1

2n−s

∑
T⊆N

∑
R⊆S

(−1)s−rf(T ∪R)eR(T ∪R)

but

∑
R⊆S

(−1)s−rf(T ∪R)eR(T ∪R) = ∆Sf(T)

is the derivative on S with respect to T , and replacing it in the previous
equation, we have

IPf (S) =
1

2n−s

∑
T⊆N

∆Sf(T)

133

and this is exactly the Banzhaf Interaction Index IBf (S).

5.4.6.2 Banzhaf-based approximation

We can use the Banzhaf Interaction Index in the equations 5.4 and 5.5 to
obtain the definition of the function and its kth order approximation

f(x) =
∑
T⊆N

(∏
i∈T

(
xi −

1

2

))
IBf (T)

=
∑
T⊆N

1

2t
IBf (T)wT (x)

(5.6)

and

fk(x) =
∑

T⊆N [0,k]

1

2t
IBf (T)wT (x) (5.7)

where wT (x) are the Walsh basis.

5.5 Cardinal-based approximation

5.5.1 Shapley-based approximation

In the article [69] , Charnes et al. demonstrate that the Shapley Value and
the Banzhaf Value are the best linear approximation of the function f , based
on a weighted mean square error, selecting special weights.

We can start with the equality

〈f, ei〉µ = 〈g, ei〉µ (5.8)

where ei is the unanimity game for {i}. Because g is a linear approximation,
its structure is:

134

g(x) = α0 +
∑
j∈N

βjej(x)

The equality 5.8 can be rewritten as

〈f, ei〉µ = 〈α0 +
∑
j∈N

βjej, ei〉µ

〈f, ei〉µ − 〈α0, ei〉µ = 〈
∑
j∈N

βjej, ei〉µ (5.9)

We add two constraints, because they are the properties of the Shapley Value.
The first constraint is on the efficiency of the power index:

f(N) =
∑
i∈N

βi (5.10)

The second constraint is on the property of the weight: the weight for a set
depends only on its cardinality

µ(S) = µ(s)

Now, we can introduce the following substitution:

λ = 〈α0, ei〉µ
ψi = 〈f, ei〉µ

and to rewrite Equation 5.9 as

ζi − λ =
∑
S∈Fi

µ(s)

(∑
j∈N

βjx
S
j

)

5.5.1.1 Right side

Since µ(s) depends on the cardinality, we can write:

135

∑
S∈Fi

µ(s)

(∑
i∈N

βi · xi

)
=

dFie−1∑
k=bFic

µ(k)
∑
S∈Fk

i

∑
i∈N

βi · xi

=

dFie−1∑
k=bFic

µ(k)
∑
S∈Fk

i

βi · xi +
∑
j∈N\i

βj · xj

=

dFie−1∑
k=bFic

µ(k)
∑
S∈Fk

i

(βi · xi) +

dFie−1∑
k=bFic+1

µ(k)
∑

S∈Fk+1
i

∑
j∈N\i

(βj · xj)

=

dFie−1∑
k=bFic

µ(k)

(
dFie − 1

k − 1

)
βi +

dFie−1∑
k=bFic+1

µ(k)

(
dFie − 2

k − 2

) ∑
j∈N\i

βj

(5.11)

Note that, for 5.10, we have

∑
j∈N\i

βj =
∑
j∈N

βj − βi = f(N)− βi

and using the property 2.1, the equation 5.11 can be rewritten as

dFie−1∑
k=bFic

µ(k)

(
dFie − 1

k − 1

)
βi +

dFie−1∑
k=bFic

µ(k)

(
dFie − 2

k − 2

)
(f(N)− βi)

=

dFie−1∑
k=bFic

µ(k)

((
dFie − 1

k − 1

)
−
(
dFie − 2

k − 2

))
βi +

dFie−1∑
k=bFic

µ(k)

(
dFie − 2

k − 2

)
f(N)

=

dFie−1∑
k=bFic

µ(k)

(
dFie − 2

k − 1

)
βi +

dFie−1∑
k=bFic

µ(k)

(
dFie − 2

k − 2

)
f(N)

(5.12)

Using the substitutions

ζ =

dFie−1∑
k=bFic

µ(k)

(
dFie − 2

k − 1

)
(5.13)

136

η =

dFie−1∑
k=bFic

µ(k)

(
dFie − 2

k − 2

)
(5.14)

the expression 5.12 can be rewritten as

ψi − λ = ζ · βi + η · f(N)

λ = ψi − ζ · βi − η · f(N)
(5.15)

5.5.1.2 Left side

The value of λ can be computed summing over all i ∈ N , and using Equations
5.10 and 5.15:

∑
i∈N

λ =
∑
i∈N

(ψi − ζ · βi − η · f(N))

nλ =
∑
i∈N

ψi − ζ · f(N)− n · η · f(N)

λ =
1

n

(∑
i∈N

ψi − ζ · f(N)

)
− η · f(N)

(5.16)

5.5.1.3 Two sides

By substituting Equation 5.16 in 5.15, we obtain

ζ · βi = ψi − λ− η · f(N)

= ψi −
1

n

(∑
i∈N

ψi − ζ · f(N)

)
+ η · f(N)− η · f(N)

=
1

n

(
n · ψi −

∑
i∈N

ψi

)
+
ζ · f(N)

n

βi =
1

n · ζ

(
n · ψi −

∑
i∈N

ψi

)
+
f(N)

n

137

5.5.1.4 How simplifying n · ψi −
∑

i∈N ψi

It is necessary simplifying

n · ψi −
∑
i∈N

ψi

We have

∑
i∈N

ψi =
∑
i∈N

∑
S∈Fi

µ(s)f(S)

=
∑
i∈N

dFie∑
k=bFic

µ(k)
∑
S∈Fk

i

f(S)

=
∑
S∈F

s · µ(s)f(S)

=
∑
S∈Fi

s · µ(s)f(S) +
∑
S∈F−i

s · µ(s)f(S)

(5.17)

To understand the equality, we can consider the set {1, 2, 3, 4} and the fam-
ilies Fi = {S ⊇ {i}}

1 2 3 4

F1 {1} {12},{13},{14} {123},{124},{134} {1234}
F2 {2} {12},{23},{24} {123},{124},{234} {1234}
F3 {3} {13},{23},{34} {123},{134},{234} {1234}
F4 {4} {14},{24},{34} {124},{134},{234} {1234}

for each cardinality, the sets are present a number of times equal to the
cardinality. We have also that the family F is composed by the family of sets
containing i and the family of sets not containing i

F = Fi ∪ F−i
Fi = {S ∪ i : S ∈ F−i}

138

Now

n · ψi −
∑
i∈N

ψi =
∑
S∈Fi

n · µ(s)f(S)−
∑
S∈Fi

s · µ(s)f(S)−
∑
S∈F−i

s · µ(s)f(S)

=
∑
S∈Fi

(n− s) · µ(s)f(S)−
∑
S∈F−i

s · µ(s)f(S)

=
∑
S∈F−i

(n− s− 1)µ(s+ 1)f(S ∪ i)−
∑
S∈F−i

s · µ(s)f(S)

=
∑
S∈F−i

((n− s− 1)µ(s+ 1)f(S ∪ i)− s · µ(s)f(S))

We can observe that the sequence of pairs 〈(n − s), s〉 is equivalent to the
sequence 〈s, (n− s)〉: we have just to reverse the order of the elements. This
means that the previous equation can be rewritten also as

n · ψi −
∑
i∈N

ψi =
∑
S∈Fi

(n− s) · µ(s)f(S)−
∑
S∈F−i

s · µ(s)f(S)

=
1

2

∑
S∈Fi

(n− s) · µ(s)f(S)−
∑
S∈F−i

s · µ(s)f(S)

+

1

2

∑
S∈Fi

s · µ(s)f(S)−
∑
S∈F−i

(n− s) · µ(s)f(S)

=

1

2

∑
S∈Fi

n · µ(s)f(S)−
∑
S∈F−i

n · µ(s)f(S)

=
n

2

∑
S∈F−i

(µ(s+ 1)f(S ∪ i)− µ(s)f(S))

5.5.1.5 Determination of βi

The value of βi is

139

βi =
1

n · ζ

(
n · ψi −

∑
j∈N

ψj

)
+
f(N)

n

=
1

n · ζ

(∑
S∈Fi

n · µ(s)f(S)−
∑
S⊆N

s · µ(s)f(S)

)
+
f(N)

n

=
1

n · ζ

∑
S∈Fi

n · µ(s)f(S)−
∑
SFi

s · µ(s)f(S)−
∑
SF−i

s · µ(s)f(S)

+
f(N)

n

=
1

n · ζ

∑
S∈Fi

(n− s) · µ(s)f(S)−
∑
S∈F−i

s · µ(s)f(S)

+
f(N)

n

(5.18)

5.5.1.6 Shapley Value

We consider the space 2N , µ(s) defined as

µ(s) =

(
n− 2

s− 1

)−1

=
(s− 1)!(n− s− 1)!

(n− 2)!

and βi redefined as

βi =
1

n · ζ

∑
S∈F−i

(n− s− 1) · µ(s+ 1)f(S ∪ i)−
∑
S∈F−i

s · µ(s)f(S)

+
f(N)

n

(5.19)

We have

140

ζ =
n−1∑
s=1

(
n− 2

s− 1

)−1(
n− 2

s− 1

)
= n− 1

s · µ(s) = s · (s− 1)!(n− s− 1)!)

(n− 2)!
=
s!(n− s− 1)!

(n− 2)!

(n− s− 1)µ(s+ 1) = (n− s− 1)
(s− 1)!(n− s− 2)!)

(n− 2)!
=
s!(n− s− 1)!

(n− 2)!

replacing them in Equation 5.19

βi =
1

n · (n− 1)

∑
S∈F−i

s!(n− s− 1)!

(n− 2)!
(f(S ∪ i)− f(S))

+
f(N)

n

=
∑
S∈F−i

(
s!(n− s− 1)!

n!
∆if(S)

)
+
f(N)

n

We can observed that, except for the term f(N)
n

, βi is defined exactly as in
the Shapley Value.

Now, we consider the space N [0,k], we have

ζ =
k−1∑
s=1

(
n− 2

s− 1

)−1(
n− 2

s− 1

)
= k − 1

and substituting it in Equation 5.19

βi =
1

n · (k − 1)

∑
S∈F−i

s!(n− s− 1)!

(n− 2)!
(f(S ∪ i)− f(S))

+
f(N)

n

=
(n− 1)

(k − 1)

∑
S∈F−i

(
s!(n− s− 1)!

n!
∆if(S)

)
+
f(N)

n

141

5.5.1.7 Banzhaf Value

We consider the space 2N , µ(s) = 1 (a constant), the definition of βi can be
rewritten as

βi =
1

n · ζ

∑
S∈Fi

(n− s) · f(S)−
∑
S∈F−i

s · f(S)

+
f(N)

n

with

ζ =
k−1∑
s=1

(
n− 2

s− 1

)
= 2n−2

The list of pairs 〈(n− s), s〉 is equivalent to the list of pairs 〈s, (n− s)〉, it is
sufficient reversing the order of the list. By using the same trick as before,
the difference inside the definition can be rewritten as

∑
S∈Fi

(n− s) · f(S)−
∑
S∈F−i

s · f(S)

=
1

2

∑
S∈Fi

(n− s) · f(S)−
∑
S∈F−i

s · f(S) +
∑
S∈Fi

s · f(S)−
∑
S∈F−i

(n− s) · f(S)

=

1

2

∑
S∈Fi

n · f(S)−
∑
S∈F−i

n · f(S)

=
n

2

∑
S∈Fi

f(S)−
∑
S∈F−i

f(S)

=
n

2

∑
S∈F−i

∆if(S)

The definition of βi can be rewritten as

142

βi =
1

n · 2n−2

n

2

∑
S∈F−i

∆if(S)

+
f(N)

n

=
1

2n−1

∑
S∈F−i

∆if(S)

+
f(N)

n

and this, except for the term f(N)
n

, is the definition of the Banzhaf Value.

5.6 Conclusions

In this chapter we have seen that the power and interaction indices are the
terms of the best weighted approximations of the set function. Different
weights define different indices. There is another interpretation of indices:
they are the coordinate of the function in L(2N) when it is selected a specific
basis: for example, the Möbius coefficients are the coordinates of function
when it is used the unanimity games basis, the Shapley Interaction Indices
are the coordinates when the basis are β

|K|
|S∩T |, the Banzhaf Interaction Indices

are the coordinates when the basis are 1
2t

(−1)|T\S|, etc. We have seen, also,
that if the basis is orthogonal, to approximate the function with another
function degree k it is enough to use the basis with degree less or equal to k.

143

Chapter 6

New Interaction Indices

6.1 Introduction

In the Chapters 3 and 5 we have introduced some of the most used power and
interaction indices (Shapley, Chaining, Banzhaf, Weighted Banzhaf Values
and related Interaction Indices). All of them are members of probabilistic
interaction indices. These indices are defined on the complete subset’s lattice
(on sets with all possible cardinality) and they define a transform, that is,
it is possible to recreate the original function from the values of the indices
computed on all lattice’s nodes.

Sometimes, it is useful analyzing only a part of the lattice, and more often,
this part is composed of the level k (that contains the sets with cardinality
k) or the levels in the range [kmin, kmax].

In this case, we can use a reduced version of the previous indices that we call
K-Interaction Indices. In this chapter, we will prove the relation between the
original indices and the new ones.

6.2 Selecting some lattice’s levels

The general structure of a probabilistic interaction index is

144

Iξ(S) =
∑
T⊆N

pS(T)∆Sξ(T)

with 〈pS : S ⊆ N〉 a probability distribution. This expression can be rewrit-
ten also as

Iξ(S) =
n−s∑
k=0

Iξ(k, S) (6.1)

Iξ(k, S) =
∑
T⊆N
|T |=k

pS(T)∆Sξ(T)

where we have split the sum into terms specific for each set’s cardinality.

If we are interested only on sets with the cardinality in the range [kmin, kmax],
the 6.1 can be rewritten as

Iξ(S) =
kmax−1∑
k=0

Iξ(k, S) +
kmax∑
k=kmin

Iξ(k, S) +
n−s∑

k=kmax+1

Iξ(k, S)

If Iξ(k, S) = 0 for k < kmin and k > kmax we obtain

Iξ(S) =
kmax∑
k=kmin

Iξ(k, S)

The excluded terms of Iξ can be zero for several reason, but two reliable ones
are:

1. ∆Sξ(T) = 0: the derivative is 0, that is, the function is constant, or
zero

2. pS(T) = 0: the weighs for these sets are zero

145

Obviously, in general, the function will be not zero, but we suppose to force
it to be zero.

The problem with the approach (1.) is that, however, we are still considering
the function defined on the entire lattice because the weights used are not a
probability distribution

∑
T⊆N

kmin≤|T |≤kmax

pS(T) 6= 1 with 0 < kmin or kmax < n− s

The approach (2.), instead, is partially correct because 〈pS〉 for definition
must be a probability distribution, also if several weights are zero. The
problem is that the weights are used in the definition of the weighted inner
product and we know that, if there are weights with value zero, it has not
the properties of an inner product.

But, if we force the function to be 0 on these sets and we assign them the
weight 0, the weighted inner product became a valid inner product.

Now, we can change the definition of Interaction Indices to adapt them to
the new approach.

6.3 K-Cardinal-Probabilistic Interaction In-

dices

The simplest indices to change are the cardinal-probabilistic indices.

In these indices, the weight depends only on the set’s cardinality

pS(K) = pS(k)

with

n−s∑
k=0

(
n− s
k

)
pS(k) = 1

146

The factor

Ck = pS(k)

(
n− s
k

)−1

is the probability to select the lattice’s level k, with C the probability distri-
bution assigned to all levels.

Excluding the levels not in the range [kmin, kmax], we need to redistribute the
excluded probabilities to the remaining levels. The most simple approach is
to change the remaining probabilities proportionally to their values

C ′k =
Ck

C[kmin,kmax]

∀k ∈ [kmin, kmax]

with

C[kmin,kmax] =
kmax∑
k=kmin

Ck

Another method could be to distribute the missing probability in a uniform
way to the remaining levels

C ′k = Ck +

(
1− C[kmin,kmax]

kmax − kmin + 1

)
∀k ∈ [kmin, kmax]

but this is not a good solution, because it does not maintain the ratio between
the levels weights.

6.3.1 K-Shapley Interaction Index

The weight used in the Shapley Interaction Index is

pS(k) =
(n− s− k)!k!

(n− s+ 1)!
=

1

n− s

(
n− s
k

)−1

147

where

Ck =
1

n− s

and

C[kmin,kmax] =
kmax − kmin + 1

n− s

The probability can be changed in

C ′k =
n− s

kmax − kmin + 1
Ck =

1

kmax − kmin + 1

6.3.2 K-Chaining Interaction Index

The weight used in Chaining Interaction Index is

pS(k) =

(
s− 1 + k

s− 1

)(
n− s
k

)−1

where the probability to select the level k is

Ck =

(
s− 1 + k

s− 1

)
We can change it in

C ′k =
n− s

kmax − kmin + 1
Ck

148

6.4 K-Player-Probabilistic Interaction Indices

In these indices, the weight depends only on the probability pi assigned to
the members of the set

pS(T) =
∏
j∈T

pj
∏

j∈N\S\T

(1− pj)

with

∑
T⊆N\S

pS(T) = 1

By selecting only the sets with cardinality in the range [kmin, kmax], we are
using only the quota

P[kmin,kmax] =
∑

T⊆N\S
kmin≤t≤kmax

pS(T)

of the total probability. We can change the weight assigned to the set in

pS(T)
′
=

pS(T)

P[kmin,kmax]

The problem is to find a compact formula for P[kmin,kmax]. Unfortunately, this
is not in general possible because the closed formula contains a number of
terms similar to the number of sets analyzed.

6.4.1 K-Banzhaf Interaction Index

The Banzhaf Interaction Index is a player-probabilistic interaction index
where the weight for each set is

pS(T) =
1

2n−s

149

In this case, the value of P[kmin,kmax] is:

P[kmin,kmax] =
kmax∑
k=kmin

(
n− s
k

)

6.5 Approximate algorithms

In Chapter 4 we have already described the general structure of the algo-
rithms and their extension to be used with a selected range of cardinality.

Here we can observe that it is not necessary to change the probability distri-
butions used as parameters in the algorithms because the normalization of
the cumulative values is based on counting the number of sets or permuta-
tions used and this considers automatically the cardinality range.

6.6 Closed formula for K-Banzhaf Value

6.6.1 First order approximation

Starting from the general solution, it is possible to find the closed formulas
for the K-Banzhaf Value.

We can start with the equalities

〈eT , eØ〉 =
∑
S∈F

eT (S) = |FT |

〈eT , ei〉 =
∑
S∈F

eT (S)eT (i) = |FT∪i|

The second list of equalities is

〈eT , eØ〉 = 〈gT , eØ〉 (6.2)

150

〈eT , ei〉 = 〈gT , ei〉 (6.3)

Since the equality 6.2 is true for each T , it is true also for T ∪ i and for T \ i

〈eT∪i, ei〉 = 〈gT∪i, ei〉
〈eT\i, ei〉 = 〈gT\i, ei〉

For the linearity of the inner product, the equality is true also for

〈eT∪i − eT\i, ei〉 = 〈gT∪i − gT\i, ei〉

but these differences are the first order derivative on i of eT , and gT

〈∆ieT , ei〉 = 〈∆igT , ei〉 (6.4)

with gT (x) the first order approximation of the unanimity base eT (x):

gT (x) = αT0 +
∑
i∈N

βTi xi (6.5)

6.6.2 Determination of βi

6.6.2.1 Right side

Because ∆igT (x) = βTi , we have:

∑
x∈F−i

∆igT (x) =
∑
x∈F−i

βTi = |F−i|βTi

6.6.2.2 Left side

We have already seen that ∆ieT (x) = eT\i(x), hence

151

∑
x∈F−i

∆ieT (x) =
∑
x∈F−i

eT\i(x) = |F T\i
−i | = |FT | (6.6)

6.6.2.3 Two sides

Now, we have

|F−i|βTi = |FT |

βTi =
|FT |
|F−i|

It is possible to observe that the value of βTi depends only on the cardinality
of T , i.e. βTi is a level dependent coefficient and it can be written as β(t):

F = 2N β(t) = 2n−t

2n−1 = 1
2t−1

F = Nk β(t) =
(n−k
k−k)

(n−1
k−1)

= (k−1)t−1

(n−1)t−1

F = N [0,k] β(t) =
(n−t
k−t)

∗

(n−1
k−1)

∗

Substituting β(t) in 6.5, we have

gT (x) = αT0 +
∑
i∈N

βTi xi

6.6.3 Determination of α0

6.6.3.1 Right side

We have

152

∑
x∈F

(
αT0 + β(t)

∑
i∈T

xi

)
=
∑
x∈F

αT0 + β(t)
∑
x∈F

∑
i∈T

xi

= |F| · αT0 + β(t) · t · |Fi|

= |F| · αT0 +
|FT |
|F−i|

· t · |Fi|

= |F| · αT0 + t · |FT |

6.6.3.2 Left side

∑
x∈F

eT (x) = |FT | (6.7)

6.6.3.3 Two sides

Now, we have

|F|αT0 + t|FT | = |FT |

|F|αT0 = |FT | − t|FT |

αT0 =
|FT |
|F|
− t |FT |
|F|

= −(t− 1)
|FT |
|F|

Given αT0 depends only on t, we can write α(t)

F = 2N α(t) = −(t− 1) 1
2t

F = Nk α(t) = −(t− 1)
(n−t
k−t)
(n
k)

= −(t− 1) (k)t
(n)t

F = N [0,k] α(t) = −(t− 1)
(n−t
k−t)

∗

(n
k)
∗

153

Replacing α(t), β(t) in 6.5, we have

gT (x) = α(t) + β(t)
∑
i∈N

xi

6.6.4 Wrap up

The function gT (x) is defined as

gT (x) = α(t) + β(t)
∑
i∈N

xi

α(t) = −(t− 1)
|FT |
|F|

β(t) =
|FT |
|F−i|

(6.8)

6.6.5 General expression of the first order approxima-
tion in the Möbius basis

The function:

f(x) =
∑
T∈F

aT · eT (x)

can be approximated replacing eT (x) with the first order approximation 6.8:

154

g(x) =
∑
T∈F

aT · gT (x)

=
∑
T∈F

aT ·
(
α(t) + β(t)

∑
i∈T

xi

)
=
∑
T∈F

aT · α(t) +
∑
T∈F

aT · β(t)
∑
i∈T

xi

=
∑
T∈F

aT · α(t) +
∑
i∈N

(∑
T∈F

β(t) · aT
)
xi

= α0 +
∑
i∈N

βixi

(note that if i 6∈ T → xi = 0) where

α0 =
∑
T∈F

aT · α(t) =
∑
T∈F

aT ·
(
−(t− 1)

|FT |
|F|

)
= − 1

|F|
∑
T∈F

aT · (t− 1) · |FT |

βi =
∑
T∈Fi

aT · β(t) =
∑
T∈Fi

aT ·
|FT |
|F−i|

=
1

|F−i|
∑
T∈Fi

aT · |FT |

and

F = 2N α0 = − 1

2n

∑
T∈2N

aT · (t− 1) · 2n−t = −
∑
T∈2N

t− 1

2t
aT

βi =
1

2n−1

∑
T∈2Ni

aT · 2n−t =
∑
T∈2Ni

1

2t−1
aT

F = Nk α0 = − 1(
n
k

) ∑
T∈Nk

aT ·
(
n− 1

k − 1

)
=
k

n

∑
T∈Nk

aT

βi =
1(
n−1
k−1

) ∑
T∈Nk

i

aT ·
(
n− k
k − k

)
=

1(
n−1
k−1

) ∑
T∈Nk

i

aT

F = N [0,k] α0 = − 1(
n
k

)∗ ∑
T∈N [0,k]

(t− 1) ·
(
n− t
k − t

)∗
aT

βi =
1(

n−1
k−1

)∗ ∑
T∈N [0,k]

i

(
n− t
k − t

)∗
aT

155

6.6.6 General expression of α and βi in terms of f and
∆if

6.6.6.1 Expression of βi in terms of ∆if

From Equation 6.4, we have:

∑
x∈F−i

∆ig(x) =
∑
x∈F−i

∆if(x)

and, for the linearity of g(x), ∆ig(x) = βi, so, the left side is |F−i|βi. It
follows that

∑
x∈F−i

∆ig(x) =
∑
x∈F−i

βi = |F−i|βi

and

βi =
1

|F−i|
∑
x∈F−i

∆if(x)

where

F = 2N βi =
1

2n−1

∑
x∈2N\i

∆if(x)

F = Nk βi =
1(
n
k

) ∑
x∈Nk−i

∆if(x)

F = N [0,k] βi =
1(

n−1
k−1

)∗ ∑
x∈N [0,k]−i

∆if(x)

when k = n we have N [0,k] = 2N and the definitions of βi are equal.

It is possible to observe that for the family 2N the definition of βi is exactly
the definition of the Banzhaf Value. This means that the Banzhaf Value is

156

(part) of the best linear approximation of the function, using the mean square
error as error metric.

6.6.6.2 Expression of α in terms of f

The value of α can be computed from the equation 6.2

∑
S∈F

f(S) =
∑
S∈F

g(S)

=
∑
S∈F

(
α +

∑
i∈N

βixi

)
= |F|α +

∑
S∈F

(∑
i∈N

βixi

)
|F|α =

∑
S∈F

f(S)−
∑
S∈F

(∑
i∈N

βixi

)
α =

1

|F|
∑
S∈F

(
f(S)−

∑
i∈N

βixi

)

where

F = 2N α0 =
1

2n

∑
S∈2N

(
f(S)−

∑
i∈N

βixi

)
F = Nk α0 =

1(
n
k

) ∑
S∈Nk

(
f(S)−

∑
i∈N

βixi

)
F = N [0,k] α0 =

1(
n
k

)∗ ∑
S∈N [0,k]

(
f(S)−

∑
i∈N

βixi

)

Obviously, when k = n, N [0,k] = 2N and the definitions of α are equal.

6.6.7 Second order approximation

The 2nd order approximation must satisfy the equalities 6.3, 6.4 and

157

〈eT , eij〉 = 〈gT , eij〉 (6.9)

with

gT (x) = αT0 +
∑
i∈N

βTi xi +
∑
ij⊆N

γTijxixj (6.10)

6.6.8 Determination of γij

6.6.8.1 Right side

Since ∆ijgT (x) = γTij, we have

∑
x∈F−ij

∆ijgT (x) =
∑

x∈F−ij

γTij = |F−ij|γTij

6.6.8.2 Left side

We have already seen that ∆ijeT (x) = eT\ij(x), hence

∑
x∈F−ij

∆ijeT (x) =
∑

x∈F−ij

eT\ij(x) = |F T\ij
−ij | = |FT | (6.11)

6.6.8.3 Two sides

Now, we have

|F−ij|γTij = |FT |

γTij =
|FT |
|F−ij|

158

It is possible to observe that the value of γTij depends only on the cardinality
of T , i.e. γTij is a level dependent coefficient and it can be written as γ(t):

F = 2N γ(t) = 2n−t

2n−2 = 1
2t−2

F = Nk γ(t) =
(n−k
k−k)

(n−2
k−2)

= (k−2)t−2

(n−2)t−2

F = N [0,k] γ(t) =
(n−t
k−t)

∗

(n−2
k−2)

∗

By substituting γ(t) in 6.10, we have

gT (x) = αT0 +
∑
i∈N

βTi xi +
∑
ij⊆N

γ(t)xixj

6.6.9 Determination of βi

The value of βi can be evaluated using 6.4

6.6.9.1 Left side∑
x∈F−i

∆igT (x) =
∑
x∈F−i

βTi +
∑
j∈T\i

∑
x∈F j

−i

γ(t)

= |F−i|βTi + (t− 1)|F j
−i|γ(t)

= |F−i|βTi + (t− 1)|F−ij|
|FT |
|F−ij|

= |F−i|βTi + (t− 1)|FT |

6.6.9.2 Right side

We can use the 6.4

6.6.9.3 Two sides

Now, we have

159

|F−i|βTi + (t− 1)|FT | = |FT |

βTi = −(t− 2)
|FT |
|F−i|

βTi depends only on t, than, it can written as β(t).

F = 2N β(t) = −(t− 2) 1
2t−1

F = Nk β(t) = −(t− 2) (k−1)t−1

(n−1)t−1

F = N [0,k] β(t) = −(t− 2)
(n−t
k−t)

∗

(n−1
k−1)

∗

By substituting β(t), γ(t) in 6.10, we have

gT (x) = αT0 +
∑
i∈N

β(t)xi +
∑
ij⊆N

γ(t)xixj

6.6.10 Determination of α0

6.6.10.1 Left side

∑
x∈F

gT (x) =
∑
x∈F

(
αT0 +

∑
i∈T

β(t)xi +
∑
ij⊆T

γ(t)xixj

)
=
∑
x∈F

αT0 + β(t)
∑
x∈F

∑
i∈T

xi + γ(t)
∑
x∈F

∑
ij⊆T

xixj

= |F|αT0 + β(t)
∑
i∈T

|Fi|+ γ(t)
∑
ij⊆T

|Fij|

= |F|αT0 + β(t)t|Fi|+ γ(t)
1

2
t(t− 1)|Fij|

6.6.10.2 Right side

We can use the 6.7

160

6.6.10.3 Two sides

|F|αT0 + β(t)t|Fi|+ γ(t)
1

2
t(t− 1)|Fij| = |FT |

|F|αT0 = |FT | − β(t)t|Fi| − γ(t)
1

2
t(t− 1)|Fij|

= |FT |+ (t− 2)
|FT |
|F−i|

t|Fi| −
|FT |
|F−ij|

1

2
t(t− 1)|Fij|

= |FT |+ t(t− 2)|FT | −
1

2
t(t− 1)|FT |

=
1

2
(t− 1)(t− 2)|FT |

αT0 =
1

2
(t− 1)(t− 2)

|FT |
|F|

Since αT0 depends only on t, it can written as α(t).

F = 2N α(t) = (t−1)(t−2)
2t+1

F = Nk α(t) = 1
2
(t− 1)(t− 2) (k)t

(n)t

F = N [0,k] α(t) = 1
2
(t− 1)(t− 2)

(n−t
k−t)

∗

(n
k)
∗

By substituting α(t), β(t), γ(t) in 6.10, we have

gT (x) = α(t) +
∑
i∈N

β(t)xi +
∑
ij⊆N

γ(t)xixj

6.6.11 Wrap up

The function gT (x) is defined as

161

gT (x) = α(t) + β(t)
∑
i∈N

xi + γ(t)
∑
ij⊆T

xixj

α(t) =
1

2
(t− 1)(t− 2)

|FT |
|F|

β(t) = −(t− 2)
|FT |
|F−i|

γ(t) =
|FT |
|F−ij|

(6.12)

6.6.12 General expression of the second order approx-
imation in the Möbius basis

The function

f(x) =
∑
T∈F

aT · eT (x)

can be approximated by replacing eT (x) with the second order approximation
6.12

g(x) =
∑
T∈F

aT · gT (x)

=
∑
T∈F

aT ·
(
α(t) + β(t)

∑
i∈N

xi + γ(t)
∑
ij⊆T

xixj

)
=
∑
T∈F

aT · α(t) +
∑
T∈F

aT · β(t)
∑
i∈N

xi +
∑
T∈F

aT · γ(t)
∑
ij⊆T

xixj

=
∑
T∈F

aT · α(t) +
∑
i∈N

(∑
T∈F

aT · β(t)
)
xi +

∑
ij⊆N

(∑
T∈F

aT · γ(t)
)
xixj

= α0 +
∑
i∈N

βixi +
∑
ij⊆N

γijxixj

where

162

α0 =
∑
T∈F

aT · α(t) =
∑
T∈F

aT ·
1

2
(t− 1)(t− 2)

|FT |
|F|

βi =
∑
T∈F

aT · β(t) =
∑
T∈F

−aT · (t− 2)
|FT |
|F−i|

γij =
∑
T∈F

aT · γ(t) =
∑
T∈F

aT ·
|FT |
|F−ij|

6.7 Conclusions

In this chapter we have defined the K-Power Indices, a variant of the prob-
abilistic power indices specialized to approximate the function only on sets
with the selected cardinality k. We have seen how to modify the weights
used in the original definitions to adapt them to the new definition. We have
found the closed formula for the first and second degree of the K-Banzhaf
Value. We have also seen that the current algorithms are already able to
support the new class of indices.

163

Chapter 7

Feature Partitioning and
Co-Training

7.1 Introduction

Coalitional Game Theory, and in particular the power indices (Shapley Value,
Banzhaf Value, etc) have already been used – as already mentioned in the
introductory chapter – for feature selection. Sun et al. [127], Kulynych et
al [129] have used the Banzhaf Value, Cohen et al. in [125] and [126], Liu et
al [131], Sun et al. [128], Gore et al. [130], Mokdad et al. [132] have used the
Shapley Value, and Mikenina et al. [124] have used the first degree coefficients
of the Möbius Transform.

This makes sense because the power indices are the best first order (weighted)
approximation of the set function: a way to approximate the maximum of
the function with a reduced number of elements is to select the elements with
the highest values in the first order approximation.

In the area of the Multi View Learning sometimes it is necessary to split
a dataset into two o more views, as explained in the introductory chapter.
The challenge consists in selecting the features for each view. There are
several approaches available [134,144,145] but in this chapter we will use an
approach based on the Coalitional Game Theory.

The feature partitioning problem consists in subdividing a set of features
in two o more subsets (the views) subject to some desirable conditions. A

164

commonly accepted synthesis of those conditions are the following, obtained
from Blum and Mitchell [148] (for predicting power and consistency) and
Balcan et al. [149] (for the relative teaching power):

• each view must be sufficient : using the view it is possible to obtain a
good predictor, thus one of the objectives is to maximize the predicting
power of individual views

• the views must be consistent : the predictors obtained from each view
must predict the same class, if the prediction has a high confidence

• relative teaching power : (this denomination is ours) the views must be
able to act as teachers to one another. The relative teaching power of
a first view w.r.t. a second view, as the fraction of times the former
is capable to predict the correct class with a confidence higher than a
wrong class predicted by the latter ; it corresponds to holding unique
information and being able to transfer it.

Within semi-supervised learning, the teaching power of one feature over an-
other can be estimated within each pair of features form the initially labelled
examples. For each unordered pair of features there are two values of the
teaching power, corresponding to the two ordered pairs (the first feature
teaching to the second and the second teaching to the first). The view teach-
ing power for a given arrangement of features in two views can be estimated
equally.

Hereafter we consider separately

• the problem of optimizing the partitioning for a setting where the views
act separately, i.e. are used to train separate models whose output
(whose predictions) are then summarized by an aggregator (e.g. ma-
jority voting): in this case only the sufficiency (i.e. prediction power)
requirement and the consistency requirement are considered; this case
will be dealt with in Subsection 7.2

• from the problem of optimizing the partitioning when the views are
expected to take part to co-training procedure: in this case also the
teaching power requirement is considered; this case will be dealt with
in Subsection 7.3

165

7.2 Feature partitioning in multi-view learn-

ing

7.2.0.1 Prediction power

Coalitional Game Theory offers two useful concepts to this respect:

1. the power indices, which quantify the prediction’s ability of the features

2. the interaction indices, which quantify the constructive collaboration or
disruptive interference on the prediction between two (or among three
or more) features

Within semi-supervised learning, power indices and interaction indices of
and between/among features can be estimated from the initially labelled
examples.

The concepts of power indices and interaction indices can be used to support
the prediction power requirement and the relative teaching power require-
ment.

With respect to the predicting power, the feature partitioning problem can
be described as an optimization problem with the following general properties

1. each view must contain features with the best prediction ability (fea-
tures with the best power index)

2. features that collaborate must stay in the same view (features with the
best interaction index)

3. features that interfere disruptively must stay in different views (features
with the worst interaction index)

As explained in the previous chapters, the power index and the interaction
index correspond to a projection of the first or second degree of the overall
n-degree polynomial representing the whole set function (the characteristic
function of the game). By projecting the n-degree polynomial onto a second
degree approximation, we achieve a reduction of the complexity of the prob-
lem: in the new representation the features become the nodes of a graph,

166

endowed with a weight (the coefficient of the first order terms) and their
interactions become the weight of the arcs of that graph (they are the coef-
ficients of the second order terms); the problem of splitting into two views is
mapped into a graph-cut problem.

One can formulate the graph cut problem as follows. Each part of the cut
represents a view, whose predicting power which can be approximated by
the sum of the first and second order terms belonging to that view. This
sum, for an individual view, consists of the first order weights of the nodes
belonging to the view and of the second order interactions between all the
pairs of those nodes. Maximizing the power of both views can be expressed
as maximizing the sum (or any monotonic function of the arguments) of
the predicting power of the individual views. As already mentioned in the
introduction, this is equivalent to minimizing the second order terms that
turn out to be cut because the join two nodes belonging to distinct views.

Notice that estimating/verifying the interaction among features or views (or
the relative teaching power of pairs of features or of pairs of views) requires
an effort which increases quadratically with the number of objects. A way
for reducing this complexity, for instance for the views, is illustrated here
after.

If we have v ≥ 2 views, there are v(v − 1) relations to consider.

V1 V2

V3V4

Figure 7.1: Views interactions

A possible solution is

1. to assign an arbitrary order to the views

2. each view is compared only with the next one

167

3. the last view is compared with the first one

V1 V2

V3V4

Figure 7.2: Reduced views interactions

This reduces the number of interactions to consider to n.

7.2.1 The optimization problem

The optimization problem can be expressed as

max
V(N)

v∑
p=1

(
φξ(Vp) + I

(2)
ξ (Vp)

)
−

v∑
p=1
q=p⊕1

∑
i∈Vp
j∈Vq

Iξ(ij)

where

V(N) = 〈V1, . . . , Vv〉
Vp ∩ Vq = Ø ∀p 6= q
v⋃
p=1

Vp = N

is a partition of the elements in N in v views V1, . . . , Vv,

φξ(Vp) =
∑
i∈Vp

φξ(i)

168

is the sum of power indices of the elements in the view Vp

I
(2)
ξ (Vp) =

∑
ij⊆Vp

Iξ(ij)

is the sum of the 2nd-order interaction indices of the elements in the same
view Vp (the previous one and this are the 2nd-order approximation of the
set function) and

∑
i∈Vp
j∈Vq

Iξ(ij)

is the sum of the 2nd-order interaction indices of the elements in different
views (Vp and Vq).

7.2.2 Splitting and feature selection

Another related problem consists in splitting the feature set in several views
at the same time dropping the features that bring little or negative contri-
bution to the predicting power of the views.

It is possible to extend the problem with an extra view used to exclude some
elements. In this case V(N) will contain v + 1 views, if p = v, p⊕ 1 will be
1, not v + 1, and the constraints saying that an element can be present only
in a view must consider v + 1 views and not v.

7.2.3 Feature Partitioning as an integer programming
problem

The problem can be defined as a quadratic programming problem in nv binary
variables. It can be written as

169

max
x

v∑
p=1

(∑
i∈N

φξ(i)xpi +
∑
ij⊆N

Iξ(ij)xpixpj

)
−

v∑
p=1
q=p⊕1

∑
ij⊆N

Iξ(ij)xpixqj

s.t.
v∑
p=1

xpi = 1 ∀i ∈ N

xpi ∈ {0, 1} ∀p ∈ [1, v], ∀i ∈ N
x ∈ {0, 1}v×n

The general structure of a quadratic programming problem is

max
x

1

2
xTQx + cTx

s.t. Ax = a

x ∈ {0, 1}vn

When applied to our problem, x,Q, c,A, a became

x = 〈xpi : p ∈ [1, v], i ∈ N〉

Q =

[
Iξ(ij)

]
11

. . .
[
−Iξ(ij)

]
1v

. . .
[
Iξ(ij)

]
pp

. . .[
−Iξ(ij)

]
v1

. . .
[
Iξ(ij)

]
vv

c =
[
〈φξ(i) : i ∈ N〉p : p ∈ [1, v]

]

A =
[
In : p ∈ [1, v]

]
a = 1 ∈ Nn

where

170

• x ∈ {0, 1}nv is a block vector, a block for each view, of boolean variables
xpi that says if Vp contains the element i

• QT = Q ∈ Rnv×nv is a squared symmetric block matrix, a block for
each pair of views, where the block contains the matrix of interaction
indices between the elements i in Vp and j in Vq. The main diagonal
blocks contain the interaction indices of the elements in the same view

• c ∈ Rnv is a block vector, a block for each view, where the block
contains the power indices of the elements i ∈ N

• A ∈ Nn×nv is a rectangular block matrix, a block for each view, where
the block is the identity matrix of nth order. It is used to count how
many views contain the element i

• a ∈ Nn is a vector with the number of views that must contain the
element i: exactly one view for each element

Sometimes can be useful to add the constraints

• x ≥ 0

• x ≤ 1

that can be modelled as

B ≤ b

B =
[−In
In

]

b =
[0
1

]
where

• B ∈ N2nv×nv is a rectangular block matrix composed by two stacked
identity matrices, the first used to model the constraint x ≥ 0 (−x ≤ 0)
and the second used to model the constraint x ≤ 1

171

• b is the vector used to model the previous constrains

This is a NP-hard problem, and can be resolved with one of the several
algorithms available.

7.2.4 Partitioning as graph partitioning problem

7.2.4.1 Introduction

The partitioning of the features can be modelled also as a graph partitioning
(or graph clustering) problem [179].

In this case, we can use an graph G = (V,E,w) where

• the vertices V are the features

• the edges E are pair of features

• the weight function w assigns a weight to vertices and edges

The graph partitioning problem consists in dividing the graph G into k com-
ponents such that the components have similar weights, and this weight must
be maximized, and the sum of weights of the edges with endpoints in differ-
ent parts is minimized. The relation with the feature partitioning problem is
direct:

• the views must have similar prediction ability→ the components must
have similar weights

• features that interfere negatively (they have a lower or negative inter-
action index value) must be separated → the weight of the edges with
endpoints in different parts must be minimized

• features that collaborate (they have a higher positive interaction in-
dex value) must be held together → the weight of edges in the same
component must be maximized

The main difference with the classic graph partitioning problem is that, in
this case, we have a weight assigned to the vertices/features that we must
include in the solution.

172

7.2.4.2 Definitions

As specified previously, the graph G = (V,E,w) is composed by:

• V (set ofvertices) the set of features vi

• E (set of edges) the set of all possible feature pairs eij = {vi, vj}

• w a weight function that assigns a weight to vertices and edges

The weight function assigns:

• the power index value to the vertices (the features)

• the interaction index value to the edge (pair of features)

Because we have an interaction index value between each possible pair of fea-
tures, the graph is complete and, because the interaction index is a symmetric
function, the graph is undirected.

We extend the definition of the weight function to compute the weight for
subsets of V and E:

w(U) =
∑
v∈U

w(v) ∀U ⊆ V

w(D) =
∑
e∈D

w(e) ∀D ⊆ E

There are other two useful measures used in the graph algorithms. The first
is the degree of a vertex, in this case defined as sum of the weights of the
edges incident to the vertex

deg(vi) =
∑
vj∈V

w({vi, vj})

The second is the volume of a subgraph, defined as sum of edge’s weights of
all edges that have one or two vertices in U ⊆ V

173

vol(U) =
∑
vi∈U
vj∈V

w({vi, vj}) =
∑
v∈U

deg(v)

A partition of the graph is a list of subgraphs such that P = 〈V1, . . . , Vk〉 is
a vertices partition, and

Gi = (Vi, Ei)

Ei = {{vi, vj} ∈ E : vi, vj ∈ Vi}

is the subgraph induced by Vi, that is, Gi is composed by Vi and the edges
in E that have both vertices in Vi. The edges cut/removed, to create the
partition, have a weight that can be computed as

cut(U, V) =
∑
vi∈U
vj∈V

w({vi, vj})

cut(P) =
1

2

k∑
i=1

cut(Vi, V \ Vi)

The requirement for the view partitioning can be converted in requirements
for the graph partitioning:

• each view must be predict well: since the power index is the prediction
ability of a feature, we must maximize w(Vi)

• each view must contain collaborating features: since the interaction
index is a measure of collaboration/interference between two features,
we must maximize w(Ei)

• features that does not collaborate must be separated, we must minimize
cut(P)

Then, the problem to resolve is to find the minimum cut [180] that permits
to obtain k components

min
P∈Pk(V)

cut(P)

174

The main drawback of this approach is that it can generate components with
very different weights.

The literature defines two cut variants: the ratio cut [185] and the normalized
cut [181], defined as

RatioCut(P) =
1

2

∑
Vi∈P

cut(Vi, V \ Vi)
w(Vi)

Ncut(P) =
1

2

∑
Vi∈P

cut(Vi, V \ Vi)
vol(Vi)

The RatioCut tries to create subgraphs with similar vertices weights, where
Ncut tries to create subgraphs with similar edges weights.

Our problem is to create subgraphs with similar total weights. We can define
a weighted cut as

Wcut(P) =
1

2

∑
Vi∈P

cut(Vi, V \ Vi)
w(Vi) + vol(Vi)

and to resolve

min
P∈Pk(V)

Wcut(P)

The main property of this approach is the the functions RatioCut, Ncut
and Wcut have a minimum when all terms have similar values.

There is a little problem: not all algorithms are able to use both weights.
Very often they are able to use only the edge weights. A simple strategy to
include the vertex weight is to add, to each vertex, a loop (an edge with that
starts and ends on the same vertex) with the weight equals to the vertex
weight. Using this trick, and, when necessary, using some special rules for
loops, our problem can be reconverted in a problem based on the normalized
cut

min
P∈Pk(V)

Ncut(P) (7.1)

175

7.2.4.3 Spectral Clustering

The Spectral Clustering is an approach to graph partitioning based on the
linear algebra an the properties of the autovectors [186,187].

The method needs the unnormalized Laplacian matrix defined as

L = D −W

where D is the diagonal degree matrix, defined as

Dij =

{
deg(vi), if i = j

0, otherwise.

and W is the symmetric adjacent matrix (or similarity matrix), defined as

Wij = w({vi, vj})

The loops need an special treatment. The matrix D has the property

∑
v∈V

deg(v) = 2w(E)

that is, the sum of the vertices’ degree is equal to the sum of the edges’ weight
multiplied by 2. To ensure that the property is maintained, the weight of the
loop must be inserted into the diagonal of the matrix multiplied by two.

In W the loop’s weight can be inserted as is or multiplied by 2. We need
to insert it multiplied by 2, to ensure that it disappear in D −W . It will
reappear with the normalization.

The next step is to use a normalized Laplacian matrix. The literature defines
two normalized variants

Lsym := D−1/2LD−1/2 = I −D−1/2WD−1/2

Lrw := D−1L = I −D−1W

176

Both matrices are able to resolve the optimization problem 7.1. The solution
is the k eigenvectors u1, . . . , uk with the smallest eigenvalues.

Let U ∈ Rn×k the matrix where the columns are the selected eigenvectors
u1, . . . , uk. The rows can be considered as the coordinates in Rk of the
vertices/features. To improve the partition process, the rows of U must be
normalized to have euclidean norm 1.

The last step is to use the clustering algorithm as, for example, K-means,
to aggregate the nodes in k clusters. The content of each cluster will be the
features assigned to each view.

Function SpectralClustering(G, k)

input : G = (V,E,w) the graph
input : k number of partitions
output: P = 〈V1, . . . , Vk〉 the vertices partition

W ← the adjacent matrix
D ← the degree matrix
L← D −W ;; the Laplacian matrix

Lsym ← D−1/2LD−1/2 ;; the normalized Laplacian matrix
U ∈ Rn×k ← ;; the smallest k autovectors of Lsym
T ← to normalize the rows of U to have euclidean norm 1
P ← to use K-means to create k clusters

return P

Note: a current notebook (2019), with CPU at 2.5GHz, is able to evaluate the
eigenvectors of a 1000× 1000 symmetric matrix in 0.2s, and the eigenvectors
of a 1000× 1000 generic matrix in 1.2s.

7.2.4.4 Multilevel Graph Clustering

One of the most effective method for graph partitioning actually existent, is
the Multilevel Graph Partitioning [182, 183]. The main idea of this class of
algorithms is to simplify the graph collapsing vertices and edges, partition
the reduced graph, then expand the vertices and use some local partition
improvement, until a partition for the original graph is obtained.

One of the properties of this method is to assign to generated vertices a
weight that depends on the collapsed vertices and edges. This means also

177

that it is able to handle graphs with weights assigned also to the original
vertices.

The general structure of the method is based on three phases:

1. coarsening phase: the graph G = G0 is converted in a sequence of
smaller graphs G1, . . . , Gm with w(V0) > w(V1), . . . , w(Vm)

2. partitioning phase: a k-way partition Pm is computed onGm = (Em, Vm)

3. uncoarsening phase: the partition Pm is projected to Gm−1, . . . until
G0 is reached

In the coarsening phase, the graph is analyzed to identify small subgraphs,
with fewer vertices, with nice properties. How to identify these subgraphs is
problem dependent. In our case, for example, we can search not intersecting
feature’s pairs with the highest interaction index value. These subgraphs
will be collapsed to form a single vertex in the next level. In the original
algorithm, to the collapsed vertex is assigned a weights that depends on the
collapsed edges. But this weight can contains also the weights of the collapsed
vertices.

In the partition phase, it is computed a partition of Gm. Here, it is possible
to use any good algorithms available, for example spectral clustering. Since
the weights of the edges in Gm reflect the original weights, the graph contains
enough information to force the partitioner to find a good partition also for
the finer graphs. Also, since Gm has a small number of vertices, the partition
is very efficient.

In the uncoarsening phase, the partition of Gi+1 is projected into the graphs
Gi in the previous level. Since Gi has more vertices, it is possible that the
optimal partition of Gi+1 is not optimal in Gi. Here, it is possible to use
some local refinement heuristic to try to improve it. The general structure of
these algorithms is: select some vertices in two blocks of the partition, swap
them and check if the new partition has a smaller cut weight. This is tried
a selected number of times. Then the process restart with the previous level
until the original graph is reached.

However, because the spectral clustering is enough fast, this approach is useful
only when the graph (and the dataset) has several thousand of features.

178

7.3 Feature partitioning for Co-training

7.3.1 View teaching

In the previous section, we have split the elements of N in v views in the
best possible way. Now we want to use these views in the context of the
co-training.

The co-training is a mechanism used in the Semi-Supervised Learning al-
gorithms to transfer the best prediction’s ability of a view, on a selected
instance of the dataset to another view. The views must have the following
properties:

1. each view must contain features with the best prediction ability

2. collaborating features must stay in the same view

3. interfering features must be in different views

4. each view must be able to teach something to other ones as well as
possible

The ability of teaching introduces some observations

1. the function is not commutative: if Vp is able to teach something to Vq,
nothing is said on the ability of Vq to teach something to Vp

2. each view can teach to each the other ones, but this introduces v(v−1)
relations (it is a clique in a directed graph)

3. we can decrease the prediction ability of a view if this increase its ability
of teaching

The point 2. is the reason of the rule a view is related only with the next one
(and the last view with the first one): in this way, we need to consider only
v relations and not v2.

179

7.3.2 How to evaluate the ability of teaching

We consider a classification problem. We need to evaluate the ability of
a view to teach something to another one. The idea is to follow the same
approach used to evaluate the accuracy of a classification algorithm: we count
how many times Vp is able to teach something to Vq. The method is

1. we select the instances in Vp with the best prediction’s quality

2. we evaluate the prediction’s quality in Vq on the same instances selected
in Vp (each view uses its features on the instance to be analyzed)

3. if the prediction’s quality of Vp is greater than the prediction’s quality
of Vq, of a selected threshold τ , Vp is able to teach to Vq, and this counts
1

The quantity

Tτ (Vp, Vq) =
Vp is able to teach to Vq

instances analyzed

is what we need: the ability of Vp to teach to Vq.

7.3.3 Prediction quality for classification

We must evaluate the quality of a classification prediction. We remember
that the result of a classification algorithm is not the predicted category,
but the vector p with the prediction probability for each category, and the
predicted category is the category with the higher probability.

If there are c categories (to generalize, c > 2), we know that the best predic-
tion is when the probabilities are

p = 〈. . . , 1, . . .〉

that is, the category ci is predicted with probability 1 and the others with
probability 0. The worst prediction is when the probabilities are

180

p = 〈. . . , 1

c
, . . .〉

that is, the prediction’s probability is the same for each category.

The prediction’s quality must be a function such that:

Q(〈. . . , 1, . . .〉) = 1

Q(〈. . . , 1

c
, . . .〉) = 0

The first candidate is, obviously, the entropy

H(p) =
c∑
i=1

−pi log2(pi)

given H(〈. . . , 1, . . .〉) is zero and

H(〈. . . , 1

c
, . . .〉) = − log2(

1

c
) = log2(c)

has the maximum value. The prediction’s quality Q(·) can be defined as

Q(p) = 1− H(p)

log2(c)

Another candidate is the Euclidean norm

‖p‖ =

√√√√ c∑
i=1

p2
i

since ‖〈. . . , 1, . . .〉‖ = 1 is the point with the maximum distance from the
origin, and ‖〈. . . , 1

c
, . . .〉‖ = 1

c

√
c is the minimum distance. The prediction’s

quality can be defined as

181

Q(p) =
‖p‖ − 1

c

√
c

1− 1
c

√
c

Obviously, it is possible to use other distances defined in Rn.

7.3.4 Prediction quality for regression

In general, the prediction of a regression algorithm is only the prediction
value y: it is not sufficient to evaluate the quality of the prediction. If we
obtain, in some way, a mean value µ and its standard error σ, around the
predicted value, we can use the Normal Distribution N (µ, σ2) to evaluate
the quality of the prediction as

Q(v) = 1−
∫ µ+δ

µ−δ
N (x|µ, σ2)dx with δ = |µ− v|

If the value is near to µ, the integral is near to zero, and the quality of
prediction is near to 1. On the other hand, if the value is very far from µ,
the integral is near to 1, and the quality of prediction is near to zero.

A simple method to obtain multiple predictions is, for example, to use the
cross validation.

7.3.5 Prediction quality and ability of teaching

The quality of prediction Q(·) can be used to compare the prediction’s ability
of the two views. Let τ the threshold to use. On a selected instance, Vp is
able to teach to Vp if

Q(p(p)) ≥ Q(p(q)) + τ

where p(p) and p(q) are the prediction probabilities obtained using the features
in Vp and Vq.

182

7.3.6 To evaluate the view’s ability of teaching

Let D a dataset used with some Semi Supervised Learning algorithm AL,
with n features, some labelled instances L and m unlabelled instances U :

D = L ∪ U = 〈dj : j = [1, . . .]〉
dj = 〈dji : i ∈ N〉

and let

dpj = 〈dji : i ∈ Vp〉
Dp = Lp ∪ Up = 〈dpj : j = [1, . . .]〉

the instances and the dataset with the features in Vp (and in Vq).

Let ApL(·) and AqL(·) the algorithms trained with Lp and Lq and

p
(p)
i = ApL(dpi)

p
(q)
i = AqL(dqi)

the predictions obtained from the algorithms on the unlabelled instance di ∈
U .

We can defined the function Vp can teach to Vq as

Tτ (Vp, Vq, i) =

{
1, if Q(p

(p)
i) ≥ Q(p

(q)
i) + τ

0, otherwise

The the ability of Vp to teach to Vq is

Tτ (Vp, Vq) =
1

m

m∑
i=1

Tτ (Vp, Vq, i)

and the ability of teaching of the partition V(N)

183

Tτ (V(N)) =
1

v

v∑
p=1

Tτ (Vp, Vp⊕1)

If we consider all possible pairs of views, this definition is

Tτ (V(N)) =
1

v(v − 1)

v∑
p,q=1
q 6=p

Tτ (Vp, Vq)

The teaching function Tτ (·) is a partition function

Tτ : Pv(N)→ R

given it is evaluated on V(N), a partitions of N in v blocks (the views).

7.3.7 Partition with the best ability of teaching

To find the partition with the best teaching ability we can check all possible
partitions in v views

max
V(N)
Tτ (V(N))

The number of partitions of n elements in v blocks is computed by Stirling
numbers of the second kind

{
n
v

}
[173]. This number grows with order O(nn),

more quickly than 2n. This means that, as for the set functions, it is impos-
sible to analyze all possible partitions. The solution is to approximate the
function with a more simple one.

7.3.8 Approximation of the ability of teaching

The ability of teaching function Tτ evaluates the ability of the view Vp to
teach something to the view Vq:

184

Tτ (Vp, Vq)

the two views can be two arbitrary not-intersecting subsets of N .

To approximate the function, the most simple solution is to find a first-order
approximation in 2 parameters, such that

Tτ (S, T) ≈
∑
i∈T

∑
j∈S

Tτ (i, j)

where Tτ (i, j) is the ability of i to teach something to j.

We can define the Teaching Index Tτ (i, j) as

Tτ (i, j) =
∑

T⊆N\ij

∑
S⊆N\ij\T

1{
n−2

3

}∆ijTτ (T, S)

where

∆ijTτ (T, S) = Tτ (T ∪ i, S ∪ j)
− Tτ (T ∪ i, S)

− Tτ (T, S ∪ j)
+ Tτ (T, S)

and
{
n−2

3

}
is the number of partitions, of a set with n − 2 elements, in 3

blocks: the two views and the set of excluded elements.

The expression is similar to the interaction index of the second degree: it
measures the net ability of i to teach to j, excluding the other elements in

185

the blocks.

Function TeachingIndex(Tτ , n,m,D)

input : Tτ teaching function
input : n number of elements in the set
input : m number of samples to use
input : D parameters for the set generator
output: matrix of teaching indices

v ← 0 ∈ Rn×n ;; cumulative values
c← 0 ∈ Zn×n ;; pair counts
for t ∈ [1,m] do

T ← RandomSubset(n,D) ;; teacher set
S ← RandomSubset(n,D) ;; student set
S ← S \ T ;; the sets must have empty intersection
for i ∈ T, j ∈ S do

vij ← vij + ∆ijTτ (T \ i, S \ j)
cij ← cij + 1

end

end

t← 0 ∈ Rn×n

for ij ⊆ N do
tij ← vij/cij

end

return t

7.3.9 The co-training optimization problem

Now we have all components to define the complete optimization problem
for the co-training: we must find a partition of N in v views such that

1. each view is able to predict as well as possible

2. each view interferes with the others as less as possible

3. each view is able to teach something to the other views as well as
possible

The problem can be rewritten as:

186

max
V(N)

v∑
p=1

(
φξ(Vp) + I

(2)
ξ (Vp)

)
−

v∑
p=1
q=p⊕1

∑
i∈Vp
j∈Vq

(
Iξ(ij)− Tτ (i, j)

)

7.3.10 Co-training as quadratic programming problem

The problem can be rewritten as an integer programming problem

max
x

v∑
p=1

(∑
i∈N

φξ(i)xpi +
∑
ij⊆N

Iξ(ij)xpixpj

)

−
v∑
p=1
q=p⊕1

∑
ij∈N

(
Iξ(ij)− Tτ (i, j)

)
xpixqj

s.t.
v∑
p=1

xpi = 1 ∀i ∈ N

xpi ∈ {0, 1} ∀p ∈ [1, v],∀i ∈ N

The structure of this problem is similar to the previous one. The difference
is in the matrix Q

Q =

[
Iξ(ij)

]
11

. . .
[
−Iξ(ij) + Tτ (i, j)

]
1v

. . .
[
Iξ(ij)

]
pp

. . .[
−Iξ(ij) + Tτ (i, j)

]
v1

. . .
[
Iξ(ij)

]
vv

this matrix is not symmetric because the Teaching Index is not symmetric

Tτ (i, j) 6= Tτ (j, i)

However, there are standard methods to convert this problem in an equivalent
quadratic programming optimization problem [67].

187

7.3.11 Co-training as graph partitioning problem

To model the co-training problem as a graph partitioning problem is an open
problem. To simplify the description, we can suppose to extend the graph
with teaching edges, a new type of direct edges used to model the partition’s
ability of teaching. These edges introduce some complications

1. the teaching edges have a direction

2. the teaching edges are useful only in parallel with the cut-edges and
only between Vp and Vp⊕1

3. the partitioning must minimize the cut-edges and maximize the teach-
ing edges

Because the graph contains directed edges, it must considered as a direct
graph. In this case, it is not possible to use the algorithms used for the
undirected graphs, but it is necessary to consider the algorithms specific for
direct ones [184].

For example, because the adjacent matrix is not symmetric, also the Lapla-
cian matrix will be not symmetric, and eigenvectors and eigenvalues will be
complex.

But this is not enough: since the teaching edges must be considered only with
cut-edges, this breaks the conditions on which the algorithms were designed.

A possible solution is to use the Multilevel graph partitioning algorithm, be-
cause it is not difficult to consider the teaching edges during the uncoarsening
phase.

7.4 Feature partitioning with different algo-

rithms

7.4.1 The 2nd degree mixed interaction index

In Section 7.2 we have used the same set function to compute the interaction
indices for the elements in the same view and in different views. To use the

188

same set function is valid only if we are using the same Machine Learning
algorithm, with the same configuration parameters, for all views.

If we use the same algorithm with different parameters or different algo-
rithms, we must associate each view with a different set functions. Now, we
need a function to evaluate the quality of prediction for a selected partition
(list of v views). We can define the partition function induced by the set
functions (set functions assigned to each view) as

ΞV(N)(S) =
v∑
p=1

ξp(S ∩ Vp)

as specified in section 2.4.

Now, we can define the 2nd degree mixed interaction index between the views
Vp and Vq, in the similar way as the probabilistic indices, and the teaching
index

IpqΞ (ij) =
∑

T⊆N\ij

ppqij (T)∆pq
ij ΞV(N)(T) (7.2)

with 〈ppqij (T) : T ⊆ N \ ij〉 a probability distribution. Selecting the weights
for the partitions and for the sets, we can define one of the several power
indices based on partitions, as the Owen-Shapley [92], Owen-Banzhaf [93],
Banzhaf-Banzhaf [94], or we can use the new classes of power indices.

7.4.2 Partitioning as quadratic programming problem

Using the mixed interaction indices, the problem can be rewritten as

max
V(N)

v∑
p=1

(
φξ(Vp) + I

(2)
ξ (Vp)

)
−

v∑
p=1
q=p⊕1

∑
i∈Vp
j∈Vq

(
IpqΞ (ij)− Tτ (i, j)

)

Using the same methods used in Section 7.3.9, it can be converted in a
Quadratic programming optimization problem, and resolved using standard
methods.

189

7.5 Conclusions

In this chapter we have extended the usage of the Game Theory in the context
of the feature partitioning. We have sees that the concepts of power index
and interaction index can be used to describe the importance of features
in the predictions’ quality of the Machine Learning algorithms, and can be
used to split the features in two or more views in the best possible way. We
have also used the Game Theory applied to partition functions to model the
concepts of ability of teaching of a view toward another one, and to model
the problem of view partitioning when they are used with different Machine
Learning algorithms.

190

Chapter 8

Effectiveness of Power Index
based methods

8.1 Introduction

To check the validity of our approach, we have applied the methods described
in the previous chapters on a selected list of datasets downloaded from UCI
Machine Learning Repository [176].

Because we are interested to compare the methods with the true results, we
have selected datasets that can be used for classification with a maximum
of 20 features. Then, we have tabulate the accuracy of all possible subsets
(2n) using a simple Decision Tree. We have selected the DT because it is the
fastest algorithm available and has no limitations on the value types.

To implement the algorithms and to plot he results, we have used

• Python 3 [177]

• scikit-learn, a popular Machine Learning library [189]

• matplotlib, a popular plotting library [190]

• several our libraries

We have used the classification algorithms tree.DecisionTreeClassifier

191

with the default configurations. The general structure of the results changes
very little using other algorithms.

It is possible to improve the accuracy tuning the hyper-parameters, but this
is not the goal of this analysis.

8.2 Accuracy behaviour

The first questions are

1. which is the accuracy of the algorithm, selecting 1, 2 or more features?

2. how does the accuracy change selecting the features in different order?

To answer to these questions we have generated the following plots: each
line is generated selecting a random permutation of the features, selecting
the first 1, 2, . . . features and computing the accuracy on the obtained set.

The interesting aspects of the diagrams are

1. the envelope of the diagrams, that is, the minimum and maximum
accuracy for each sets’ cardinality selected

2. the global behaviour of the accuracy: flat, increasing or decreasing

192

193

194

8.3 Accuracy properties

For each dataset, we have tabulated the accuracy. Since the accuracy is a
set function, it can be:

• monotone (increasing)

• sub/super/- additive

• sub/super/- modular

To evaluate the correspondence of the functions with the previous defini-
tions, we have count how many times the functions satisfies the definitions,
generating all possible subset pairs.

195

The following table shows that

• they are sub-additive

• they are sub-modular (more or less) at 60− 80%

• they are super-modular (more or less) at 3− 6%

name nf mon add suba supa mod subm supm

abalone 8 0.628 0.006 0.942 0.064 0.206 0.603 0.603

adult 14 0.665 0.0 0.989 0.011 0.038 0.625 0.413

autism 20 0.769 0.0 0.998 0.003 0.072 0.647 0.424

avila 10 0.849 0.001 0.895 0.106 0.114 0.803 0.311

bank-market 16 0.28 0.0 0.995 0.005 0.022 0.203 0.82

bcancer 10 0.747 0.005 0.968 0.037 0.172 0.757 0.415

climate-crashes 20 0.659 0.0 0.998 0.002 0.097 0.562 0.536

eegeye 14 0.994 0.0 0.982 0.018 0.037 0.949 0.088

glass 10 0.866 0.007 0.953 0.055 0.191 0.802 0.388

image-seg 19 0.792 0.002 0.992 0.01 0.105 0.715 0.391

pendigits 16 0.999 0.0 0.984 0.016 0.022 0.992 0.029

retinopathy 19 0.672 0.0 0.997 0.003 0.04 0.621 0.419

seismic-bumps 18 0.309 0.0 0.998 0.002 0.05 0.359 0.692

thoracic 16 0.253 0.001 0.998 0.002 0.1 0.487 0.613

winequality-red 11 0.864 0.001 0.966 0.035 0.104 0.765 0.339

winequality-white 11 0.89 0.001 0.965 0.036 0.093 0.807 0.286

wine 13 0.883 0.004 0.984 0.02 0.166 0.837 0.33

Table 8.1: Accuracy properties

with:

• nf: number of features

• mon: non-decreasing monotonicity

196

• add: additivity

• suba: sub additivity

• supa: super additivity

• mod: modularity

• subm: sub modularity

• supm: super modularity

8.4 Approximation of Power Indices

The following plots show how the mean absolute error between the true
Power Index value (φξ(i)) and the approximated one (φ̃ξ(i)), decreases with
the number of samples. The approximation of the Shapley Value is computed
using the definition based on sets.

The mean absolute error, for a selected approximation, is computed as:

mae =
1

n

∑
i∈N

|φξ(i)− φ̃ξ(i)|

197

198

199

Because the error decrease very quickly, then it remains approximately stable,
we can reach a stable order very quickly. Indeed, in the following table, we
can observe that a stable order is reached using a very limited number of
samples (this is partially true for sets with a small number of feature, as for
abalone).

The order of k elements is considered stable if it remain the same for a
selected number of epochs (in this case 4).

200

Table 8.2: Stopping criteria

name n nsets type np m nsamples stable

abalone 8 256 bv 4 10 240 8

abalone 8 256 sv 4 10 210 8

adult 14 16384 bv 4 100 800 14

adult 14 16384 sv 4 100 1000 14

autism 20 1048576 bv 4 100 3300 20

autism 20 1048576 sv 4 100 5400 20

avila 10 1024 bv 4 10 230 10

avila 10 1024 sv 4 10 100 10

bank-market 16 65536 bv 4 100 700 16

bank-market 16 65536 sv 4 100 1200 16

bcancer 10 1024 bv 4 10 300 10

bcancer 10 1024 sv 4 10 190 10

climate-crashes 20 1048576 bv 4 100 3700 20

climate-crashes 20 1048576 sv 4 100 3600 10

eegeye 14 16384 bv 4 100 1300 14

eegeye 14 16384 sv 4 100 900 14

glass 10 1024 bv 4 10 90 10

glass 10 1024 sv 4 10 170 10

image-segmentation 19 524288 bv 4 100 2400 19

image-segmentation 19 524288 sv 4 100 1800 19

pendigits 16 65536 bv 4 100 1900 16

pendigits 16 65536 sv 4 100 1700 16

retinopathy 19 524288 bv 4 100 4700 19

retinopathy 19 524288 sv 4 100 2700 19

seismic-bumps 18 262144 bv 4 100 4100 18

seismic-bumps 18 262144 sv 4 100 8400 18

thoracic 16 65536 bv 4 100 3600 16

thoracic 16 65536 sv 4 100 2300 16

wine 13 8192 bv 4 81 1134 13

201

name n nsets type np m nsamples stable

wine 13 8192 sv 4 81 1053 13

winequality-red 11 2048 bv 4 20 400 11

winequality-red 11 2048 sv 4 20 320 11

winequality-white 11 2048 bv 4 20 380 11

winequality-white 11 2048 sv 4 20 280 11

The columns are:

• name: name of the datase

• n: n. of features

• nsets: n. of different subsets (2n)

• type: power index used to evaluate the order

• np: n. of times that the order must be stable

• m: n. of samples used in each epoch

• nsamples: n. of samples used to reach the stable order

• stable: n. of elements in the stable order

The last column (stable) contains the maximum number of stable elements:
it is possible to observe that we have reached a stable order for all features.

8.5 Power and Interaction Indices

The following images show the distribution of the values between the power
indices (the diagonal) and the interaction indices for Banzhaf (first column)
and Shapley (second column).

202

203

204

205

206

207

8.6 Feature Selection

Another question is: is there an algorithm that works better than the others?

To answer this question, we have compared the quality of the feature selection
using the following algorithms:

• ws - Worst Set : it select the set with the worst accuracy

• bs - Best Set : it select the set with the best accuracy

208

• sfs - Sequential Forward Selection: a classic greedy algorithm that, at
each step, add the best feature

• sbe - Sequential Backward Elimination: a classic greedy algorithm
that, at each step, remove the worst feature

• sv - Shapley Value: it select the features with the best Shapley Value

• bv - Banzhaf Value: it select the features with the best Banzhaf Value

• ksv - K-Shapley Value: it select the features with the best Shapley
Value computed on sets with cardinality k

• kbv - K-Banzhaf Value: it select the features with the best Banzhaf
Value computed on sets with cardinality k

To find the worst set and the best set we have implemented a library with
several heuristic optimization algorithms (containing several algorithms avail-
able in [164]). We have used two different algorithms (Tabu-Search and Ge-
netic Algorithms) executed three times (with different parameters) to be sure
to obtain the same results.

For each dataset there are 4 plots:

1. the accuracy of the set identified by the algorithm

2. the relative accuracy, where 0 is the worst accuracy, and 1 the best
accuracy

3. the comparison between the relative accuracy obtained selecting the
features using Banzhaf Value (blue) and K-Banzhaf Value (yellow)

4. the comparison between the relative accuracy obtained selecting the
features using Shapley Value (blue) and K-Shapley Value (yellow)

It is possible observe that there is not an algorithm that performs better
than others. Also, the k variant of the power indices are not better than
the original one. The last observation is that very often, when the greedy
method (SFS) works well, the power index approach works bad, and when
the greedy works bad, the power index works well. Sometimes, the methods
are equivalent.

209

210

211

212

213

214

215

216

217

8.7 Power Indices vs Greedy Method

To evaluate when the approach based on power indices is better than the
greedy algorithm, we must apply each approach to several different datasets.
The main problem is to find these data sets. An alternative solution is to
generate synthetic set functions.

To generate realistic set functions, that is functions with a behaviour similar
to real ones, is very difficult. We have tried several approaches, and some of
them are:

• it is defined a lower bound and an upper bound for each cardinality,
and the value of the function on a set S is a random number between
these bounds. We have used two bound’s profiles and for each profile
we have used some squeezed variants (images luv2 and luv3)

• we can generate the function as sum of interaction indices until a max-

218

imum degree (in general this is n, but this is not necessary - images
collab).

• we can generate the function from random Möbius coefficients (images
mobius)

219

220

We have observed very strange behaviours. For example, consider the fol-
lowing function properties

221

the columns are:

1. name: name of the function

2. nf: number of features

3. k: cardinality of the subset/n. of features selected

4. ws: (worst set) worst function’s value for the selected cardinality

5. bs: (best set) best function’s value for the selected cardinality

6. pfs: relative function’s value on the set selected by sequential forward
selection (in the range [0, 1] where 0 is the worst value and 1 is the best
value)

7. pbv: relative value of the set selected using the Banzhaf Value

8. psv: relative value of the set selected using the Shapley Value

9. pkbv: relative value of the set selected using the K-Banzhaf Value

10. pksv: relative value of the set selected using the K-Shapley Value

We can observe that:

• the greedy method is very good

222

• for some cardinality, the power index based approach is very bad (yellow
cells)

• methods based on K-Banzhaf Value and K-Shapley Value identify the
same set (the column values are the same). We have checked several
times to be sure that the values calculated with the two methods are
actually different

We have also cases where the approach based on the game theory is very
good:

We have observed the same behaviour on all generated functions, regardless
of the algorithm used for generation.

It is not clear why there are these behaviours. The main hypothesis is the
randomness of the function.

8.8 Feature Partitioning

To evaluate the quality of the partitioning, using power and interaction in-
dices and spectral clustering, we compared them with the worst and the best
partitioning identified using an library for discrete optimization problems.
To be sure that the the solution found are correct, we applied the different

223

approaches, tuning the parameters, until we obtained the same solutions 3
times.

The results are available in the following table. The columns are:

1. name: name of the dataset

2. nf: number of features

3. type: method used to partition the features

(a) ws: the worst selected partitioning possible, based on the set func-
tion

(b) bs: the best selected partitioning possible, based on the set func-
tion

(c) bv: the partitioning based on Banzhaf Value and Interaction In-
dex

(d) sv: the partitioning based on Shapley Value and Interaction Index

(e) spbv: the partitioning based on Spectral Clustering, Banzhaf
Value and Interaction Index

(f) spsv: the partitioning based on Spectral Clustering, Shapley
Value and Interaction Index

4. q1/2. . . : accuracy of the view 1 of the partition in 2 views, etc

5. qp2. . . : quality of the partition, as sum of the views’ accuracy

A partition is a good partition if

• the accuracy of all views are similar

• the accuracy of all views are near the accuracy of the best partition
(bs)

We have experimented a partitioning in 2 and 3 views.

224

Table 8.3: Feature Partitioning properties

name nf type q1/2 q2/2 qp2 q1/3 q2/3 q3/3 qp3

abalone 8 ws 0.4383 0.4371 0.8754 0.4335 0.4192 0.4599 1.3126

abalone 8 bs 0.4982 0.509 1.0072 0.4994 0.509 0.4994 1.5078

abalone 8 sv 0.479 0.4743 0.9533 0.4778 0.4707 0.4431 1.3916

abalone 8 bv 0.4934 0.497 0.9904 0.503 0.4527 0.4431 1.3988

abalone 8 spbv 0.4647 0.4802 0.9449 0.4539 0.4467 0.4886 1.3892

abalone 8 spsv 0.4766 0.4467 0.9234 0.4335 0.4467 0.4635 1.3437

adult 14 ws 0.8301 0.6841 1.5141 0.8137 0.6841 0.7625 2.2602

adult 14 bs 0.818 0.8348 1.6527 0.787 0.8306 0.835 2.4525

adult 14 sv 0.7853 0.8652 1.6505 0.7753 0.8225 0.8343 2.432

adult 14 bv 0.7838 0.8674 1.6512 0.7698 0.8459 0.8248 2.4405

adult 14 spbv 0.7582 0.7936 1.5518 0.7971 0.788 0.7582 2.3433

adult 14 spsv 0.7774 0.7648 1.5423 0.7625 0.7997 0.709 2.2712

autism 20 ws 0.8857 0.6 1.4857 0.8786 0.6429 0.6571 2.1786

autism 20 bs 0.9571 0.9143 1.8714 0.8857 0.9214 0.9286 2.7357

autism 20 sv 0.85 0.9429 1.7929 0.8786 0.8214 0.8857 2.5857

autism 20 bv 0.8857 0.9429 1.8286 0.8857 0.8714 0.8929 2.65

autism 20 spbv 0.6786 0.8929 1.5714 0.8429 0.9286 0.6786 2.45

autism 20 spsv 0.7643 0.85 1.6143 0.7571 0.8929 0.7214 2.3714

avila 10 ws 0.96 0.2559 1.2159 0.9741 0.2559 0.2466 1.4766

avila 10 bs 0.9717 0.7898 1.7616 0.9578 0.8267 0.4783 2.2629

avila 10 sv 0.9377 0.809 1.7467 0.6053 0.8133 0.63 2.0486

avila 10 bv 0.9377 0.809 1.7467 0.5974 0.7997 0.6302 2.0273

avila 10 spbv 0.9768 0.2737 1.2504 0.9741 0.2466 0.2559 1.4766

avila 10 spsv 0.9768 0.2737 1.2504 0.2559 0.2466 0.9741 1.4766

bank-market 16 ws 0.8279 0.8251 1.6529 0.8264 0.8091 0.8793 2.5148

bank-market 16 bs 0.8786 0.8926 1.7712 0.8786 0.8918 0.8859 2.6564

bank-market 16 sv 0.874 0.8799 1.7538 0.8665 0.8818 0.891 2.6393

bank-market 16 bv 0.8761 0.8921 1.7682 0.8747 0.8832 0.8921 2.65

bank-market 16 spbv 0.8628 0.8296 1.6924 0.878 0.8665 0.8922 2.6367

225

name nf type q1/2 q2/2 qp2 q1/3 q2/3 q3/3 qp3

bank-market 16 spsv 0.8708 0.8243 1.6951 0.8142 0.8805 0.875 2.5698

bcancer 10 ws 0.6403 0.8921 1.5324 0.6403 0.8849 0.7914 2.3165

bcancer 10 bs 0.9568 0.9424 1.8993 0.9496 0.9353 0.9424 2.8273

bcancer 10 sv 0.9353 0.9137 1.8489 0.9353 0.9281 0.9281 2.7914

bcancer 10 bv 0.9353 0.9137 1.8489 0.9496 0.9065 0.9281 2.7842

bcancer 10 spbv 0.9065 0.8777 1.7842 0.8417 0.9065 0.9065 2.6547

bcancer 10 spsv 0.8129 0.8777 1.6906 0.8849 0.9137 0.9137 2.7122

cli-crashes 20 ws 0.8241 0.7037 1.5278 0.6759 0.75 0.787 2.213

cli-crashes 20 bs 0.9259 0.8889 1.8148 0.8981 0.9074 0.9167 2.7222

cli-crashes 20 sv 0.9074 0.8796 1.787 0.8704 0.8704 0.8796 2.6204

cli-crashes 20 bv 0.8148 0.8796 1.6944 0.8241 0.8796 0.8611 2.5648

cli-crashes 20 spbv 0.8333 0.8426 1.6759 0.8611 0.8333 0.8426 2.537

cli-crashes 20 spsv 0.8426 0.7778 1.6204 0.8148 0.8241 0.8148 2.4537

eegeye 14 ws 0.8284 0.536 1.3645 0.8074 0.5464 0.5391 1.8929

eegeye 14 bs 0.7707 0.8114 1.5821 0.7644 0.7814 0.6182 2.1639

eegeye 14 sv 0.7964 0.747 1.5434 0.6822 0.7387 0.6999 2.1208

eegeye 14 bv 0.7964 0.747 1.5434 0.7109 0.7387 0.6846 2.1342

eegeye 14 spbv 0.5738 0.8218 1.3955 0.5738 0.8164 0.5831 1.9733

eegeye 14 spsv 0.6335 0.8064 1.4399 0.5738 0.8061 0.5484 1.9282

glass 10 ws 0.2143 0.6905 0.9048 0.3333 0.6905 0.2143 1.2381

glass 10 bs 0.8333 0.6667 1.5 0.5952 0.7381 0.7381 2.0714

glass 10 sv 0.6905 0.7143 1.4048 0.5952 0.7381 0.5714 1.9048

glass 10 bv 0.5952 0.7619 1.3571 0.6905 0.6905 0.5952 1.9762

glass 10 spbv 0.5238 0.7381 1.2619 0.5238 0.6429 0.5238 1.6905

glass 10 spsv 0.2143 0.6905 0.9048 0.4762 0.6905 0.5238 1.6905

image-seg 19 ws 0.8333 0.0476 0.881 0.7857 0.0476 0.0714 0.9048

image-seg 19 bs 0.9286 0.9286 1.8571 0.9048 0.9048 0.9286 2.7381

image-seg 19 sv 0.881 0.9048 1.7857 0.8571 0.881 0.8333 2.5714

image-seg 19 bv 0.881 0.8333 1.7143 0.881 0.8333 0.881 2.5952

image-seg 19 spbv 0.2619 0.881 1.1429 0.4524 0.881 0.2381 1.5714

image-seg 19 spsv 0.1905 0.8571 1.0476 0.2381 0.881 0.1905 1.3095

226

name nf type q1/2 q2/2 qp2 q1/3 q2/3 q3/3 qp3

pendigits 16 ws 0.9613 0.2197 1.1811 0.9554 0.2197 0.2266 1.4017

pendigits 16 bs 0.9522 0.9409 1.8931 0.8722 0.8967 0.9067 2.6756

pendigits 16 sv 0.9354 0.95 1.8853 0.8658 0.9258 0.8571 2.6488

pendigits 16 bv 0.9463 0.9459 1.8922 0.8722 0.9113 0.8744 2.6579

pendigits 16 spbv 0.8157 0.9031 1.7188 0.7038 0.8617 0.6187 2.1843

pendigits 16 spsv 0.8062 0.8931 1.6993 0.626 0.4763 0.9277 2.03

retinopathy 19 ws 0.4652 0.5478 1.013 0.4391 0.5696 0.4652 1.4739

retinopathy 19 bs 0.6609 0.7217 1.3826 0.6565 0.6522 0.7304 2.0391

retinopathy 19 sv 0.6696 0.6348 1.3043 0.6391 0.6652 0.5652 1.8696

retinopathy 19 bv 0.6739 0.6565 1.3304 0.6304 0.6478 0.6478 1.9261

retinopathy 19 spbv 0.5609 0.6087 1.1696 0.5217 0.5348 0.6087 1.6652

retinopathy 19 spsv 0.513 0.587 1.1 0.587 0.587 0.5609 1.7348

seis-bumps 18 ws 0.8605 0.845 1.7054 0.8605 0.8624 0.845 2.5678

seis-bumps 18 bs 0.9089 0.9205 1.8295 0.9167 0.9205 0.9186 2.7558

seis-bumps 18 sv 0.8876 0.9167 1.8043 0.8702 0.9012 0.9128 2.6841

seis-bumps 18 bv 0.9031 0.9205 1.8236 0.9031 0.9205 0.9205 2.7442

seis-bumps 18 spbv 0.9186 0.8915 1.8101 0.8818 0.9167 0.9205 2.719

seis-bumps 18 spsv 0.8663 0.8779 1.7442 0.874 0.8643 0.8798 2.6182

thoracic 16 ws 0.7021 0.6064 1.3085 0.6915 0.7128 0.7234 2.1277

thoracic 16 bs 0.8191 0.8617 1.6809 0.8404 0.8723 0.8404 2.5532

thoracic 16 sv 0.7872 0.7872 1.5745 0.8511 0.7872 0.8404 2.4787

thoracic 16 bv 0.8191 0.7766 1.5957 0.8511 0.7234 0.8404 2.4149

thoracic 16 spbv 0.8085 0.6809 1.4894 0.8085 0.8085 0.7553 2.3723

thoracic 16 spsv 0.6489 0.7553 1.4043 0.7234 0.8404 0.7128 2.2766

wineq-red 11 ws 0.627 0.3919 1.0188 0.5486 0.4765 0.3919 1.4169

wineq-red 11 bs 0.6552 0.6238 1.279 0.6144 0.6364 0.6301 1.8809

wineq-red 11 sv 0.5862 0.6144 1.2006 0.5674 0.627 0.5674 1.7618

wineq-red 11 bv 0.5799 0.627 1.2069 0.5987 0.6301 0.6207 1.8495

wineq-red 11 spbv 0.5799 0.5674 1.1473 0.5987 0.5549 0.5141 1.6677

wineq-red 11 spsv 0.5705 0.558 1.1285 0.5643 0.5705 0.5643 1.6991

wineq-white 11 ws 0.4382 0.5822 1.0204 0.5822 0.4413 0.4321 1.4556

227

name nf type q1/2 q2/2 qp2 q1/3 q2/3 q3/3 qp3

wineq-white 11 bs 0.621 0.6231 1.2441 0.6016 0.6108 0.62 1.8325

wineq-white 11 sv 0.5996 0.6272 1.2268 0.5751 0.6159 0.5628 1.7538

wineq-white 11 bv 0.6067 0.5986 1.2053 0.572 0.6159 0.5935 1.7814

wineq-white 11 spbv 0.5689 0.5853 1.1542 0.4688 0.5945 0.573 1.6364

wineq-white 11 spsv 0.5914 0.5863 1.1777 0.4688 0.4382 0.5945 1.5015

wine 13 ws 0.9143 0.3429 1.2571 0.9143 0.3429 0.3429 1.6

wine 13 bs 1 1 2 0.9714 0.9714 1 2.9429

wine 13 sv 0.9143 1 1.9143 0.9429 0.9429 0.8857 2.7714

wine 13 bv 0.9714 0.9429 1.9143 0.9714 0.9143 0.9143 2.8

wine 13 spbv 0.8571 0.6857 1.5429 0.9143 0.7143 0.7143 2.3429

wine 13 spsv 0.8571 0.6857 1.5429 0.8857 0.8 0.7429 2.4286

If we map the worst partition to 0 and the best partition to 1, the following
plots show the quality of the partition obtained using the Banzhaf Value and
Interaction Index and the Shapley Value and Interaction Index.

228

229

The following plots confirms that the views have very similar prediction’s
ability: each dot is the prediction’s ability of a view for a selected dataset

230

231

The spectral clustering approach is not good as the previous one. This is
visible in the following plots

232

233

The partition found is very far from the optimal one. We have also another
problem: very often the accuracy of the views is very different. This is visible
in the following plots

234

235

We can observe that the points are often not close to each other.

8.9 Generated predictions

In the following images, each pixel is the quality of prediction for a instance (x
axis) using a subset of features (y axis, feature’s set represented as integer).

In the first column, we have used a Decision Tree, in the second column the
Näıve Bayes method.

The visual effect of the increased prediction’s quality, using more features, is
a transition from dark magenta to yellow. Unfortunately, this transition is
not visible in the following images, confirmed by the flat diagrams available
in 8.2.

236

237

238

8.10 Teaching ability

In section 8.8 we have seen that it is possible to split a dataset in two o more
views with a good prediction’s ability. A view is able to teach something to
another view if in the first view there is a instance with good prediction and
in the second view, the prediction, on the same instance, is very bad.

Unfortunately, with the used datasets, it is very difficult to find this condi-
tion. The following table shows a classical result obtained during the com-
putation of the teaching index, and using a difference between the best and
the worst prediction’s quality of 0.1.

name nf ni nt

abalone dt 8 835 3

adult dt 14 9768 1

avila dt 10 4173 2

bank market dt 16 9039 1

bcance dt 10 139 6

eegey dt 14 2996 3

glass dt 10 42 0

pendigits dt 16 2198 7

thoracic dt 16 94 1

winequality-red dt 11 319 1

winequality-white dt 11 979 4

wine dt 13 35 7

Table 8.4: Available teaching instances

where

• name: name of the dataset

• nf: number of features

• ni: number of instances

239

• nt: number of usable teaching instances

The extremely small number of teaching instances (or its absence) prevents
the possibility to evaluate the teaching index fore the features and the teach-
ing ability of the views.

The main problem, obviously, is that the dataset contains features that are
good or bad predictors on the same instances. To obtain a good teaching
index it is necessary to collect features such that different features are good
predictors on different instances.

240

8.11 When the CGT based methods are not

useful

The computation of power indices is very expensive. This means that using
the game theory to select the best players (or features) is useful only if the
function has not nice properties. This occurs because, if the functions have
nice properties, there exist more efficient algorithms to use.

For example, if the set function is additive, the worth of a coalition is

ξ(S) =
∑
i∈S

= ξ(i)

In this case, Banzhaf Value is

φBξ (i) =
1

2n−1

∑
S⊆N\i

∆iξ(S) =
1

2n−1

∑
S⊆N\i

ξ(i) =
2n−1

2n−1
ξ(i) = ξ(i)

and the order induces by the power index is the same induced by the value
assigned to each player.

If the set function depends only on the coalition’s cardinality (ξ(S) = l(s)),
we have:

φBξ (i) =
1

2n−1

∑
S⊆N\i

∆iξ(S) =
1

2n−1

n∑
k=0

(
n

k

)
l(k)

and, because the Banzhaf Value doesn’t depend on the coalition’s members,
all players have the same value.

If a player i interferes with all others, we have that ∆iξ(S) is negative for
all coalitions, then the Banzhaf Value will be negative and, if we order the
players (in decreasing way), i will be posted at the end of the list and it will
be selected lastly.

If it is possible to assign some score s(i) to each player i ∈ N (here, the score
is only a fictional numerical value useful to assign an order to the players),

241

and the function has the following property:

1.
∑

i∈S s(i) ≤
∑

i∈T s(i)→ ξ(S) ≤ ξ(T)

it is not difficult to demonstrate that if s(a) ≤ s(b) we have φBξ (a) ≤ φBξ (b),
that is, the order assigned by power indices is the same order based on the
player’s scores.

For example, we consider the coalition S that contains the players a and b
with s(a) < s(b), and the coalitions Sa = S \ a, Sb = S \ b:

∆aξ(Sa) = ξ(S)− ξ(Sa)
∆bξ(Sb) = ξ(S)− ξ(Sb)

∆bξ(Sb)−∆aξ(Sa) = ξ(S)− ξ(Sb)− ξ(S) + ξ(Sa) = ξ(Sa)− ξ(Sb)

but

∑
i∈S

s(i) =
∑
i∈Sa

s(i) + s(a) =
∑
i∈Sb

s(i) + s(b)∑
i∈Sb

s(i)−
∑
i∈Sa

s(i) = s(b)− s(a) ≥ 0

this means that

ξ(Sb) ≥ ξ(Sa)

ξ(Sb)− ξ(Sa) ≥ 0

∆bξ(Sb)−∆aξ(Sa) ≥ 0

∆bξ(Sb) ≥ ∆aξ(Sa)

that is, if s(a) ≤ s(b) we have ∆aξ(Sa) ≤ ∆bξ(Sb) and, because the power
indices are means of the first derivatives, we have φξ(a) ≤ φξ(b).

In a more general sense, if each local maximum is also global, there are more
efficient algorithms to select the best elements.

242

8.12 When the CGT based methods are use-

ful

The concepts used in the Coalitional Game Theory have a little problem:
they are weighted mean of the marginal contributions of players, where the
problem to solve is finding the coalition with the maximum value.

A possible approach, obviously, is to find explicitly this maximum, using one
of several heuristic optimization algorithms available.

We consider the lattice

Ø

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Figure 8.1: Subset relation

Suppose using the Greedy Forward Selection algorithm to select the
best set of players with cardinality 1, 2 and 3. The algorithm starts from
the empty set and check the function value on the sets with cardinality 1
({1}, . . . , {4}). We suppose that the maximum value is in {1}.

The next step is to select the best set, with cardinality 2, containing 1. To
do this, the algorithm analyzes only the sets {1, 2}, {1, 3}, {1, 4}, excluding
the other sets ({2, 3}, {2, 4}, {3, 4}). For example, the best set is {1, 2}.

243

The last step is to select the best set with cardinality 3 containing the ele-
ments {1, 2}, analyzing the sets {1, 2, 3}, {1, 2, 4}. For example, the best set
is {1, 2, 3}.

The problem is that the set {1} is the only global maximum, the other sets,
({1, 2}, {1, 2, 3}) are local maximum and not global maximum that can be
placed, for example, in {2, 4} and {1, 3, 4}.

Now, we suppose to use the Banzhaf Value to order and to select the players
for the best set with cardinality 2. In this case, the order required must be

φBξ (2), φBξ (3) > φBξ (1)

We consider the difference between two Banzhaf Values

φBξ (i)− φBξ (j) =
∑
S⊆N\i

∆iξ(S)−
∑
S⊆N\j

∆jξ(S)

=

(∑
S⊆N\i

ξ(S ∪ i)−
∑
S⊆N\i

ξ(S)

)
−

(∑
S⊆N\j

ξ(S ∪ j)−
∑
S⊆N\j

ξ(S)

)

=

(∑
S⊆N\ij

ξ(S ∪ ij)−
∑

S⊆N\ij

ξ(S ∪ j)

)
−

(∑
S⊆N\ij

ξ(S ∪ ij)−
∑

S⊆N\ij

ξ(S ∪ i)

)
=

∑
S⊆N\ij

ξ(S ∪ i)−
∑

S⊆N\ij

ξ(S ∪ j)

=
(
ξ(i)− ξ(j)

)
+

(∑
S∈F+

−ij

ξ(S ∪ i)−
∑

S∈F+
−ij

ξ(S ∪ j)

)
= D1(ij) +D+(ij)

with

D1(ij) =
(
ξ(i)− ξ(j)

)
D+(ij) =

(∑
S∈F+

−ij

ξ(S ∪ i)−
∑

S∈F+
−ij

ξ(S ∪ j)

)

244

The greedy algorithm considers only the difference D1(ij): if the difference
is greater than 0, the algorithm select i otherwise j. The selection based on
the Banzhaf Value considers both terms (D1 and D+) and this sum can have
a different sign.

The last observation is this: because a power index is the mean of the
marginal contributions of a player, if the player collaborates very well with
the other players quite often, and interferes quite rarely, its marginal contri-
butions will be high and the related power index will be high. Conversely, if
the player interferes quite often, and collaborates quite rarely, its marginal
contributions will be low and the related power index will be low.

245

Chapter 9

Conclusions

9.1 Current work

In Machine Learning context, one of the first problems to resolve is to select
the most useful set of features to use in the teaching phase of the algorithms.
There exists several approaches available, and one of them is based on the
Coalitional Game Theory. The theory offer two concepts that, when applied
to the Machine Learning, can be described as follow: the power index, a
measure of the feature’s contribution in the correct prediction, and the inter-
action index, a measure of the collaboration or interference of two (or more)
features during the prediction.

A power index is a weighted mean of the features’ marginal contributions,
where the marginal contribution is the difference between the correctness of
the predictions when the features is in the set and when it is not present.
But here there is a problem: we are searching the set of features with the
highest correctness of the predictions, and to do this, we use a concept based
on a mean. Why is it possible to use this method?

An interaction index is a weighted mean of the differences between marginal
contributions when both are present in the set and when only one of them
or none is present. This value is able to measure the collaboration and the
interference on the prediction. Obviously, we prefer to keep together the
features that collaborate and to keep separate the features that interfere.

In the Multi View Context, based on a single view, we are interested to

246

split the features in two o more views: for this work, the power index can be
used to create views with a good prediction’s correctness, and the interaction
index can be used to decide if it is better to keep the features together or
separated.

In the Co-training, based on a single view, we are interested not only to split
the features in two o more views, but also in the ability of a view to teach
something to the other ones. Here, the problem is how to measure this ability
and how to consider all requirements.

This dissertation has answer to these questions.

After the standard notations defined in Chapter 2, in Chapter 3 we have
introduced the concepts of power and interaction indices. In this chapter, we
have seen that the popular Shapley Value and Banzhaf Value are example
of the most general class of probabilistic power indices. This class is too
general to be useful in practice: it is necessary to configure 2n parameters
and this can be very difficult. There are two sub classes that need only n
parameters. The first one is the cardinal-probabilistic values class. It uses
a probability distribution for each subset cardinality. Using the uniform
distribution, we obtain the Shapley Value. The second one is the player-
probabilistic values class, that assigns a collaboration’s probability to each
player. If the probability is 1

2
for each player, we obtain the Banzhaf Value.

These classes extend the list of power indices that be used with real problems.

To compute the exact value of these indices it is necessary to consider all
2n subsets. This is possible only for n very small. In general, it is possible
to compute only a approximated value, sampling the subsets’ lattice. In the
feature partitioning, the index values are used to order the features so that
the most important are in the lead. We have also observed that the exact
order is not so important. Indeed, we are interested only to separate some
best features from the others. In this case, the order inside each group is not
important. In Chapter 4 we have described the structure of these algorithms,
and their implementation. We have also described some algorithms, variants
as, for example, an alternative implementation for the Shapley Value, based
on permutations, or the algorithm based on the usage of best sets.

In Chapter 5 we have demonstrate that the power indices are the best linear
approximation of the set function, based on a weighted mean square error.
Using different weights, we obtain different indices. We have seen also that
it is possible to define an index based on a set of axioms that it must satisfy.

247

Using different axioms, we obtain different indices. Because the power indices
are an approximation of the set function, this permits us to use the index
values to approximate the set with highest function value: we can use the
features with the highest index values.

During the feature selection phase, we must select a predefined number of
features. In Chapter 5 we have seen that the indices are the best approxi-
mation of the entire function. This is not necessary: we must approximate
a reduced version of the function, defined only on sets with the selected car-
dinality. In Chapter 6 we have defined a new class of indices, based on this
reduced definition: the terms used in the original one are grouped according
to the set’s cardinality. The reduced definition uses only the terms for the
selected cardinality.

Why can we approximate the set of features with the highest function value,
with the set composed by the features with the best power index values? This
is based on the conjecture that, if a feature is in the best set, it is a feature
that collaborate very often, and its marginal contribution is very high. Since
the power index is a (weighted) mean of marginal contributions, a feature
with a contribution very high has also a index value very high.

A feature partitioning problem consists to split the features into two o more
views such as each view has enough data to train a good predictor. The
problem to resolve is how to distribute the features. We have added also
some other constraint: we would like to have collaborating features in the
same view and interfering features in different views. These requirements
are satisfied by the power and interaction indices. In Chapter 7 we have
used these indices to define an optimization problem where the solution is
the required split. In the context of Co-training based on a single view,
the feature partitioning is only the first part of the problem. The second
part is to find views such as each view is able to teach something to each
of the others. Another problem is how to define the ability of teaching. In
that chapter we have used an approach similar to the accuracy used in the
classification algorithms: we count the number of times that the prediction
in a view can be transferred to another one. Using this definition, we have
extended the splitting optimization problem to consider also the ability of
teaching.

248

9.2 Future works

There are several aspects of Game Theory that require further study. For
example it is not clear when to use a certain power index or another. Or if
it is better to use an index where the user must select the parameters. And
in this case, which values to assign to the parameters. Or if it is necessary
to find the parameter’s values, resolving an optimization problem for the
best approximation of the set function. The answer to this question must be
based on Machine Learning concepts, or metrics based on the data and the
problem to solve, and not on Game Theory concepts. This to allow Machine
Learning experts to use this approach without being experts on game theory.

Another problem to resolve is how to decide when an approach based on
the Game Theory is better than one based on greedy methods. In Chapter
8 we have seen two simple cases, but it is necessary to analyze in a more
extended way the space of all set functions. To generate samples of this space
using real datasets and real Machine Learning algorithms is impracticable:
there are available only a limited number of dataset and a limited number of
algorithms. The solution is to create a good random set function generator
and to use real set functions as examples of functions to generate. Using this
generator, we can sample the functions space and to find the sub-spaces where
an approach is better than another. We can start with small dimensions
spaces, and extend the search into larger spaces.

How to define this generator is another problem. An approach is to synthe-
size the function based on concepts as capacity of prediction of each feature,
collaboration and interference between features. Another approach is to use
the function transforms, for example the Möbius transform, to use a distribu-
tion for each transform’s coefficient, to generate the value for each coefficient,
and to recreate the function.

To model the feature partitioning with teaching as a graph introduces an-
other problem: in the graph there are two type of edges, one undirected and
the other directed. The directed edges must be considered only in parallel
with the cut-edges. The partition must minimize the cut-edges weights and
maximize the teaching edges weights.

But this is another story.

249

Appendix A

Proofs

A.1 Dirac basis

The Dirac basis is defined as

δS(T) =
∏
i∈S

Ti
∏
i∈S\N

(1− Ti)

If i ∈ S but i 6∈ T , Ti = 0 and the first product is 0. If i 6∈ S but i ∈ T ,
(1− Ti) = 0 and the second product is 0.

Then δS(T) = 1 iff S = T .

The basis is orthonormal :

〈δT , δT 〉 =
∑
S⊆N

δT (S)δT (S) = δT (T)δT (T) = 1

〈δT , δU〉 =
∑
S⊆N

δT (S)δU(S) = δT (T)δU(T) + δT (U)δU(U) = 0 ∀T 6= U

250

A.2 Unanimity Game basis

The Unanimity Game basis is defined as

eS(T) =
∏
i∈S

Ti

The product is 1 only if Ti = 1 for all i ∈ S, then T ⊇ S.

The basis is not orthonormal:

〈eT , eT 〉 =
∑
S⊆N

eT (S)eT (S)

=
∑
S⊇T

eT (S)

=
∑

S⊆N\T

eT (S ∪ T)

= 2n−t

〈eT , eU〉 =
∑
S⊆N

eT (S)eU(S)

=
∑

S⊇T∪U

eT∪U(S)

=
∑

S⊆N\T∪U

eT∪U(S ∪ T ∪ U)

= 2n−|T∪U |

A.3 Walsh Function basis

Let

zi = 2xi − 1

and

251

Si =

{
1, if i ∈ S
−1, otherwise

The Walsh function is defined as

wS(z) =
∏
i∈S

zi

with the convention

wØ(z) =
∏
i∈Ø

zi = 1

If we consider the weighted dot product with µ(S) = 1
2n

, the basis is orthonor-
mal

〈wS, wS〉µ =
∑
T⊆N

1

2n
wS(T)wS(T)

=
1

2n

∑
T⊆N

∏
i∈S

z2
i

=
1

2n

∑
T⊆N

1 =
1

2n
2n = 1

If S 6= T the dot product is

〈wS, wT 〉µ =
∑
U⊆N

wS∆T (U)

but S∆T can be any set. If S∆T = Ø we have S = T or S and T are Ø and
the value is 1 as specified previously. Otherwise S 6= Ø and there exists an
i ∈ S. Then, we have

∑
T⊆N

wS(T) =
∑
T⊆N\i

(−1)wS\i(T) +
∑
T⊆N\i

(+1)wS\i(T) = 0

252

That is, if S 6= T , we have S∆T 6= Ø and

〈wS, wT 〉µ = 0

A.4 The Möbius transform

We consider the function ξ definition based on the Dirac basis

ξ(A) =
∑
S⊆N

ξ(S)δS(A)

The definition can be changed in

ξ(A) =
∑
S⊆N

ξ(S)δS(A)

=
∑
S⊆N

ξ(S)
∏
i∈S

Ai
∏
i∈N\S

(1− Ai)

=
∑
S⊆N

ξ(S)
∏
i∈S

Ai

(∑
T⊆N\S

∏
i∈T

1
∏

i∈N\S\T

(−Ai)

)

=
∑
S⊆N

(∑
T⊆N\S

(−1)n−s−tξ(S)
∏

i∈N\S\T

Ai

)∏
i∈S

Ai

The expression
∏

i∈S Ai = eS(A) = 1 for each A ⊇ S

ξ(A) =
∑
S⊇A

(∑
T⊆N\S

(−1)n−s−tξ(S)
∏

i∈N\S\T

Ai

)

The expression
∏

i∈N\S\T Ai = 1 for each N \ S \ T ⊆ A. The definition can
be rewritten as

ξ(A) =
∑
S⊆A

(∑
T⊆S

(−1)s−tξ(T)

)
eS(A)

253

The set function

mξ(S) =
∑
T⊆S

(−1)s−tξ(T)

is the Möbius transform of ξ. Based on the Möbius transform, the set function
can be written as

ξ(A) =
∑
S⊆A

mξ(S)eS(A)

A.5 From function to derivative

The probabilistic value [81] is the generalization of Banzhaf Value and Shapley
Value.

A probabilistic value is defined as:

φξ(i) =
∑
S⊆N

pi(S) · ξ(S) (A.1)

We will demonstrate that it is possible to convert this definition into the
more classic definition

φξ(i) =
∑
S⊆N\i

pi(S) · (ξ(S ∪ i)− ξ(S))

=
∑
S⊆N\i

pi(S) ·∆iξ(S)
(A.2)

using the dummy value axiom.

To do this, we consider the following equalities:

254

φξ(i) =
∑
S⊆N

pi(S) · ξ(S)

=
∑
S⊇i

pi(S) · ξ(S) +
∑
S⊆N\i

pi(S) · ξ(S)

=
∑
S⊆N\i

(pi(S ∪ i)ξ(S ∪ i) + pi(S) · ξ(S))

The last equality can be converted into the equation A.2 if pi(S ∪ i) =
−pi(S). To demonstrate this step, we can consider the Unanimity Game
basis functions eT with T ⊆ N \ i

eT (S) =

{
1, if S ⊇ T

0, otherwise

For these functions, i is a dummy player. Indeed, for S ⊂ T , we have that
S ∪ i 6⊂ T , and the marginal contribution is

eT (S ∪ i)− eT (S) = 0− 0 = 0

for S ⊇ T , we have S ∪ i ⊃ T , and the marginal contribution is

eT (S ∪ i)− eT (S) = 1− 1 = 0

Now, we consider the power index φeT (i) defined for each eT . Because i is a
dummy player, we have

φeT (i) =
∑
S⊆N

pi(S) · eT (S)

=
∑
S⊆N\i

(pi(S ∪ i) · eT (S ∪ i) + pi(S) · eT (S))

= pi(N) · eT (N) + pi(N \ i) · eT (N \ i)
= pi(N) + pi(N \ i) = 0

(A.3)

255

For inductive purpose, we suppose that A.3 is valid for each T with cardi-
nality t > k. The next step is to consider T with cardinality k:

φeT (i) =
∑
S⊆N

pi(S) · eT (S)

=
∑

S∈[T,N\i]

(pi(S ∪ i) · eT (S ∪ i) + pi(S) · eT (S))

= (pi(T ∪ i) · eT (T ∪ i) + pi(T) · eT (T))

+
∑

S∈(T,N\i]

(pi(S ∪ i) · eT (S ∪ i) + pi(S) · eT (S))

= pi(T ∪ i) + pi(T) = 0

With this set of equalities we have a list of relations between the values of
pi(T), that is

pi(S ∪ i) = −pi(S) ∀S ⊆ N \ i

Now, we can rewrite φξ(i) as

φξ(i) =
∑
S⊆N

−pi(S) · ξ(S)

=
∑
S⊆N\i

(pi(S ∪ i) · ξ(S ∪ i) +−pi(S) · ξ(S))

=
∑
S⊆N\i

pi(S ∪ i) (ξ(S ∪ i)− ξ(S))

=
∑
S⊆N\i

pi(S) ·∆iξ(S)

with piS = pi(S ∪ i) and

∑
S⊆N\i

pi(S) = 1

256

Appendix B

K-means Clustering in Dual
Space for Unsupervised Feature
Partitioning in Multi-view
Learning

B.1 Authors

Corrado Mio, Gabriele Gianini and Ernesto Damiani

EBTIC, Khalifa University of Science and Technology, Abu Dhabi, UAE
and Dipartimento di Informatica, Università degli Studi di Milano, Italy

Email: {firstname.lastname}@unimi.it

B.2 Published in

2018 - 14th International Conference on Signal-Image Technology &
Internet-Based Systems (SITIS)

257

B.3 Abstract

In contrast to single-view learning, multi-view learning trains simultaneously
distinct algorithms on disjoint subsets of features (the views), and jointly
optimizes them, so that they come to a consensus. Multi-view learning is
typically used when the data are described by a large number of features. It
aims at exploiting the different statistical properties of distinct views. A task
to be performed before multi-view learning – in the case where the features
have no natural groupings – is multi-view generation (MVG): it consists in
partitioning the feature set in subsets (views) characterized by some desired
properties. Given a dataset, in the form of a table with a large number
of columns, the desired solution of the MVG problem is a partition of the
columns that optimizes an objective function, encoding typical requirements.
If the class labels are available, one wants to minimize the inter-view redun-
dancy in target prediction and maximize consistency. If the class labels are
not available, one wants simply to minimize inter-view redundancy (min-
imize the information each view has about the others). In this work, we
approach the MVG problem in the latter, unsupervised, setting. Our ap-
proach is based on the transposition of the data table: the original instance
rows are mapped into columns (the pseudo-features), while the original fea-
ture columns become rows (the pseudo-instances). The latter can then be
partitioned by any suitable standard instance-partitioning algorithm: the re-
sulting groups can be considered as groups of the original features, i.e. views,
solution of the MVG problem. We demonstrate the approach using k-means
and the standard benchmark MNIST dataset of handwritten digits.

B.4 Introduction

In several data analytic applications, data about each training example are
gathered from diverse domains or obtained from various feature extractors
and exhibit heterogeneous statistical properties. For instance in IoT environ-
ments, data are collected by many distinct devices, at the periphery, so that
their feature-sets can be naturally endowed with a faceted structure [207].
Also in the web-data mining domain the intrinsic attributes of a page, de-
scribing its textual content, those that describe its multimedia content and
the extrinsic attributes representing meta-data are endowed with very differ-
ent and specific statistical properties. In those and in other cases, the features
of each example can be naturally partitioned into groups: each feature group

258

is referred to as a particular view.

Most conventional machine learning algorithms concatenate all views into a
single view, subsequently provided in input to the learning algorithms (single-
view learning). In contrast to this approach, multi-view learning (MVL) uses
a distinct learning model for each view, with the goal of better exploiting the
diverse information of the distinct views. The different variants of MVL try
to jointly optimize all the learning models, so that they come to a consensus
[197, 200]. Given a multi-view description of a phenomenon, one can apply
both supervised or semi-supervised learning (e.g. multi-view classification or
regression [197,198,200,217,218]) and unsupervised learning (e.g. multi-view
clustering [192,193]).

B.4.1 Motivations and problem

Sometimes, the features do not hint at a natural partitioning. In this case,
the first task to be performed in MVL is the one known as multi-view gen-
eration (MVG): it consists in partitioning the feature-set in subsets (each
representing a view) characterized by some desired properties and relation-
ships. For instance, among the requirements of this problem is that the
inter-view redundancy is minimal. There are at least two forms in which the
problem can be found: the supervised setting and the unsupervised setting.

In the first setting, the class labels are available: in this case one wants to
minimize the inter-view redundancy in target prediction (maximize unique-
ness of information about the target from each view).

If the second, unsupervised setting, class labels are not available. This occurs
for example when the labels do not actually exist: this is the case for instance
of multi-view clustering [193] or other multi-view unsupervised tasks. This
situation can take place also in multi-view supervised or semi supervised
tasks, when the labels are determined at a later time. The case applies also
to deep multi-view representation learning: there one has access to multiple
unlabeled views of the data for representation learning. The setting applies
as well to the case of long data analytic pipelines, where at the early stages
of analysis it is not known what are the detailed learning tasks for which the
data will be used.

In the unsupervised MVG task, one aims at achieving minimal inter-view
redundancy (minimize the information each view has about the others). In

259

this work we approach the MVG problem in the latter, unsupervised, setting.

B.4.2 General approach

Given a dataset, in the form of a table, the desired solution of the unsuper-
vised MVG problem is thus a partition of the columns that optimizes some
least-redundancy requirements.

Hereafter, we will refer to the following document-word-count example for
the illustration of the method. Consider a corpus of documents, such as a
literary corpus or a corpus of web pages (for now we disregard the hyper-links
and the multimedia content and focus on text only). Each document, under
the bag-of-words representation (that disregards the structure of the text
[208–212]), can be represented by the count of the occurrences of each word of
a reference dictionary. This representation can take the form of a table, where
each document corresponds to a row and each word to a column (we call
it the [row=document,column=word] representation): each table-cell
contains the count of the number of occurrences of a word into a document.
In this formulation the words play the role of features while the documents
play the role of instances.

Suppose that we intend are to apply multi-view learning: each view would
correspond to a subset of words. Unfortunately, in our example, a natural
partition of the words into views is not available. Thus, before running multi-
view learning, we need to perform multi-view generation. We assume that
no labels are available for the documents: our problem corresponds to the
unsupervised MVG problem. We aim at partitioning the words into groups
that optimize the least inter-view redundancy requirements, without any
reference to labels, but based only on the relative properties of the views. A
solution to this problem takes the form of a partition of the feature-set (a
partition of the columns).

Our approach to the unsupervised MVG problem consists a dual-space method,
based on the transposition of the data table. The original instance rows are
mapped into columns, that we call pseudo-features, while the original fea-
tures columns become rows, that we call pseudo-instances (i.e. we passe
to a [row=word, column=document] representation). After transposi-
tion, a solution of the MVG problem takes the form of a partition of the
pseudo-instances.

260

The key idea of our approach is the following: consider the pseudo-instances
(the rows after transposition, which are the instances of a different prob-
lem, the dual problem), to those rows one can apply a standard instance-
partitioning algorithms. Once the partition of the rows is obtained, one can
transpose the solution back into the original form, and get the multi-view
partition of the original features.

For the sake of simplicity, we study the approach using the partitional clus-
tering algorithm k-means, however any partitional clustering algorithm could
be used to the purpose. We also chose, for demonstrative purposes, to limit
ourselves to the most straightforward case of numerical-only data: the case
of partially of fully categorical data could in principle be dealt with, by using
suitable categorical to numerical encodings (such as the one-hot encoding).
We validate the approach using the MNIST handwritten digits dataset.

Organization of the paper. The reminder of the paper is organized as follows.
In the next section (Section B.5) we provide an overview of the method,
then (Section B.6) we give a formal definition of the problem and of the
approach. Subsequently (Section B.7), we show the results obtained from
the benchmark dataset and provide a partial validation (Section B.8). The
discussion of the outcomes concludes the paper (Section B.9).

B.5 Overview of the method and issues

Let us refer to our illustrative document-word data table example, with
count values, i.e. numerical values in the table-cells. The original data
table has the form [row=document, column=word]. Our method con-
sists in taking the transpose of the data table, i.e. passing to a [row=word,
column=document] representation: now the words (formerly acting as fea-
tures) take the role of objects and are called pseudo-instances, while the
documents (formerly acting as instances) take the role of attributes and are
called pseudo-features.

We can apply k-means to the pseudo-instances to obtain a partitioning of the
words. In the algorithm, the distances between two words, i.e. two points
(pseudo-instances), are computed in the document space: the space in which
each dimension corresponds to a document. Two words that have a similar
(percentage) count in the same document are close along that (document)
dimension. The k-means algorithm outputs k clusters of pseudo-instances.

261

At this point, one can transpose back the partition of the pseudo-instances
and get a multi-view partition of the original features. The relation of this
method with simple word clustering based on documents or with the co-
clustering approach is developed in the Discussion, Conclusion and Outlook
section.

B.5.1 Issues

The main issue, after the first transposition, is that, if the original dataset is
large, the number of pseudo-features makes the problem very high-dimensional,
and the clustering algorithm potentially less effective. E.g. in a large cor-
pus, consisting of many documents, the transposed matrix has a very large
number of columns.

We address this issue as follows:

i) we break the whole set of pseudo-features into r smaller disjoint subsets
(in the original space they represented object batches);

ii) we run a distinct pseudo-instance clustering on each of the r pseudo-
feature subset, so that each clustering yields its own partition; we are
left with r partitions;

iii) we aggregate the r cluster partitions to produce an individual partition
solution.

With respect to points i) and ii), the operation of breaking down the columns
should be made by choosing at random the columns, so as to avoid possible
biases resulting from the structure of the original dataset (in our example, the
documents might have been listed by topic). Thanks to the randomness in the
choice of the pseudo-features, running a distinct pseudo-instance clustering
on each pseudo-feature subset should provide roughly consistent clustering
solutions.

With respect to the point iii), we observe that it involves a non-trivial prob-
lem: the reconciliation of the different partitions. Though, this can be per-
formed by standard partition consensus algorithms. The main approaches to
this problem consist either in creating the partition that shares the maximum
information with the ones available [206] or creating the solution partition

262

by aggregation e.g. by majority voting/boosting [203,204] (a review of those
cluster ensemble methods can be found in [205]). We choose the second
approach.

We demonstrate the overall approach using the MNIST dataset of handwrit-
ten digits [201]. The instances of the dataset are n = 60000. The features
of each image are determined by its pixels: each image has m = 784 pixels
(they are square images of m = p×p pixels, with p = 28): to each image-pixel
pair is associated the the gray-scale intensity of the pixel in that image (a
numerical value in the interval [0, 255]). Using our approach, we obtain a
partition of the set of pixels, into subsets, each corresponding to a view.

With respect to the document-word-count example – that we will continue
using throughout the paper for illustrating the method – the relevant rela-
tionships are the following: the images of handwritten digits correspond to
the documents (the original instances); the pixels correspond to the words
(the original features); the count of the number of occurrences of a words
in a document is substituted by the gray-scale intensity value of the pixel.
The views consisting of subsets of words are replaced by views consisting of
subsets of pixels.

In principle, the views issued by our method can be later used for multi-view
learning (e.g. using the views separately to learn relatively weak classifiers,
then having the views to coordinate into a multi-phase classification process).
However the study of the multi-view learning phase of the process is out of the
scope of the current work: the application of our approach on the mentioned
example is aimed only at demonstrating the procedure. We return on the
relation between view splitting phase and multi-view learning phase in the
Results section.

B.6 Formalization of the Method

B.6.1 Notation

Let X = {x1, x2, . . . , xn} denote a set of objects/points/instances/examples.
Each object corresponds to a point in a m-dimensional feature space: the i-th
object can be represented as a row vector xi = xi∗ = (xi1, xi2, . . . , xim), each
element of the vector corresponding to an explanatory variable or feature.

263

The row vectors make up a data matrix X. Each column vector of the data
matrix X represents the values taken by a feature over the different objects:
the j-th feature can be represented as x∗j = (x1j, x2j, . . . , xnj).

To represent the operations in the dual space, it is useful to denote the
transpose X> of X by a matrix Y = X>. We treat the m features of the
dataset X as instances of the dataset Y , and call the m rows of Y pseudo-
instances ; similarly, we treat the n rows of the dataset X as features of the
dataset Y , and call the n columns of Y pseudo-features. When using a single
index, we refer to a whole array: xi refers to the i-th instance of the data
matrix X, while yj refers to the j-th pseudo-instance of the data matrix Y .
The set of pseudo-instances can be denoted by the collection of row vectors
Y = {y1, y2, . . . , ym}.

B.6.2 A dual-space approach to unsupervised MVG

The multi-view generation task consists in the following problem. Given a
dataset in the form of an n ×m matrix X – with n, rows representing the
instances, and m columns, representing the features – find a partition of
the feature set consisting in k blocks, so as to optimize a specific objective
function of the intra-view and inter-view similarity.

The objective functions typically used in relation to this task can encode
several requirements. The main requirement considered in literature is the
following: the information held by each view should be as much as possi-
ble unique (maximal inter-view diversity, minimal inter-view redundancy re-
quirements). Those methods that have access also to the classifiers/regressors
later used in the training, can consider also requirements such as sufficiency
of the view (good predicting power) and compatibility (the classifiers trained
on the different views, given an instance, should predict the same label with
high probability). In our case we assume we do not have access to the clas-
sifier/regressor to be used in the training, therefore we consider only the
maximum inter-view diversity, i.e. minimum inter-view redundancy require-
ment.

264

B.6.2.1 Requirements and distance definition

We pursue the attainment of the minimum inter-view redundancy require-
ment indirectly, by maximizing the intra-view redundance: features should be
grouped together if they contain partially redundant information, or equiv-
alently if one feature contains much information about the other. To this
purpose we try to group together those features that are close in this pre-
specified sense: two features are close if for many objects they have similar
values (on a standardized scale): intuitively, knowing the values of one fea-
ture (on a collection of objects) can help guessing the value of the other
feature on the other feature (on the same array of objects). This concept can
be concretized in a variety of ways, each one dense of assumptions about the
process that generated the data. We chose to use the above stylized defini-
tion: two features are close if they provide similar values on many objects.

In our reference example, where the objects are documents and the features
are words, two words are considered close to one another if they have sim-
ilar (percentage of) occurrence in several documents. Notice that we are
not advocating this as a definition of distance between two words specially
meaningful in many contexts: we just illustrate how the definition of distance
between features would translate in terms of our example; the usefulness of
this definition consists in providing a way of creating views with high intra-
view redundance.

From this definition of pairwise distance between features one can build
groupings of similar features, for instance as centroid-based clustering al-
gorithms do.

To this purpose, we pass from the original data matrix X to its transpose
Y = X> and considering the rows of Y as new data-points (the pseudo-
instances) we define the pairwise row distance as an L2 distance, i.e. an
Euclidean distance dE(·, ·). The distance between row yj and row yj′ is
defined as

d(yj, yj′) = d(j, j′) =

(
n∑
i=1

(yj,i − yj′,i)2

) 1
2

where i runs over all the pseudo-features (i.e. the former objects). Based on
this distance one can run the clustering algorithm k-means [219] or another
algorithm belonging to the same family, such as k-medoid [202].

265

B.6.2.2 Output of a single pseudo-instance clustering and dimen-
sionality problems

Running the k-means partitioning algorithm, one obtains a solution for the
problem of pseudo-instance partitioning based on the dataset Y . This will
also be a solution of the MVG (i.e. feature partitioning) problem based on
X.

In practice, however when the number n of rows of X is large, after trans-
position, the number of pseudo-features (columns of Y) makes the clustering
problem high-dimensional, and the clustering algorithm potentially less ef-
fective (e.g. a significant difference of two points along a dimension could be
obfuscated by many non-significant differences along other dimensions).

One can address the issue by breaking the set of pseudo-features into r
smaller redundant subsets of s elements each (approximately n/r elements
each), then by running the clustering algorithm separately on the whole set
of pseudo-instances, described only by a group of s pseudo-features. This
yields r distinct cluster partitions. Eventually, the different partitions can
be aggregated by a partition consensus algorithm, to produce an individual
partition solution.

In terms of our reference example – in which the objects are the documents
and the features are the words, and in which the pseudo-instances are the
words, while the pseudo-features are the documents – this corresponds to
breaking the corpus into r randomly chosen groups of documents and running
the clustering algorithm r times over all the pseudo-instances (words), using
only s pseudo-features at time, then aggregating the resulting r partitions
into a single solution partition: e.g. a word will be assigned to the partition
block to which it belongs most often.

This task is formally described in the next subsection.

B.6.3 The consensus clustering task

A clusterer Φ is a function that, given a set Y , outputs a partition π un-
der the form of a label vector λ. Different clusterers Φ(1),Φ(2), . . . ,Φ(r),
run over the same dataset Y will output, in general, different label vectors
λ(1), λ(2), . . . , λ(q), . . . , λ(r).

266

A collection of label vectors Λ = {λ(1), λ(2), . . . , λ(r)} can be combined into a
single label vector λ̂, called consensus labelling, by using a consensus function
Γ. Equivalently one can say that Γ combines the corresponding collection Π of
partitions Π = {π(1), π(2), . . . , π(q), . . . , π(r)} into a single partition π̂. Given
r partitions, the λ(q) partition consisting in k clusters/blocks, a consensus
function is defined as a mapping Nn×r → Nn taking a set of partitions into
an integrated partition, Γ : Λ→ λ̂, or equivalently Γ : Π→ π̂.

The consensus clustering problem consists in finding a new partition π̂ of the
data Y , given the partitions in Π, such that the objects in a block/cluster
of π̂ are more similar (in some pre-specified sense) to each other, than the
object in different clusters of π̂. The solution of the problem can be defined in
different ways [205]: some are based on minimization of information theoretic
measures, some on different forms of aggregation, such as majority voting
(bagging). We will use the latter approach. Beforehand, however we discuss
a minor technical issue.

B.6.3.1 Logical equivalence

The reconciliation of the different partitions involves an ancillary issue: there
are partitions that are denoted by different arrays of labels, but that are the
same from the logical point of view (a suitable permutation of the symbols
used to denote the labels is able to transform one in another). Indeed, for
each unique partition there are k! equivalent representations as integer la-
bel vectors: i.e. given two equivalent partitions there exists a permutation
of the labels such that they become equal. Formally, given the set P of
the k! permutations of [1, k], two label vectors λ(a) and λ(b) are said to be
logically identical if there exist a permutation p ∈ P , taking λ(a) into λ(a)′

such that λ(a)′(yj) = λ(b)(yj), ∀j ∈ [1,m]. One needs to account for those
equivalences, in order not to make the task of partition reconciliation use-
lessly complex: this issue can be solved passing to a canonical form [206].
Indeed the solution to this potentially complex correspondence problem is
very simple. The pseudo-instances are endowed by a numerical index, set-
ting a natural ordering for the set of pseudo-instances. After obtaining the
r different partitions from the r clusterers, one should rewrite, for each par-
tition, the block labels, so that the index of the blocks is monotonic (e.g.
monotonic non-decreasing) w.r.t. to the order of the objects. By rewriting
each partition in this way, logically identical partitions will be mapped onto
the same representation. Formally, one should enforce for each partition the

267

constraints (i) λ(y1) = 1 (the first object defines the first block/cluster) and
(ii) λ(yi+1) ≤ maxj=1,...,i(λ(yj)) + 1 ∀i = 1, 2, . . . , (n − 1) (the cluster label
λ(yi+1) either has a label that occurred before, or has a label that increases
by one unit w.r.t. the highest used so far).

B.6.3.2 Partition reconciliation, by majority voting

Once the r partitions are in canonical form, it is straightforward to aggregate
them into a single solution partition λ̂: one assigns the pseudo-instance to
its most frequently occurring label.

λ̂(yj) = arg max
λ

count(λ(yj))

In the reference example where the pseudo-instances are the words, this cor-
responds to assigning a word to the partition block in which it occurs most
often. Ties can be resolved by random choice. The overall process is illus-
trated in Figure B.1

B.7 Results

We demonstrate the proposed approach using the MNIST dataset containing
gray-scale images of handwritten digits [201]. With respect to the document-
word reference example, where we had documents we now have pictures,
where we had word occurrence counts we have pixel gray levels.

B.7.1 The dataset

The dataset contains n = 60, 000 gray-scale images: each image instance
represents a handwritten digit. Although the class label for each image is
available (there are 10 classes, {0, 1, 2, . . . , 9}), it is not used in our unsuper-
vised setting. The features considered for each instance are the gray-scale
intensities of the pixels, each intensity takes an integer value in the interval
[0, 255]. In the original version of the dataset each image has 28× 28 = 784
pixels (there are m = 784 features for each instance). Thus, the dataset can
be represented in terms of a n = 60000 row and m = 784 column table.

268

B.7.2 The process

Our final goal was to obtain a partitioning of the columns into k views, i.e.
the whole area of the image in k pixel regions (later to be used separately to
train distinct classifiers).

Following the above described approach, we transposed the table to obtain
a table with m = 784 rows (pseudo-instances, the pixels) and n = 60000
columns (pseudo-features, the images); then we broke this column set in
r splits (each of s = n/r columns, i.e. images, chosen at random without
restitution); using each split we ran k-means using all them pseudo-instances,
thus we obtained r partitions of the pseudo-instances; finally we reconciled
the r partitions into a single partition solution, by majority voting.

Transposing back the partitioned data table we got a view partitioning of
the image features, i.e. a partitioning of the pixels in regions that share
some similarity. The similarity defined by the application of k-means was
the co-occurrence of equal or similar gray-levels.

B.7.3 The outcomes

We experimented different values of the number-of-views parameter k (num-
ber of pixel regions, k = {2, 3, 5, 9, 13, 17}) and the split-granularity param-
eter r (and consequently s = n/r, number of images/pseudo-features con-
tained in a pseudo-feature split). We chose vales of r which together could
represent almost the whole range, leaving out the extremities (the single
”split” case, with r = 1 and the one-element split, with s = 1). The results
are shown in Figure B.3.

One can see, in the first row of Figure B.3 (also with reference to Figure B.2)
that for k = 2 views, the process neatly distinguishes between the active
region and the non-active region (whose pixels are almost never used). For
k = 3 views, one can distinguish further, inside the central active region, two
sub-regions with different importance in detailing the digits. With k = 5
views, and up, the process issues views, which detail the difference of the
regions even further; also the different values of s return varying shapes.

269

B.8 Validation

In principle, the views thus obtained could be later used for multi-view learn-
ing. This could consist either in unsupervised multi-view learning, e.g. multi-
view clustering, or in supervised ore semi-supervised multi-view learning. In
the latter case the learning phase would involve the class labels: in our case
study the symbol of the represented digit.

For instance in an hypothetical semi-supervised setting, one might know the
class label only for a subset of images and might want to predict the class for
the reminder images. This would be carried out by training distinct models
separately on each view, and then using them to create the missing labels by
means of co-training [218]. In this case, a direct validation of the effectiveness
of our multi-view generation method could consist in a study of the quality
of the co-training phase resulting from the use of the proposed MVG phase.

Such direct validation, however, would apply only to the specific multi-view
technique considered. On the other hand, a wider systematic study of differ-
ent multi-view techniques, would go beyond the scope of the present paper.

Nevertheless, it is possible to perform a indirect validation of the method,
endowed by a reasonable generality, based on the following considerations.
In a supervised multi-view setting, one requires that the views issued by the
MVG phase fulfill some natural requirements [218]:

1) each view must individually, be endowed with predicting power,

2) each view must hold unique information about the targets,

3) the different views should achieve prevalently consistent predictions.

An indirect validation of our method can be performed by checking that
the views generated fulfill those base requirements. We opted for such an
indirect validation. For the sake of simplicity, we did not consider the third
requirement, which is more complex to account for with a high number of
views and many classes. We focused on the first two requirements.

We ran two kinds of learning models on the views that were obtained by our
method: a Näıve Bayesian classifier (NB) and a Decision Tree (DT). Since
the findings from the two learners were in qualitative agreement, hereafter,
for space reasons, we report only about the NB classifier.

270

For each parameter setting (each sub-figure in Figure B.3), we ran the learner(s)
on all the views of the n = 60000 instances MNIST training set and mea-
sured the accuracy of the prediction using the n = 10000 instances MINT
test set. We computed both the individual accuracy in the classification of
each individual symbol/class (digits from 0 to 9) and the average accuracy
over all the classes. The results are shown in Figure B.4 for some represen-
tative combination of parameters of the k = 3 and k = 5 views cases. For
completeness we also computed the accuracy of the classifier defined by the
bagged version of the different views. We also trained, for comparison, a
single view NB classifier. The plots allow to appreciate both the predict-
ing power of the individual views, and the fact that they are endowed with
unique information about the targets.

B.8.1 Requirement 1: Predicting power.

The accuracy of the NB classifier trained on individual views, is always (up
to the level studied of k = 17 views) much greater than the baseline random
classifier (which would have accuracy a = 0.10 for each target), and for
small number of views (large amount of information in each view) is often
comparable to the reference single view classifier accuracy, a = 0.84 (this is
the accuracy of the NB classifier applied to all the features/pixels, gathered
into a single view). Looking at specific target classes one can observe that
some views achieve a reasonably high performance at least on one class.

B.8.2 Requirement 2: Unique information on targets

As to this requirement, one could already qualitatively see, from Figure B.3,
that the views concretize in pixel areas covering regions, approximately cor-
responding to constructive elements of the digits: for instance for k = 9 (e.g.
with r = 120), one can see distinctly that including or omitting some patches
one can build the digit 3 or the digit 9 or the digit 8. Thus, each view holds
information that is not available to others for determining the class of the
image. This is confirmed in Figure B.4. The views have different efficiencies
for different targets: each view is the top accuracy view for at least one tar-
get. In other words, each view would have something to teach to the others,
for example within a co-training process.

In short, both main requirements are fulfilled.

271

B.9 Discussion, conclusions and outlook

In this work we approached the Multi View Generation problem in an unsu-
pervised, setting. We proposed an approach based on the transposition of the
data table: the original instance rows are mapped into columns (the pseudo-
features), while the original feature columns become rows (the pseudo-instances);
the latter can then be partitioned by any suitable standard instance-partitioning
algorithm: the resulting groups can be considered as groups of the original
features, i.e. views, solution problem. We demonstrated the approach using
k-means.

With reference to our document-word reference example, notice, for the sake
of comparison, that the task of ”clustering words based on the documents
to which they belong ” and the task of ”clustering documents based on the
words that they contain” are commonly studied classical tasks. In the former
task one assigns to the words the role of instances and the the documents the
role of features; in the latter case it is the converse. However, in both classical
cases, the final aim of the procedure is to come up with a clustering of the
instances. Our approach, on the contrary, aims at producing a partition of
the features into views (later to be used by independent prediction models).

Furthermore, the effectiveness of the two mentioned classical tasks is quan-
tified based on the quality of the instance partition or in relation to another
reference partition: either based on intrinsic criteria (such as the goodness of
clustering Hubert’s r statistics) or based on external criteria by comparing
the clusters to ground truth classes (e.g. using purity, Rand index, Jaccard
index and so on). In our case, on the contrary, the outcome of the parti-
tion is assessed in relation of the effectiveness of the multi-view partition in
supporting a subsequent learning procedure.

Another technique worth mentioning, for comparison, is co-clustering [195,
196]. Co-clustering models the relation of words and documents as a bipartite
graph: the co-clustering algorithms find sub-graphs of the initial connected
component graph, using spectral methods. It is true that the output provides
a clustering of the words and a clustering of the documents: the words (doc-
uments) belonging to the same subgraph are in the same word- (document-)
cluster. It is also true that the method issues a simultaneous clustering of
the features and of the instances. However, the method is radically differ-
ent from ours, since it involves a joint minimization and in general will not

272

provide the same results.

Our method provides an unsupervised multi view partition. As for any unsu-
pervised optimization task, whose output is used in input of a supervised (or
semi-supervised) task, issue might arise that the solution of the former task
is not necessarily optimal to the latter. This is a problem that can be found
in many settings, it can take place for instance, when using a learner after
having applied Principal Component Analysis, or any other representation
learner.

The point that we wanted to make is that one can take methods designed
for working in instance space and use them in feature space. The application
of such dual-space approach can be extended to many other situations, that
will be the object of future works.

B.10 Acknowledgements

The authors acknowledge the support of the Information and Communi-
cation Technology Fund (ICT Fund) at EBTIC/Khalifa University, Abu
Dhabi, UAE (Project number 88434000029). The work was partially founded
also by the European Union’s Horizon 2020 research and innovation pro-
gramme, within the projects Toreador (grant agreement No. 688797), Evo-
tion (grant agreement No. 727521) and Threat-Arrest (Project-ID No. 786890).

273

Doc1

Doc2

Docn

W
o
rd
1

W
or
d
2

W
o
rd
m

m features

n
in
st
an

ce
s

transposition

Word1

Word2

Wordm

D
o
c1

D
o
c2

D
o
cnn pseudo-features

m
p
se
u
d
o
-i
n
st
an

ce
s

create r splits of s = n/r pseudo-features

Word1

Word2

Wordm

D
o
c9

D
o
c3

D
o
c5

D
o
c2

m
p
se
u
d
o
-i
n
st
an

ce
s

k-means k-means k-means

λ(1) λ(2) λ(2)

Word1

Word2

Wordm

D
o
c9

D
o
c3

D
o
c5

D
o
c2

m
p
se
u
d
o-
in
st
an

ce
s

bagging

Word1

Word2

Wordm

λ̂

m
p
se
u
d
o-
in
st
an

ce
s

group by label

W
ord

9

W
o
rd
5

W
o
rd
1

W
ord

3

λ̂

Cluster1 Cluster2 Cluster3

λ = 1 λ = 2 λ = 3

use partition

Doc1

Doc2

Docn

W
o
rd
9

W
or
d
5

W
or
d
1

W
o
rd
3

VIEW1 VIEW2 VIEW3

n
in
st
a
n
ce
s

Figure B.1: Illustration of the overall process based on the reference example.

274

Figure B.2: Left: the first 25 images of the MNIST dataset. Right: the aver-
age gray-level taken over the whole set: the pictures hints at a ”background”
region little or not used by the handwritten digits.

k = 17

k = 13

k = 9

k = 5

k = 3

k = 2

r = 6 r = 12 r = 60 r = 120 r = 600 r = 3000 r = 6000 r = 12000

s = 10000 s = 5000 s = 1000 s = 500 s = 100 s = 20 s = 10 s = 5

Figure B.3: Outcome of the view splitting process for three different resolu-
tions. Each color corresponds to a cluster of pixels and represents a view.
The parameter k is the number of views. The number of instances used for
the task was n = 60000. The parameters r is the number of independent
k-means clustering processes obtained by sectioning the data, then reconcil-
iated in a single clustering partition. Finally, s = n/r. See also text of the
Results Section.

275

all digits 0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.
6

0.
6

0.
8

0.
6

0.
52

0
.3
9 0
.4
2

0.
86

0.
77

0.
3

0.
6
60
.7

0.
81

0.
89

0.
61

0.
78

0.
64

0.
44

0
.8

0
.7
2

0.
64

0.
6

0
.7
5

0
.9
2

0.
9

0.
59

0.
75

0.
69

0.
69

0.
8

0
.7
7

0
.7
1

0.
69

0.
8

0
.9
1

0
.9
3

0.
73

0.
84

0.
73

0.
62

0.
89

0.
83

0
.7
2 0
.7
7

ac
cu
ra
cy

k = 3, r = 3000, s = 20

’ view1 ’ ’ view2 ’ ’ view3 ’ ’ bagged views ’

all digits 0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.
55

0.
48

0.
88

0
.5
7

0
.4
2

0.
25

0.
38

0.
87

0.
73

0.
17

0.
68

0.
62

0.
72

0.
94

0.
48

0.
68

0
.4
9

0
.3
7

0.
74

0.
71

0.
42

0.
590
.6
3

0.
72

0.
81

0.
6

0.
58

0.
58

0
.2
3

0
.8
1

0
.7
3

0.
51

0.
65

0
.6
4

0
.7
9

0.
92

0.
63

0.
48

0.
57 0.
59

0
.7 0
.7
1

0
.4
8 0.
510.
54

0
.8
2

0
.7
3

0.
34

0.
75

0.
38

0.
24

0.
68 0
.6
9

0
.5

0
.2
6

0.
8

0.
96 0
.9
7

0
.7
5

0.
81

0.
72

0.
55

0.
91

0.
87

0
.6
5

0
.7
8

ac
cu
ra
cy

k = 5, r = 120, s = 500

’ view1 ’ ’ view2 ’ ’ view3 ’ ’ view4 ’ ’ view5 ’ ’ bagged views ’

Figure B.4: Accuracies for Näıve Bayes classifiers trained on individual views
(colored bars) and performance of the bagged classifier (gray bars), for the
different targets (digits 0 to 9, ten rightmost groups) and averaged over all
the targets (first, i.e. leftmost group of bars). From the top to the bottom:
k = 3 views (with r = 3000 and s = 20); k = 5 views (with r = 120 and
s = 500).

276

Bibliography

[1] Shiliang Sun, Liang Mao, Ziang Dong, and Lidan Wu. Multiview ma-
chine learning. Springer, 2019.

[2] Philippe Smets. The Transferable Belief Model for Quantified Belief
Representation, pages 267–301. Springer Netherlands, Dordrecht, 1998.

[3] Oskar Skibski, Tomasz P Michalak, and Talal Rahwan. Axiomatic
characterization of game-theoretic centrality. Journal of Artificial In-
telligence Research, 62:33–68, 2018.

[4] Stefano Moretti and Fioravante Patrone. Transversality of the shapley
value. TOP, 16(1):1, Apr 2008.

[5] Julian Stier, Gabriele Gianini, Michael Granitzer, and Konstantin
Ziegler. Analysing neural network topologies: a game theoretic ap-
proach. Procedia Computer Science, 126:234 – 243, 2018. Knowledge-
Based and Intelligent Information and Engineering Systems: Proceed-
ings of the 22nd International Conference, KES-2018, Belgrade, Serbia.

[6] Siddhartha Bhattacharyya, Sanjeev Jha, Kurian Tharakunnel, and
J Christopher Westland. Data mining for credit card fraud: A com-
parative study. Decision Support Systems, 50(3):602–613, 2011.

[7] Olivier Caelen, Gabriele Gianini, and Ernesto Damiani. Fr3065558a1,
system and method to manage the detection of fraud in a system of
financial transactions.

[8] Luis Vergara, Antonio Soriano, Gonzalo Safont, and Addisson Salazar.
On the fusion of non-independent detectors. Digital Signal Processing,
50:24–33, 2016.

277

[9] Addisson Salazar, Gonzalo Safont, Antonio Soriano, and Luis Vergara.
Automatic credit card fraud detection based on non-linear signal pro-
cessing. In 2012 IEEE International Carnahan Conference on Security
Technology (ICCST), pages 207–212. IEEE, 2012.

[10] Scott M Lundberg and Su-In Lee. A unified approach to interpret-
ing model predictions. In Advances in Neural Information Processing
Systems, pages 4765–4774, 2017.

[11] Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency
via quantitative input influence: Theory and experiments with learning
systems. In 2016 IEEE symposium on security and privacy (SP), pages
598–617. IEEE, 2016.

[12] Stan Lipovetsky and Michael Conklin. Analysis of regression in game
theory approach. Applied Stochastic Models in Business and Industry,
17(4):319–330, 2001.

[13] Alon Keinan, Ben Sandbank, Claus C Hilgetag, Isaac Meilijson, and
Eytan Ruppin. Fair attribution of functional contribution in artificial
and biological networks. Neural computation, 16(9):1887–1915, 2004.

[14] Erik Štrumbelj and Igor Kononenko. Explaining prediction models
and individual predictions with feature contributions. Knowledge and
information systems, 41(3):647–665, 2014.

[15] Meshesha Legesse, Gabriele Gianini, and Dereje Teferi. Selecting
feature-words in tag sense disambiguation based on their shapley value.
In Signal-Image Technology and Internet-Based Systems (SITIS), 2016
12th International Conference on, pages 236–240. IEEE, 2016.

[16] Alexandre Fréchette, Lars Kotthoff, Tomasz Michalak, Talal Rahwan,
Holger H Hoos, and Kevin Leyton-Brown. Using the shapley value to
analyze algorithm portfolios. In Thirtieth AAAI Conference on Artifi-
cial Intelligence, 2016.

[17] Michel Grabisch. Set functions, games and capacities in decision mak-
ing, volume 46. Springer.

[18] Lloyd S Shapley and Martin Shubik. A method for evaluating the
distribution of power in a committee system. American political science
review, 48(03):787–792, 1954.

278

[19] Yoav Freund, Robert Schapire, and N Abe. A short introduction to
boosting. Journal-Japanese Society For Artificial Intelligence, 14(771-
780):1612, 1999.

[20] Yoav Freund and Robert E Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Journal of
computer and system sciences, 55(1):119–139, 1997.

[21] Pooria Joulani, András György, and Csaba Szepesvári. Online learning
under delayed feedback. arXiv preprint arXiv:1306.0686, 2013.

[22] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An
efficient boosting algorithm for combining preferences. The Journal of
machine learning research, 4:933–969, 2003.

[23] Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adap-
tive algorithms for online boosting. arXiv preprint arXiv:1502.02651,
2015.

[24] Nikunj C Oza. Aveboost2: Boosting for noisy data. In Multiple Clas-
sifier Systems, pages 31–40. Springer, 2004.

[25] Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano. Com-
paring boosting and bagging techniques with noisy and imbalanced
data. Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, 41(3):552–568, 2011.

[26] Guangzhe Fan and Mu Zhu. Detection of rare items with target. Statis-
tics and Its Interface, 4:11–17, 2011.

[27] Wei Fan, Salvatore J Stolfo, Junxin Zhang, and Philip K Chan. Ada-
cost: misclassification cost-sensitive boosting. In ICML, pages 97–105,
1999.

[28] Jesse Davis and Mark Goadrich. The relationship between precision-
recall and roc curves. In Proceedings of the 23rd international confer-
ence on Machine learning, pages 233–240. ACM, 2006.

[29] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto
Bustince, and Francisco Herrera. A review on ensembles for the class
imbalance problem: bagging-, boosting-, and hybrid-based approaches.
Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 42(4):463–484, 2012.

279

[30] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem:
A systematic study. Intelligent data analysis, 6(5):429–449, 2002.

[31] Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi. When
is undersampling effective in unbalanced classification tasks? In Ma-
chine Learning and Knowledge Discovery in Databases, pages 200–215.
Springer, 2015.

[32] Haibo He, Edwardo Garcia, et al. Learning from imbalanced data.
Knowledge and Data Engineering, IEEE Transactions on, 21(9):1263–
1284, 2009.

[33] Robert E Schapire. The strength of weak learnability. Machine learn-
ing, 5(2):197–227, 1990.

[34] Andrea Dal Pozzolo, Olivier Caelen, Yann-Aël Le Borgne, Serge Wa-
terschoot, and Gianluca Bontempi. Learned lessons in credit card fraud
detection from a practitioner perspective. Expert systems with applica-
tions, 41(10):4915–4928, 2014.

[35] Maciej A Mazurowski, Piotr A Habas, Jacek M Zurada, Joseph Y Lo,
Jay A Baker, and Georgia D Tourassi. Training neural network clas-
sifiers for medical decision making: The effects of imbalanced datasets
on classification performance. Neural networks, 21(2):427–436, 2008.

[36] Mahbod Tavallaee, Natalia Stakhanova, and Ali Akbar Ghorbani. To-
ward credible evaluation of anomaly-based intrusion-detection meth-
ods. Systems, Man, and Cybernetics, Part C: Applications and Re-
views, IEEE Transactions on, 40(5):516–524, 2010.

[37] Mahesh V Joshi, Vipin Kumar, and Ramesh C Agarwal. Evaluating
boosting algorithms to classify rare classes: Comparison and improve-
ments. In Data Mining, 2001. ICDM 2001, Proceedings IEEE Interna-
tional Conference on, pages 257–264. IEEE, 2001.

[38] Andrea Dal Pozzolo, Reid Johnson, Olivier Caelen, Serge Waterschoot,
Nitesh V Chawla, and Gianluca Bontempi. Using hddt to avoid in-
stances propagation in unbalanced and evolving data streams. In Neu-
ral Networks (IJCNN), 2014 International Joint Conference on, pages
588–594. IEEE, 2014.

[39] Ping Li, Qiang Wu, and Christopher J Burges. Mcrank: Learning to
rank using multiple classification and gradient boosting. In Advances
in neural information processing systems, pages 897–904, 2007.

280

[40] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao.
Adapting boosting for information retrieval measures. Information Re-
trieval, 13(3):254–270, 2010.

[41] Jun Xu and Hang Li. Adarank: a boosting algorithm for information
retrieval. In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, pages
391–398. ACM, 2007.

[42] Robert E Schapire and Yoram Singer. Improved boosting algorithms
using confidence-rated predictions. Machine learning, 37(3):297–336,
1999.

[43] David A Cieslak, T Ryan Hoens, Nitesh V Chawla, and W Philip
Kegelmeyer. Hellinger distance decision trees are robust and skew-
insensitive. Data Mining and Knowledge Discovery, 24(1):136–158,
2012.

[44] Cyril Goutte and Eric Gaussier. A probabilistic interpretation of pre-
cision, recall and f-score, with implication for evaluation. In Advances
in information retrieval, pages 345–359. Springer, 2005.

[45] David Martin Powers. Evaluation: from precision, recall and f-measure
to roc, informedness, markedness and correlation. 2011.

[46] Véronique Van Vlasselaer, Cristián Bravo, Olivier Caelen, Tina Eliassi-
Rad, Leman Akoglu, Monique Snoeck, and Bart Baesens. Apate: A
novel approach for automated credit card transaction fraud detection
using network-based extensions. Decision Support Systems, 75:38–48,
2015.

[47] Alejandro Correa Bahnsen, Djamila Aouada, Aleksandar Stojanovic,
and Björn Ottersten. Feature engineering strategies for credit card
fraud detection. Expert Systems with Applications, 2016.

[48] Bertrand Lebichot, Fabian Braun, Olivier Caelen, and Marco Saerens.
A graph-based, semi-supervised, credit card fraud detection system. In
International Workshop on Complex Networks and their Applications,
pages 721–733. Springer, 2016.

[49] Fabrizio Carcillo, Yann-Aël Le Borgne, Olivier Caelen, Yacine Kessaci,
Frédéric Oblé, and Gianluca Bontempi. Combining unsupervised and
supervised learning in credit card fraud detection. Information Sci-
ences, 2019.

281

[50] Fabrizio Carcillo, Yann-Aël Le Borgne, Olivier Caelen, and Gianluca
Bontempi. Streaming active learning strategies for real-life credit card
fraud detection: assessment and visualization. International Journal
of Data Science and Analytics, 5(4):285–300, 2018.

[51] Fabrizio Carcillo, Andrea Dal Pozzolo, Yann-Aël Le Borgne, Olivier
Caelen, Yannis Mazzer, and Gianluca Bontempi. Scarff: a scalable
framework for streaming credit card fraud detection with spark. Infor-
mation fusion, 41:182–194, 2018.

[52] Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi,
and Gianluca Bontempi. Credit card fraud detection: a realistic model-
ing and a novel learning strategy. IEEE transactions on neural networks
and learning systems, 29(8):3784–3797, 2017.

[53] Yvan Lucas, Pierre-Edouard Portier, Léa Laporte, Sylvie Calabretto,
Olivier Caelen, Liyun He-Guelton, and Michael Granitzer. Multiple
perspectives hmm-based feature engineering for credit card fraud detec-
tion. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, pages 1359–1361. ACM, 2019.

[54] Johannes Jurgovsky, Michael Granitzer, Konstantin Ziegler, Sylvie Cal-
abretto, Pierre-Edouard Portier, Liyun He-Guelton, and Olivier Cae-
len. Sequence classification for credit-card fraud detection. Expert
Systems with Applications, 2018.

[55] Mathieu Garchery and Michael Granitzer. On the influence of categori-
cal features in ranking anomalies using mixed data. Procedia Computer
Science, 126:77–86, 2018.

[56] Konstantin Ziegler, Olivier Caelen, Mathieu Garchery, Michael Gran-
itzer, Liyun He-Guelton, Johannes Jurgovsky, Pierre-Edouard Portier,
and Stefan Zwicklbauer. Injecting semantic background knowledge into
neural networks using graph embeddings. In 2017 IEEE 26th Interna-
tional Conference on Enabling Technologies: Infrastructure for Collab-
orative Enterprises (WETICE), pages 200–205. IEEE, 2017.

[57] C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised self-
training of object detection models. In 2005 Seventh IEEE Workshops
on Applications of Computer Vision (WACV/MOTION’05) - Volume
1, volume 1, pages 29–36, Jan 2005.

[58] Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-optimal
sensor placements in gaussian processes. In Proceedings of the 22nd

282

international conference on Machine learning, pages 265–272. ACM,
2005.

[59] Andreas Krause, Carlos Guestrin, Anupam Gupta, and Jon Kleinberg.
Near-optimal sensor placements: Maximizing information while min-
imizing communication cost. In Proceedings of the 5th international
conference on Information processing in sensor networks, pages 2–10.
ACM, 2006.

[60] Alexander Schrijver. A combinatorial algorithm minimizing submod-
ular functions in strongly polynomial time. Journal of Combinatorial
Theory, Series B, 80(2):346–355, 2000.

[61] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial
strongly polynomial algorithm for minimizing submodular functions.
Journal of the ACM (JACM), 48(4):761–777, 2001.

[62] Uriel Feige. A threshold of ln n for approximating set cover. Journal
of the ACM (JACM), 45(4):634–652, 1998.

[63] Uriel Feige, Vahab S Mirrokni, and Jan Vondrák. Maximizing
non-monotone submodular functions. SIAM Journal on Computing,
40(4):1133–1153, 2011.

[64] Shahar Dobzinski and Jan Vondrák. From query complexity to com-
putational complexity. In Proceedings of the forty-fourth annual ACM
symposium on Theory of computing, pages 1107–1116. ACM, 2012.

[65] Jan Vondrák. Symmetry and approximability of submodular maximiza-
tion problems. SIAM Journal on Computing, 42(1):265–304, 2013.

[66] Abu Bakar Siddique, Saadia Farid, and Muhammad Tahir. Proof
of bijection for combinatorial number system. arXiv preprint
arXiv:1601.05794, 2016.

[67] Gilbert Strang, Gilbert Strang, Gilbert Strang, and Gilbert Strang.
Introduction to linear algebra, volume 3. Wellesley-Cambridge Press
Wellesley, MA, 1993.

[68] Peter L Hammer and Ron Holzman. Approximations of pseudo-boolean
functions; applications to game theory. Zeitschrift für Operations Re-
search, 36(1):3–21, 1992.

283

[69] A Charnes, B Golany, M Keane, and J Rousseau. Extremal principle
solutions of games in characteristic function form: core, chebychev
and shapley value generalizations. In Econometrics of planning and
efficiency, pages 123–133. Springer, 1988.

[70] Endre Boros and Peter L Hammer. Pseudo-boolean optimization. Dis-
crete applied mathematics, 123(1-3):155–225, 2002.

[71] Guoli Ding, Robert F Lax, Jianhua Chen, and Peter P Chen. Formulas
for approximating pseudo-boolean random variables. Discrete Applied
Mathematics, 156(10):1581–1597, 2008.

[72] Guoli Ding, Robert F Lax, Jianhua Chen, Peter P Chen, and Brian D
Marx. Transforms of pseudo-boolean random variables. Discrete Ap-
plied Mathematics, 158(1):13–24, 2010.

[73] Ronald R Yager and Janusz Kacprzyk. The ordered weighted averaging
operators: theory and applications. Springer Science & Business Media,
2012.

[74] Petter Strandmark and Fredrik Kahl. Pseudo-boolean optimization:
Theory and applications in vision. In Swedish Symposium on Image
Analysis (SSBA), 2012.

[75] Michel Grabisch. Bases and transforms of set functions. In On Logical,
Algebraic, and Probabilistic Aspects of Fuzzy Set Theory, pages 215–
231. Springer, 2016.

[76] Guillermo Owen. Multilinear extensions of games. The Shapley Value.
Essays in Honor of Lloyd S. Shapley, pages 139–151, 1988.

[77] Lionel S Penrose. The elementary statistics of majority voting. Journal
of the Royal Statistical Society, 109(1):53–57, 1946.

[78] Michel Grabisch, Jean-Luc Marichal, and Marc Roubens. Equivalent
representations of set functions. Mathematics of Operations Research,
25(2):157–178, 2000.

[79] Lloyd S Shapley. A value for n-person games. Contributions to the
Theory of Games, 2(28):307–317, 1953.

[80] John F Banzhaf III. Weighted voting doesn’t work: A mathematical
analysis. Rutgers L. Rev., 19:317, 1964.

284

[81] Robert J Weber. Probabilistic values for games. The Shapley Value.
Essays in Honor of Lloyd S. Shapley, pages 101–119, 1988.

[82] Lloyd S Shapley. A value for n-person games. Classics in game theory,
page 69, 1997.

[83] Dov Monderer and Dov Samet. Variations on the shapley value. Hand-
book of game theory with economic applications, 3:2055–2076, 2002.

[84] Michel Grabisch. K-order additive discrete fuzzy measures and their
representation. Fuzzy sets and systems, 92(2):167–189, 1997.

[85] Michel Grabisch and Marc Roubens. Probabilistic interactions among
players of a cooperative game. In Beliefs, Interactions and Preferences
in Decision Making, pages 205–216. Springer, 1999.

[86] Jean-Luc Marichal and Marc Roubens. The chaining interaction index
among players in cooperative games. In Advances in Decision Analysis,
pages 69–85. Springer, 1999.

[87] Michel Grabisch and Fabien Lange. A new approach to the shapley
value for games on lattices. In 4th Logic, Game Theory and Social
Choice meeting, Caen, France (June 2005), 2005.

[88] Michel Grabisch and Christophe Labreuche. Derivative of functions
over lattices as a basis for the notion of interaction between attributes.
Annals of Mathematics and Artificial Intelligence, 49(1-4):151–170,
2007.

[89] Shujin Li, Xiaoning Li, and Qiang Zhang. The banzhaf interaction
index in game with coalition structure. In 2008 Chinese Control and
Decision Conference, pages 1196–1200. IEEE, 2008.

[90] Stefano Moretti and Fioravante Patrone. Transversality of the shapley
value. Top, 16(1):1, 2008.

[91] Fabien Lange and Michel Grabisch. The interaction transform for func-
tions on lattices. Discrete Mathematics, 309(12):4037–4048, 2009.

[92] Guilliermo Owen. Values of games with a priori unions. In Mathemat-
ical economics and game theory, pages 76–88. Springer, 1977.

[93] Guillermo Owen. Modification of the banzhaf-coleman index for games
with a priori unions. In Power, voting, and voting power, pages 232–
238. Springer, 1981.

285

[94] José M Alonso-Meijide and M Gloria Fiestras-Janeiro. Modification
of the banzhaf value for games with a coalition structure. Annals of
Operations Research, 109(1-4):213–227, 2002.

[95] M Roubens. Interaction between criteria and definition of weights in
mcda problems. In 44th Meeting of the European Working Group “Mul-
ticriteria Aid for Decisions”, Brussels, Belgium, 1996.

[96] Dieter Denneberg and Michel Grabisch. Interaction transform of set
functions over a finite set. Information Sciences, 121(1-2):149–170,
1999.

[97] Ron Holzman, Ehud Lehrer, and Nathan Linial. Some bounds for
the banzhaf index and other semivalues. Mathematics of Operations
Research, 13(2):358–363, 1988.

[98] Shaheen S Fatima, Michael Wooldridge, and Nicholas R Jennings. A
linear approximation method for the shapley value. Artificial Intelli-
gence, 172(14):1673–1699, 2008.

[99] Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial calcula-
tion of the shapley value based on sampling. Computers & Operations
Research, 36(5):1726–1730, 2009.

[100] Yoram Bachrach, Evangelos Markakis, Ezra Resnick, Ariel D Procac-
cia, Jeffrey S Rosenschein, and Amin Saberi. Approximating power
indices: theoretical and empirical analysis. Autonomous Agents and
Multi-Agent Systems, 20(2):105–122, 2010.

[101] Shaheen S Fatima, Michael Wooldridge, and Nicholas R Jennings. An
approximation method for power indices for voting games. In Innova-
tions in Agent-Based Complex Automated Negotiations, pages 179–194.
Springer, 2010.

[102] Jean-Luc Marichal and Pierre Mathonet. Weighted banzhaf power and
interaction indexes through weighted approximations of games. Euro-
pean Journal of Operational Research, 211(2):352–358, 2011.

[103] Shaheen Fatima, Michael Wooldridge, and Nicholas R Jennings. A
heuristic approximation method for the banzhaf index for voting games.
Multiagent and Grid Systems, 8(3):257–274, 2012.

[104] Tomasz P Michalak, Karthik V Aadithya, Piotr L Szczepanski, Balara-
man Ravindran, and Nicholas R Jennings. Efficient computation of the

286

shapley value for game-theoretic network centrality. Journal of Artifi-
cial Intelligence Research, 46:607–650, 2013.

[105] Sasan Maleki, Long Tran-Thanh, Greg Hines, Talal Rahwan, and Alex
Rogers. Bounding the estimation error of sampling-based shapley value
approximation. arXiv preprint arXiv:1306.4265, 2013.

[106] W Hoeffding. Probability inequalities for sums of bounded random
variables. Wiley StatsRef: Statistics Reference Online, 2014.

[107] Krishna V Acharya, Himadri Mukherjee, and Jajati K Sahoo. Approx-
imation of banzhaf indices and its application to voting games. arXiv
preprint arXiv:1801.08029, 2018.

[108] Tjeerd van Campen, Herbert Hamers, Bart Husslage, and Roy Linde-
lauf. A new approximation method for the shapley value applied to the
wtc 9/11 terrorist attack. Social Network Analysis and Mining, 8(1):3,
2018.

[109] Gian-Carlo Rota. On the foundations of combinatorial theory i. theory
of möbius functions. Probability theory and related fields, 2(4):340–368,
1964.

[110] Pradeep Dubey, Abraham Neyman, and Robert James Weber. Value
theory without efficiency. Mathematics of Operations Research,
6(1):122–128, 1981.

[111] Francesc Carreras and Antonio Magaña. The multilinear extension and
the modified banzhaf-coleman index. Mathematical Social Sciences,
28(3):215–222, 1994.

[112] Vincent Feltkamp. Alternative axiomatic characterizations of the
shapley and banzhaf values. International Journal of Game Theory,
24(2):179–186, 1995.

[113] Andrzej S Nowak. On an axiomatization of the banzhaf value with-
out the additivity axiom. International Journal of Game Theory,
26(1):137–141, 1997.

[114] Rene Van den Brink and Gerard Van der Laan. Axiomatizations of
the normalized banzhaf value and the shapley value. Social Choice and
Welfare, 15(4):567–582, 1998.

287

[115] Michel Grabisch and Marc Roubens. An axiomatic approach to the
concept of interaction among players in cooperative games. Interna-
tional Journal of Game Theory, 28(4):547–565, 1999.

[116] Annick Laruelle and Federico Valenciano. Shapley-Shubik and Banzhaf
indices revisited. Instituto Valenciano de Investigaciones Económicas,
2000.

[117] Michel Grabisch. An axiomatization of the shapley value and interac-
tion index for games on lattices. Citeseer, 2004.

[118] Katsushige Fujimoto, Ivan Kojadinovic, and Jean-Luc Marichal. Ax-
iomatic characterizations of probabilistic and cardinal-probabilistic in-
teraction indices. Games and Economic Behavior, 55(1):72–99, 2006.

[119] Jean-Luc Marichal, Ivan Kojadinovic, and Katsushige Fujimoto. Ax-
iomatic characterizations of generalized values. Discrete Applied Math-
ematics, 155(1):26–43, 2007.

[120] José M Alonso-Meijide, Francesc Carreras, M Gloria Fiestras-Janeiro,
and Guillermo Owen. A comparative axiomatic characterization of the
banzhaf–owen coalitional value. Decision Support Systems, 43(3):701–
712, 2007.

[121] Mustapha Ridaoui, Michel Grabisch, and Christophe Labreuche. An
axiomatisation of the banzhaf value and interaction index for multi-
choice games. In International Conference on Modeling Decisions for
Artificial Intelligence, pages 143–155. Springer, 2018.

[122] Kai Lai Chung. Elementary probability theory with stochastic processes.
Springer Science & Business Media, 2012.

[123] Avrim L Blum and Pat Langley. Selection of relevant features and
examples in machine learning. Artificial intelligence, 97(1-2):245–271,
1997.

[124] Lara Mikenina and H-J Zimmermann. Improved feature selection and
classification by the 2-additive fuzzy measure. Fuzzy sets and systems,
107(2):197–218, 1999.

[125] Shay Cohen, Eytan Ruppin, and Gideon Dror. Feature selection based
on the shapley value. In other words, 1:98Eqr, 2005.

[126] Shay Cohen, Gideon Dror, and Eytan Ruppin. Feature selection via
coalitional game theory. Neural Computation, 19(7):1939–1961, 2007.

288

[127] Xin Sun, Yanheng Liu, Jin Li, Jianqi Zhu, Huiling Chen, and Xuejie
Liu. Feature evaluation and selection with cooperative game theory.
Pattern recognition, 45(8):2992–3002, 2012.

[128] Xin Sun, Yanheng Liu, Jin Li, Jianqi Zhu, Xuejie Liu, and Huiling
Chen. Using cooperative game theory to optimize the feature selection
problem. Neurocomputing, 97:86–93, 2012.

[129] Bogdan Kulynych and Carmela Troncoso. Feature importance scores
and lossless feature pruning using banzhaf power indices. arXiv preprint
arXiv:1711.04992, 2017.

[130] Shounak Gore and Venu Govindaraju. Feature selection using coopera-
tive game theory and relief algorithm. In Knowledge, Information and
Creativity Support Systems: Recent Trends, Advances and Solutions,
pages 401–412. Springer, 2016.

[131] Jihong Liu and Guoxiong Wang. A hybrid feature selection method for
data sets of thousands of variables. In 2010 2nd International Confer-
ence on Advanced Computer Control, volume 2, pages 288–291. IEEE,
2010.

[132] Fatiha Mokdad, Djamel Bouchaffra, Nabil Zerrouki, and Azzedine
Touazi. Determination of an optimal feature selection method based
on maximum shapley value. In 2015 15th International Conference on
Intelligent Systems Design and Applications (ISDA), pages 116–121.
IEEE, 2015.

[133] Mohammad Zaeri-Amirani, Fatemeh Afghah, and Sajad Mousavi. A
feature selection method based on shapley value to false alarm reduc-
tion in icus a genetic-algorithm approach. In 2018 40th Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pages 319–323. IEEE, 2018.

[134] Iñigo Barandiaran. The random subspace method for constructing
decision forests. IEEE transactions on pattern analysis and machine
intelligence, 20(8), 1998.

[135] Sally Goldman and Yan Zhou. Enhancing supervised learning with
unlabeled data. In ICML, pages 327–334, 2000.

[136] Zhi-Hua Zhou and Ming Li. Semi-supervised regression with co-
training. In IJCAI, volume 5, pages 908–913, 2005.

289

[137] Minmin Chen, Yixin Chen, and Kilian Q Weinberger. Automatic fea-
ture decomposition for single view co-training. In Proceedings of the
28th International Conference on Machine Learning (ICML-11), pages
953–960, 2011.

[138] Ahmed Salaheldin and Neamat El-Gayar. Complementary feature
splits for co-training. In 2012 11th International Conference on In-
formation Science, Signal Processing and their Applications (ISSPA),
pages 1303–1308. IEEE, 2012.

[139] Corrado Mio, Gabriele Gianini, and Ernesto Damiani. K-means clus-
tering in dual space for unsupervised feature partitioning in multi-view
learning. In 2018 14th International Conference on Signal-Image Tech-
nology & Internet-Based Systems (SITIS), pages 1–8. IEEE, 2018.

[140] Joseph St Amand and Jun Huan. Discriminative view learning for sin-
gle view co-training. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, pages 2221–
2226. ACM, 2016.

[141] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Techni-
cal report, University of Wisconsin-Madison Department of Computer
Sciences, 2005.

[142] Wei Wang and Zhi-Hua Zhou. Analyzing co-training style algorithms.
In European conference on machine learning, pages 454–465. Springer,
2007.

[143] Nikos Karampatziakis and Paul Mineiro. Discriminative features via
generalized eigenvectors. arXiv preprint arXiv:1310.1934, 2013.

[144] Jiye Liang, Feng Wang, Chuangyin Dang, and Yuhua Qian. An effi-
cient rough feature selection algorithm with a multi-granulation view.
International Journal of Approximate Reasoning, 53(6):912–926, 2012.

[145] Chang Xu, Dacheng Tao, and Chao Xu. A survey on multi-view learn-
ing. arXiv preprint arXiv:1304.5634, 2013.

[146] Xuran Zhao, Nicholas Evans, and Jean-Luc Dugelay. A subspace co-
training framework for multi-view clustering. Pattern Recognition Let-
ters, 41:73–82, 2014.

[147] Jing Zhao, Xijiong Xie, Xin Xu, and Shiliang Sun. Multi-view learning
overview: Recent progress and new challenges. Information Fusion,
38:43–54, 2017.

290

[148] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data
with co-training. In Proceedings of the eleventh annual conference on
Computational learning theory, pages 92–100. ACM, 1998.

[149] Maria-Florina Balcan, Avrim Blum, and Ke Yang. Co-training and ex-
pansion: Towards bridging theory and practice. In Advances in neural
information processing systems, pages 89–96, 2005.

[150] Kamal Nigam and Rayid Ghani. Analyzing the effectiveness and ap-
plicability of co-training. In Cikm, volume 5, page 3, 2000.

[151] Ulf Brefeld and Tobias Scheffer. Co-em support vector learning. In Pro-
ceedings of the twenty-first international conference on Machine learn-
ing, page 16. ACM, 2004.

[152] Felix Feger and Irena Koprinska. Co-training using rbf nets and differ-
ent feature splits. In The 2006 IEEE International Joint Conference
on Neural Network Proceedings, pages 1878–1885. IEEE, 2006.

[153] Zhi-Hua Zhou, De-Chuan Zhan, and Qiang Yang. Semi-supervised
learning with very few labeled training examples. In AAAI, pages 675–
680, 2007.

[154] Wen Zhang and Quan Zheng. Tsfs: A novel algorithm for single view
co-training. In 2009 International Joint Conference on Computational
Sciences and Optimization, volume 1, pages 492–496. IEEE, 2009.

[155] Abhishek Kumar and Hal Daumé. A co-training approach for multi-
view spectral clustering. In Proceedings of the 28th International Con-
ference on Machine Learning (ICML-11), pages 393–400, 2011.

[156] Ryan J Urbanowicz, Melissa Meeker, William La Cava, Randal S Olson,
and Jason H Moore. Relief-based feature selection: introduction and
review. Journal of biomedical informatics, 2018.

[157] Derek O’Connor. A historical note on shuffle algorithms, 2014.

[158] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 8(1):3–30, 1998.

291

[159] Charles N Zeeb, Patrick J Burns, et al. Random number generator rec-
ommendation. Report prepared for Sandia National Laboratories, Al-
buquerque, NM. Available as a WWW document., URL= http://www.
colostate. edu/˜ pburns/monte/documents. html, 1997.

[160] Elaine B Barker and John Michael Kelsey. Recommendation for random
number generation using deterministic random bit generators (revised).
US Department of Commerce, Technology Administration, National
Institute of . . . , 2007.

[161] Michel Grabisch et al. Set functions, games and capacities in decision
making. Springer, 2016.

[162] Bezalel Peleg and Peter Sudhölter. Introduction to the theory of coop-
erative games, volume 34. Springer Science & Business Media, 2007.

[163] Kevin Leyton-Brown and Yoav Shoham. Essentials of game theory: A
concise multidisciplinary introduction. Synthesis lectures on artificial
intelligence and machine learning, 2(1):1–88, 2008.

[164] Michael Lones. Sean luke: essentials of metaheuristics, 2011.

[165] Peter L Hammer and Sergiu Rudeanu. Boolean methods in operations
research and related areas, volume 7. Springer-Verlag New York Inc.,
1968.

[166] Peter L Hammer and Ron Holzman. Approximations of pseudo-boolean
functions; applications to game theory. Zeitschrift für Operations Re-
search, 36(1):3–21, 1992.

[167] Michel Grabisch, Jean-Luc Marichal, and Marc Roubens. Equivalent
representations of set functions. Mathematics of Operations Research,
25(2):157–178, 2000.

[168] Lloyd S Shapley. Additive and non-additive set functions. Princeton
University, 1953.

[169] Roger B Myerson. Conference structures and fair allocation rules. In-
ternational Journal of Game Theory, 9(3):169–182, 1980.

[170] Ehud Kalai and Dov Samet. On weighted shapley values. International
Journal of Game Theory, 16(3):205–222, 1987.

292

[171] Bart de Keijzer. A survey on the computation of power indices, 2008.
http://www.pakvla.nl/bart/powerindexsurvey.pdf, Last
accessed on 2019-07-01.

[172] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.
http://archive.ics.uci.edu/ml/datasets.php, Last ac-
cessed on 2019-07-01.

[173] Wikipedia. Stirling numbers of the second kind, 2018.
https://en.wikipedia.org/wiki/Stirling_numbers_
of_the_second_kind, Last accessed on 2019-10-01.

[174] Wikipedia. Bell number, 2019. https://en.wikipedia.org/
wiki/Bell_number, Last accessed on 2019-10-06.

[175] Wikipedia. Bernoulli number, 2019. https://en.wikipedia.
org/wiki/Bernoulli_number, Last accessed on 2019-10-06.

[176] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[177] Python org. Python, 2019. https://www.python.org/, Last ac-
cessed on 2019-10-10.

[178] Douglas Brent West et al. Introduction to graph theory, volume 2.
Prentice hall Upper Saddle River, NJ, 1996.

[179] Christian Schulz. Graph partitioning and graph clusteringin theory
and practice. Institute for Theoretical Informatics Karlsruhe Institute
of Technology (KIT).–May, 20:24–187, 2016.

[180] Olivier Goldschmidt and Dorit S Hochbaum. A polynomial algorithm
for the k-cut problem for fixed k. Mathematics of operations research,
19(1):24–37, 1994.

[181] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-
tion. Departmental Papers (CIS), page 107, 2000.

[182] Bruce Hendrickson and R Leland. A multilevel algorithm for parti-
tioning graphs, acm. In IEEE conference on Supercomputing, pages
435–446, 1995.

[183] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on scientific
Computing, 20(1):359–392, 1998.

293

http://www.pakvla.nl/bart/powerindexsurvey.pdf
http://archive.ics.uci.edu/ml/datasets.php
https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
https://en.wikipedia.org/wiki/Bell_number
https://en.wikipedia.org/wiki/Bell_number
https://en.wikipedia.org/wiki/Bernoulli_number
https://en.wikipedia.org/wiki/Bernoulli_number
https://www.python.org/

[184] Fragkiskos D Malliaros and Michalis Vazirgiannis. Clustering and com-
munity detection in directed networks: A survey. Physics Reports,
533(4):95–142, 2013.

[185] Lars Hagen and Andrew B Kahng. New spectral methods for ratio
cut partitioning and clustering. IEEE transactions on computer-aided
design of integrated circuits and systems, 11(9):1074–1085, 1992.

[186] X Yu Stella and Jianbo Shi. Multiclass spectral clustering. In null,
page 313. IEEE, 2003.

[187] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and
computing, 17(4):395–416, 2007.

[188] Bogdan Nica. A brief introduction to spectral graph theory. arXiv
preprint arXiv:1609.08072, 2016.

[189] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine Learning in Python . Journal
of Machine Learning Research, 12:2825–2830, 2011.

[190] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007.

[191] Weiran Wang, Raman Arora, Karen Livescu, and Jeff Bilmes. On
deep multi-view representation learning. In International Conference
on Machine Learning, pages 1083–1092, 2015.

[192] Abhishek Kumar, Piyush Rai, and Hal Daume. Co-regularized multi-
view spectral clustering. In Advances in neural information processing
systems, pages 1413–1421, 2011.

[193] Steffen Bickel and Tobias Scheffer. Multi-view clustering. In ICDM,
volume 4, pages 19–26, 2004.

[194] Stefanie Jegelka, Suvrit Sra, and Arindam Banerjee. Approximation
algorithms for tensor clustering. In International Conference on Algo-
rithmic Learning Theory, pages 368–383. Springer, 2009.

[195] Inderjit S Dhillon, Subramanyam Mallela, and Dharmendra S Modha.
Information-theoretic co-clustering. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 89–98. ACM, 2003.

294

[196] Inderjit S Dhillon. Co-clustering documents and words using bipar-
tite spectral graph partitioning. In Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 269–274. ACM, 2001.

[197] Shiliang Sun. A survey of multi-view machine learning. Neural Com-
puting and Applications, 23(7-8):2031–2038, 2013.

[198] Shiliang Sun and Feng Jin. Robust co-training. International Journal
of Pattern Recognition and Artificial Intelligence, 25(07):1113–1126,
2011.

[199] Shipeng Yu, Balaji Krishnapuram, Rómer Rosales, and R Bharat
Rao. Bayesian co-training. Journal of Machine Learning Research,
12(Sep):2649–2680, 2011.

[200] Jing Zhao, Xijiong Xie, Xin Xu, and Shiliang Sun. Multi-view learning
overview: Recent progress and new challenges. Information Fusion,
38:43–54, 2017.

[201] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten
digit database. AT&T Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist, 2, 2010.

[202] Xue Li. K-Means and K-Medoids, pages 1588–1589. Springer US,
Boston, MA, 2009.

[203] Sandrine Dudoit and Jane Fridlyand. Bagging to improve the accuracy
of a clustering procedure. Bioinformatics, 19(9):1090–1099, 2003.

[204] Hanan G Ayad and Mohamed S Kamel. Cumulative voting consensus
method for partitions with variable number of clusters. IEEE trans-
actions on pattern analysis and machine intelligence, 30(1):160–173,
2008.

[205] Joydeep Ghosh and Ayan Acharya. Cluster ensembles. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery, 1(4):305–
315, 2011.

[206] Alexander Strehl and Joydeep Ghosh. Cluster ensembles—a knowledge
reuse framework for combining multiple partitions. Journal of machine
learning research, 3(Dec):583–617, 2002.

295

[207] E. Damiani, G. Gianini, M. Ceci, and D. Malerba. Toward iot-friendly
learning models. In 2018 IEEE 38th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 1284–1289, July 2018.

[208] Meshesha Legesse, Gabriele Gianini, and Dereje Teferi. Selecting
feature-words in tag sense disambiguation based on their shapley value.
In Signal-Image Technology & Internet-Based Systems (SITIS), 2016
12th International Conference on, pages 236–240. IEEE, 2016.

[209] Meshesha Legesse, Gabriele Gianini, Dereje Teferi, Hatem Mousselly-
Sergieh, David Coquil, and Elöd Egyed-Zsigmond. Unsupervised cue-
words discovery for tag-sense disambiguation: comparing dissimilarity
metrics. In Proceedings of the 7th International Conference on Man-
agement of computational and collective intElligence in Digital EcoSys-
tems, pages 24–28. ACM, 2015.

[210] Hatem Mousselly-Sergieh, Mario Döller, Elöd Egyed-Zsigmond,
Gabriele Gianini, Harald Kosch, and Jean-Marie Pinon. Tag related-
ness using laplacian score feature selection and adapted jensen-shannon
divergence. In International Conference on multimedia modeling, pages
159–171. Springer, 2014.

[211] Hatem Mousselly-Sergieh, Elöd Egyed-Zsigmond, Gabriele Gianini,
Mario Döller, Jean-Marie Pinon, and Harald Kosch. Tag relatedness
in image folksonomies. Document numérique, 17(2):33–54, 2014.

[212] H Mousselly-sergieh, E Egyed-zsigmond, G Gianini, M Doller, H Kosch,
and J Pinon. Tag similarity in folksonomies. In INFORSID, pages 277–
291. INFORSID, 2013.

[213] Virgil Griffith and Tracey Ho. Quantifying redundant information in
predicting a target random variable. Entropy, 17(7):4644–4653, 2015.

[214] Virgil Griffith and Christof Koch. Quantifying synergistic mutual in-
formation. In Guided Self-Organization: Inception, pages 159–190.
Springer, 2014.

[215] Paul L Williams and Randall D Beer. Nonnegative decomposition of
multivariate information. arXiv preprint arXiv:1004.2515, 2010.

[216] Masahiro Terabe and Kazuo Hashimoto. Evaluation criteria of feature
splits for co-training. In Proceedings of the International MultiConfer-
ence of Engineers and Computer Scientists, volume 2008, 2008.

296

[217] Felix Feger and Irena Koprinska. Co-training using rbf nets and differ-
ent feature splits. In Neural Networks, 2006. IJCNN’06. International
Joint Conference on, pages 1878–1885. IEEE, 2006.

[218] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data
with co-training. In Proceedings of the eleventh annual conference on
Computational learning theory, pages 92–100. ACM, 1998.

[219] James MacQueen et al. Some methods for classification and analy-
sis of multivariate observations. In Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, volume 1, pages
281–297. Oakland, CA, USA., 1967.

[220] Zhexue Huang. Extensions to the k-means algorithm for clustering
large data sets with categorical values. Data mining and knowledge
discovery, 2(3):283–304, 1998.

[221] Zhexue Huang. Clustering large data sets with mixed numeric and cat-
egorical values. In Proceedings of the 1st Pacific-Asia Conference on
Knowledge Discovery and Data Mining,(PAKDD), pages 21–34. Singa-
pore, 1997.

[222] Amir Ahmad and Lipika Dey. A k-mean clustering algorithm for
mixed numeric and categorical data. Data & Knowledge Engineering,
63(2):503–527, 2007.

[223] Fuyuan Cao, Jiye Liang, Deyu Li, Liang Bai, and Chuangyin Dang. A
dissimilarity measure for the k-modes clustering algorithm. Knowledge-
Based Systems, 26:120–127, 2012.

[224] Zengyou He, Xiaofei Xu, and Shengchun Deng. Scalable algorithms
for clustering large datasets with mixed type attributes. International
Journal of Intelligent Systems, 20(10):1077–1089, 2005.

[225] Zhexue Huang and Michael K Ng. A fuzzy k-modes algorithm for
clustering categorical data. IEEE Transactions on Fuzzy Systems,
7(4):446–452, 1999.

[226] Dae-Won Kim, Kwang H Lee, and Doheon Lee. Fuzzy clustering of
categorical data using fuzzy centroids. Pattern Recognition Letters,
25(11):1263–1271, 2004.

[227] Basilis Boutsinas and T Papastergiou. On clustering tree structured
data with categorical nature. Pattern Recognition, 41(12):3613–3623,
2008.

297

[228] NG De Bruijn, Ca van Ebbenhorst Tengbergen, and D Kruyswijk. On
the set of divisors of a number. Nieuw Arch. Wiskunde (2), 23:191–193,
1951.

[229] Patrick Bosc, Ernesto Damiani, and Mariagrazia Fugini. Fuzzy service
selection in a distributed object-oriented environment. IEEE Transac-
tions on Fuzzy Systems, 9(5):682–698, 2001.

[230] Ernesto Damiani, O D’Antona, and Francesco Regonati. Whitney num-
bers of some geometric lattices. Journal of Combinatorial Theory, Se-
ries A, 65(1):11–25, 1994.

[231] Ernesto Damiani, Barbara Olibini, and Letizia Tanca. Fuzzy techniques
for xml data smushing. In International Conference on Computational
Intelligence, pages 637–652. Springer, 2001.

[232] Ernesto Damiani, Claudio Ardagna, Paolo Ceravolo, and Nello
Scarabottolo. Toward model-based big data-as-a-service: The tore-
ador approach. In Advances in Databases and Information Systems,
pages 3–9. Springer, 2017.

[233] Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algo-
rithms. Journal of machine learning research, 12(Jul):2211–2268, 2011.

[234] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 27, pages 2672–2680. Curran Associates,
Inc., 2014.

[235] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubin-
stein, and J. D. Tygar. Adversarial machine learning. In Proceedings of
the 4th ACM Workshop on Security and Artificial Intelligence, AISec
’11, pages 43–58, New York, NY, USA, 2011. ACM.

[236] D Loeb, Ernesto Damiani, and O D’Antona. Decompositions of bn and
πn using symmetric chains. Journal of Combinatorial Theory, Series
A, 65(1):151–157, 1994.

[237] Zdravko Markov. A lattice-based approach to hierarchical clustering.
In FLAIRS Conference, pages 389–393, 2001.

298

[238] Nasser M Nasrabadi. Pattern recognition and machine learning. Jour-
nal of electronic imaging, 16(4):049901, 2007.

[239] Zdzis law Pawlak. Rough sets: Theoretical aspects of reasoning about
data, volume 9. Springer Science & Business Media, 2012.

299

	Introduction
	Context and Problems
	Machine Learning algorithms
	Feature selection
	Feature Partitioning and Co-training

	Summary of the Contributions
	Feature selection
	Feature Partitioning for Multi-view Learning and Co-training
	Effectiveness of Power Index based methods

	Structure of the document

	Definitions
	Introduction
	Notations
	Subset lattice
	Set representation

	Set Functions
	Definitions
	Discrete Derivative
	Set Functions representation
	Set Functions Space

	Pseudo Boolean Functions
	Definitions
	Dirac basis
	Unanimity Game basis
	Walsh basis
	Discrete Derivatives

	Partition functions
	Definitions
	Derivative on a partition
	Mixed derivative

	Graphs
	Conclusions

	Coalitional Game Theory
	Introduction
	Coalitional Games
	Power Indices
	Probabilistic Values
	Cardinal-Probabilistic Values
	Shapley Value
	Chaining Value
	Player-probabilistic values
	Banzhaf Value
	Weighted Banzhaf Value

	Interaction Indices
	Probabilistic Interaction Indices
	Cardinal-Probabilistic Interaction Index
	Shapley Interaction Index
	Chaining Interaction Index
	Player-Probabilistic Interaction Index
	Banzhaf Interaction Index
	Weighted Banzhaf Interaction Index

	Set Functions Transforms
	Function Transforms based on Interaction Indices
	Shapley Transform
	Chaining Transform
	Banzhaf Transform
	Weighted Banzhaf Transform

	Axiomatization of Power and Interaction Indices
	Definitions
	Axioms for power indices
	Axioms for interaction indices
	Characterization of the Probabilistic Values and Interaction Indices
	Characterization of Shapley, Banzhaf, Chaining Values and Interaction Indices
	How to use the axioms: an open problem

	Interpretation of the Banzhaf and Shapley Value
	Conclusions

	Approximate algorithms for power and interaction indices
	Introduction
	General structure of the algorithms
	Banzhaf Value and Interaction Index
	Weighted Banzhaf Value and Interaction Index
	Shapley Value and Interaction Index
	Chaining Value and Interaction Index
	Probabilistic Value and Interaction Index
	Considerations on the Probabilistic Indices approximations
	Selecting the random generator
	Generating a random permutation
	Generating a random subset
	Generating a random subset with a selected distribution
	Approximate algorithms based on elements order
	Approximate algorithms using parallelism and local maximum
	Conclusions

	The approximation of set functions
	Introduction
	Set families
	Properties

	Function approximation
	General approximation

	Player-based approximation
	Introduction
	Orthonormal basis for L(F)
	Function transforms
	Player-probabilistic interaction transform
	Player-probabilistic based approximation
	Banzhaf-based approximation

	Cardinal-based approximation
	Shapley-based approximation

	Conclusions

	New Interaction Indices
	Introduction
	Selecting some lattice's levels
	K-Cardinal-Probabilistic Interaction Indices
	K-Shapley Interaction Index
	K-Chaining Interaction Index

	K-Player-Probabilistic Interaction Indices
	K-Banzhaf Interaction Index

	Approximate algorithms
	Closed formula for K-Banzhaf Value
	First order approximation
	Determination of i
	Determination of 0
	Wrap up
	General expression of the first order approximation in the Möbius basis
	General expression of and i in terms of f and if
	Second order approximation
	Determination of ij
	Determination of i
	Determination of 0
	Wrap up
	General expression of the second order approximation in the Möbius basis

	Conclusions

	Feature Partitioning and Co-Training
	Introduction
	Feature partitioning in multi-view learning
	The optimization problem
	Splitting and feature selection
	Feature Partitioning as an integer programming problem
	Partitioning as graph partitioning problem

	Feature partitioning for Co-training
	View teaching
	How to evaluate the ability of teaching
	Prediction quality for classification
	Prediction quality for regression
	Prediction quality and ability of teaching
	To evaluate the view's ability of teaching
	Partition with the best ability of teaching
	Approximation of the ability of teaching
	The co-training optimization problem
	Co-training as quadratic programming problem
	Co-training as graph partitioning problem

	Feature partitioning with different algorithms
	The 2nd degree mixed interaction index
	Partitioning as quadratic programming problem

	Conclusions

	Effectiveness of Power Index based methods
	Introduction
	Accuracy behaviour
	Accuracy properties
	Approximation of Power Indices
	Power and Interaction Indices
	Feature Selection
	Power Indices vs Greedy Method
	Feature Partitioning
	Generated predictions
	Teaching ability
	When the CGT based methods are not useful
	When the CGT based methods are useful

	Conclusions
	Current work
	Future works

	Proofs
	Dirac basis
	Unanimity Game basis
	Walsh Function basis
	The Möbius transform
	From function to derivative

	K-means Clustering in Dual Space for Unsupervised Feature Partitioning in Multi-view Learning
	Authors
	Published in
	Abstract
	Introduction
	Motivations and problem
	General approach

	Overview of the method and issues
	Issues

	Formalization of the Method
	Notation
	A dual-space approach to unsupervised MVG
	The consensus clustering task

	Results
	The dataset
	The process
	The outcomes

	Validation
	Requirement 1: Predicting power.
	Requirement 2: Unique information on targets

	Discussion, conclusions and outlook
	Acknowledgements

	Bibliography

