26 research outputs found

    Axiom Pinpointing

    Full text link
    Axiom pinpointing refers to the task of finding the specific axioms in an ontology which are responsible for a consequence to follow. This task has been studied, under different names, in many research areas, leading to a reformulation and reinvention of techniques. In this work, we present a general overview to axiom pinpointing, providing the basic notions, different approaches for solving it, and some variations and applications which have been considered in the literature. This should serve as a starting point for researchers interested in related problems, with an ample bibliography for delving deeper into the details

    Explaining Query Answers under Inconsistency-Tolerant Semantics over Description Logic Knowledge Bases (Extended Abstract)

    Get PDF
    The problem of querying description logic (DL) knowledge bases (KBs) using database-style queries (in particular, conjunctive queries) has been a major focus of recent DL research. Since scalability is a key concern, much of the work has focused on lightweight DLs for which query answering can be performed in polynomial time w.r.t. the size of the ABox. The DL-Lite family of lightweight DLs [10] is especially popular due to the fact that query answering can be reduced, via query rewriting, to the problem of standard database query evaluation. Since the TBox is usually developed by experts and subject to extensive debugging, it is often reasonable to assume that its contents are correct. By contrast, the ABox is typically substantially larger and subject to frequent modifications, making errors almost inevitable. As such errors may render the KB inconsistent, several inconsistency-tolerant semantics have been introduced in order to provide meaningful answers to queries posed over inconsistent KBs. Arguably the most well-known is the AR semantics [17], inspired by work on consistent query answering in databases (cf. [4] for a survey). Query answering under AR semantics amounts to considering those answers (w.r.t. standard semantics) that can be obtained from every repair, the latter being defined as an inclusion-maximal subset of the ABox that is consistent with the TBox. A more cautious semantics, called IAR semantics The need to equip reasoning systems with explanation services is widely acknowledged by the DL community. Indeed, there have been numerous works on axiom pinpointing, in which the objective is to identify (minimal) subsets of a KB that entail a given TBox axiom (or ABox assertion

    Query Answer Explanations under Existential Rules

    Get PDF
    Ontology-mediated query answering is an extensively studied paradigm, which aims at improving query answers with the use of a logical theory. In this paper, we focus on ontology languages based on existential rules, and we carry out a thorough complexity analysis of the problem of explaining query answers in terms of minimal subsets of database facts and related task

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    On a notion of abduction and relevance for first-order logic clause sets

    Get PDF
    I propose techniques to help with explaining entailment and non-entailment in first-order logic respectively relying on deductive and abductive reasoning. First, given an unsatisfiable clause set, one could ask which clauses are necessary for any possible deduction (\emph{syntactically relevant}), usable for some deduction (\emph{syntactically semi-relevant}), or unusable (\emph{syntactically irrelevant}). I propose a first-order formalization of this notion and demonstrate a lifting of this notion to the explanation of an entailment w.r.t some axiom set defined in some description logic fragments. Moreover, it is accompanied by a semantic characterization via \emph{conflict literals} (contradictory simple facts). From an unsatisfiable clause set, a pair of conflict literals are always deducible. A \emph{relevant} clause is necessary to derive any conflict literal, a \emph{semi-relevant} clause is necessary to derive some conflict literal, and an \emph{irrelevant} clause is not useful in deriving any conflict literals. It helps provide a picture of why an explanation holds beyond what one can get from the predominant notion of a minimal unsatisfiable set. The need to test if a clause is (syntactically) semi-relevant leads to a generalization of a well-known resolution strategy: resolution equipped with the set-of-support strategy is refutationally complete on a clause set NN and SOS MM if and only if there is a resolution refutation from NMN\cup M using a clause in MM. This result non-trivially improves the original formulation. Second, abductive reasoning helps find extensions of a knowledge base to obtain an entailment of some missing consequence (called observation). Not only that it is useful to repair incomplete knowledge bases but also to explain a possibly unexpected observation. I particularly focus on TBox abduction in \EL description logic (still first-order logic fragment via some model-preserving translation scheme) which is rather lightweight but prevalent in practice. The solution space can be huge or even infinite. So, different kinds of minimality notions can help sort the chaff from the grain. I argue that existing ones are insufficient, and introduce \emph{connection minimality}. This criterion offers an interpretation of Occam's razor in which hypotheses are accepted only when they help acquire the entailment without arbitrarily using axioms unrelated to the problem at hand. In addition, I provide a first-order technique to compute the connection-minimal hypotheses in a sound and complete way. The key technique relies on prime implicates. While the negation of a single prime implicate can already serve as a first-order hypothesis, a connection-minimal hypothesis which follows \EL syntactic restrictions (a set of simple concept inclusions) would require a combination of them. Termination by bounding the term depth in the prime implicates is provable by only looking into the ones that are also subset-minimal. I also present an evaluation on ontologies from the medical domain by implementing a prototype with SPASS as a prime implicate generation engine.Ich schlage Techniken vor, die bei der Erklärung von Folgerung und Nichtfolgerung in der Logik erster Ordnung helfen, die sich jeweils auf deduktives und abduktives Denken stützen. Erstens könnte man bei einer gegebenen unerfüllbaren Klauselmenge fragen, welche Klauseln für eine mögliche Deduktion notwendig (\emph{syntaktisch relevant}), für eine Deduktion verwendbar (\emph{syntaktisch semi-relevant}) oder unbrauchbar (\emph{syntaktisch irrelevant}). Ich schlage eine Formalisierung erster Ordnung dieses Begriffs vor und demonstriere eine Anhebung dieses Begriffs auf die Erklärung einer Folgerung bezüglich einer Reihe von Axiomen, die in einigen Beschreibungslogikfragmenten definiert sind. Außerdem wird sie von einer semantischen Charakterisierung durch \emph{Konfliktliteral} (widersprüchliche einfache Fakten) begleitet. Aus einer unerfüllbaren Klauselmenge ist immer ein Konfliktliteralpaar ableitbar. Eine \emph{relevant}-Klausel ist notwendig, um ein Konfliktliteral abzuleiten, eine \emph{semi-relevant}-Klausel ist notwendig, um ein Konfliktliteral zu generieren, und eine \emph{irrelevant}-Klausel ist nicht nützlich, um Konfliktliterale zu generieren. Es hilft, ein Bild davon zu vermitteln, warum eine Erklärung über das hinausgeht, was man aus der vorherrschenden Vorstellung einer minimalen unerfüllbaren Menge erhalten kann. Die Notwendigkeit zu testen, ob eine Klausel (syntaktisch) semi-relevant ist, führt zu einer Verallgemeinerung einer bekannten Resolutionsstrategie: Die mit der Set-of-Support-Strategie ausgestattete Resolution ist auf einer Klauselmenge NN und SOS MM widerlegungsvollständig, genau dann wenn es eine Auflösungswiderlegung von NMN\cup M unter Verwendung einer Klausel in MM gibt. Dieses Ergebnis verbessert die ursprüngliche Formulierung nicht trivial. Zweitens hilft abduktives Denken dabei, Erweiterungen einer Wissensbasis zu finden, um eine implikantion einer fehlenden Konsequenz (Beobachtung genannt) zu erhalten. Es ist nicht nur nützlich, unvollständige Wissensbasen zu reparieren, sondern auch, um eine möglicherweise unerwartete Beobachtung zu erklären. Ich konzentriere mich besonders auf die TBox-Abduktion in dem leichten, aber praktisch vorherrschenden Fragment der Beschreibungslogik \EL, das tatsächlich ein Logikfragment erster Ordnung ist (mittels eines modellerhaltenden Übersetzungsschemas). Der Lösungsraum kann riesig oder sogar unendlich sein. So können verschiedene Arten von Minimalitätsvorstellungen helfen, die Spreu vom Weizen zu trennen. Ich behaupte, dass die bestehenden unzureichend sind, und führe \emph{Verbindungsminimalität} ein. Dieses Kriterium bietet eine Interpretation von Ockhams Rasiermesser, bei der Hypothesen nur dann akzeptiert werden, wenn sie helfen, die Konsequenz zu erlangen, ohne willkürliche Axiome zu verwenden, die nichts mit dem vorliegenden Problem zu tun haben. Außerdem stelle ich eine Technik in Logik erster Ordnung zur Berechnung der verbindungsminimalen Hypothesen in zur Verfügung korrekte und vollständige Weise. Die Schlüsseltechnik beruht auf Primimplikanten. Während die Negation eines einzelnen Primimplikant bereits als Hypothese in Logik erster Ordnung dienen kann, würde eine Hypothese des Verbindungsminimums, die den syntaktischen Einschränkungen von \EL folgt (einer Menge einfacher Konzeptinklusionen), eine Kombination dieser beiden erfordern. Die Terminierung durch Begrenzung der Termtiefe in den Primimplikanten ist beweisbar, indem nur diejenigen betrachtet werden, die auch teilmengenminimal sind. Außerdem stelle ich eine Auswertung zu Ontologien aus der Medizin vor, Domäne durch die Implementierung eines Prototyps mit SPASS als Primimplikant-Generierungs-Engine
    corecore