173 research outputs found

    Aerodynamic Shape Sensitivity Analysis and Design Optimization of Complex Configurations Using Unstructured Grids

    Get PDF
    A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed and is extended to model geometrically complex configurations. The advantage of unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR (which is an advanced automatic-differentiation software tool). To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for a two-dimensional high-lift multielement airfoil and for a three-dimensional Boeing 747-200 aircraft

    Finite element analysis of low speed viscous and inviscid aerodynamic flows

    Get PDF
    A weak interaction solution algorithm was established for aerodynamic flow about an isolated airfoil. Finite element numerical methodology was applied to solution of each of differential equations governing potential flow, and viscous and turbulent boundary layer and wake flow downstream of the sharp trailing edge. The algorithm accounts for computed viscous displacement effects on the potential flow. Closure for turbulence was accomplished using both first and second order models. The COMOC finite element fluid mechanics computer program was modified to solve the identified equation systems for two dimensional flows. A numerical program was completed to determine factors affecting solution accuracy, convergence and stability for the combined potential, boundary layer, and parabolic Navier-Stokes equation systems. Good accuracy and convergence are demonstrated. Each solution is obtained within the identical finite element framework of COMOC

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is operated by the Ohio Aerospace Institute (OAI) and the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the accomplishments and activities at ICOMP during 1993

    Linear and nonlinear dynamic analysis by boundary element method

    Get PDF
    An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons with available analytical and numerical results, the stability and high accuracy of these dynamic analysis techniques are established

    Computational fluid dynamics of coupled free/porous regimes: a specialised case of pleated cartridge filter

    Get PDF
    The multidisciplinary project AEROFIL has been defined and coordinated with the idea of developing novel filter designs to be employed in aeronautic hydraulic systems. The cartridge filters would be constructed using eco-friendly filtration media supported by unconventional disposable or reusable solid components. My main contribution to this project is the development of a robust and cost-effective design and analysis tool for simulating the hydrodynamics in these pleated cartridge filters. The coupled free and porous flow regimes are generally observed in filtration processes. These processes have been the subject of intense investigation for researchers over the decades who are striving hard to resolve some of the critical issues related to the free/porous interfacial constraints and their mathematical representations concerning its industrial applications. [Continues.

    A high-performance boundary element method and its applications in engineering

    Get PDF
    As a semi-numerical and semi-analytical method, owing to the inherent advantage, of boundary-only discretisation, the boundary element method (BEM) has been widely applied to problems with complicated geometries, stress concentration problems, infinite domain problems, and many others. However, domain integrals and non-symmetrical and dense matrix systems are two obstacles for BEM which have hindered the its further development and application. This thesis is aimed at proposing a high-performance BEM to tackle the above two drawbacks and broaden the application scope of BEM. In this thesis, a detailed introduction to the traditional BEM is given and several popular algorithms are introduced or proposed to enhance the performance of BEM. Numerical examples in heat conduction analysis, thermoelastic analysis and thermoelastic fracture problems are performed to assess the efficiency and correction of the algorithms. In addition, necessary theoretical derivations are embraced for establishing novel boundary integral equations (BIEs) for specific engineering problems. The following three parts are the main content of this thesis. (1) The first part (Part II consisting of two chapters) is aimed at heat conduction analysis by BEM. The coefficient matrix of equations formed by BEM in solving problems is fully-populated which occupy large computer memory. To deal with that, the fast multipole method (FMM) is introduced to energize the line integration boundary element method (LIBEM) to performs better in efficiency. In addition, to compute domain integrals with known or unknown integrand functions which are caused by heat sources or heterogeneity, a novel BEM, the adaptive orthogonal interpolation moving least squares (AOIMLS) method enhanced LIBEM, which also inherits the advantage of boundary-only discretisation, is proposed. Unlike LIBEM, which is an accurate and stable method for computing domain integrals, but only works when the mathematical expression of integral function in domain integrals is known, the AOIMLS enhanced LIBEM can compute domain integrals with known or unknown integral functions, which ensures all the nonlinear and nonhomogeneous problems can be solved without domain discretisation. In addition, the AOIMLS can adaptively avoid singular or ill-conditioned moment matrices, thus ensuring the stability of the calculation results. (2) In the second part (Part III consisting of four chapters), the thermoelastic problems and fracture problems are the main objectives. Due to considering thermal loads, domain integrals appear in the BIEs of the thermoelastic problems, and the expression of integrand functions is known or not depending on the temperature distribution given or not, the AOIMLS enhanced LIBEM is introduced to conduct thermoelasticity analysis thereby. Besides, a series of novel unified boundary integral equations based on BEM and DDM are derived for solving fracture problems and thermoelastic fracture problems in finite and infinite domains. Two sets of unified BIEs are derived for fracture problems in finite and infinite domains based on the direct BEM and DDM respectively, which can provide accurate and stable results. Another two sets of BIEs are addressed by employing indirect BEM and DDM, which cannot ensure a stable result, thereby a modified indirect BEM is proposed which performs much more stable. Moreover, a set of novel BIEs based on the direct BEM and DDM for cracked domains under thermal stress is proposed. (3) In the third part (Part IV consisting of one chapter), a high-efficiency combined BEM and discrete element method (DEM) is proposed to compute the inner stress distribution and particle breakage of particle assemblies based on the solution mapping scheme. For the stress field computation of particles with similar geometry, a template particle is used as the representative particle, so that only the related coefficient matrices of one template particle in the local coordinate system are needed to be calculated, while the coefficient matrices of the other particles, can be obtained by mapping between the local and global coordinate systems. Thus, the combined BEM and DEM is much more effective when modelling a large-scale particle system with a small number of distinct possible particle shapes. Furthermore, with the help of the Hoek-Brown criterion, the possible cracks or breakage paths of a particle can be obtained

    Applications of Isogeometric Analysis Coupled with Finite Volume Method

    Get PDF
    In this thesis, a combination of Isogeometric Analysis (IGA) and Finite Volume Method (FVM) on geometries parameterized by Non-Uniform Rational Basis Splines (NURBS) is explored with applications in fluid flow, heat transfer, and shape optimization. An IGA framework supplemented with FVM is created in MATLAB® to solve problems defined over single patch domains with mesh refinement by node insertion. Additionally, a second-order finite difference method is developed using non-orthogonal curvilinear coordinates and a numerical Jacobian of the NURBS geometry. The examples include fully developed laminar flow through ducts, potential flow around a tilted ellipse, transient heat conduction, linear advection-diffusion, and a basic shape optimization example using a particle swarm technique. The numerical results are compared among the methods and verified with available analytical solutions

    Annual Research Briefs - 1996

    Get PDF
    This report contains the 1996 annual progress reports of the research fellows and students supported by the Center for Turbulence Research. Last year, CTR hosted twelve resident Postdoctoral Fellows, three Research Associates, four Senior Research Fellows, and supported one doctoral student and ten short term visitors

    A three-dimensional linear analysis of steady ship motion in deep water

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The investigation of steady ship motion in calm water is a classic problem in ship hydrodynamics, where ship waves and wave resistance are subjects of unquestionable importance. Despite considerable efforts in the past a satisfactory solution of the steady ship motion problem has not been achieved so far. The application of three-dimensional potential flow theory results in an essentially nonlinear problem formulation due to the unknown position of the disturbed free surface. In this thesis consistent linearisation schemes are discarded in favour of the inconsistent Neumann-Kelvin theory. This approximation implies that nonlinear free surface effects are neglected entirely, but the three-dimensional features of the fluid flow and hull geometry are otherwise fully retained. The Kelvin wave source potential, otherwise known as the wave resistance Green's function, is analysed in great detail. Solutions to the disturbance potential of the steady perturbed ship flow are obtained by means of a Kelvin wave source distribution method. The exact source strength is the solution of a Fredholm integral-equation of the second kind. An explicit source strength approximation, valid for sufficiently slender ships operating at fairly low speeds, is investigated. Particular emphasis is placed on computational aspects. Highly accurate and efficient methods for the evaluation of the Kelvin wave source potential are proposed. The developed theory is applied to five different ship forms, viz. a submerged prolate spheroid, Wigley's parabolic ship, a tanker, a fast destroyer and a cruiser. Over a wide range of ship speeds experimental data are compared with theoretical predictions of the steady flow parameters such as wave resistance, wave profiles, pressure signatures and lift force distributions

    Dynamics of a class of vortex rings

    Get PDF
    The contour dynamics method is extended to vortex rings with vorticity varying linearly from the symmetry axis. An elliptic core model is also developed to explain some of the basic physics. Passage and collisions of two identical rings are studied focusing on core deformation, sound generation and stirring of fluid elements. With respect to core deformation, not only the strain rate but how rapidly it varies is important and accounts for greater susceptibility to vortex tearing than in two dimensions. For slow strain, as a passage interaction is completed and the strain relaxes, the cores return to their original shape while permanent deformations remain for rapidly varying strain. For collisions, if the strain changes slowly the core shapes migrate through a known family of two-dimensional steady vortex pairs up to the limiting member of the family. Thereafter energy conservation does not allow the cores to maintain a constant shape. For rapidly varying strain, core deformation is severe and a head-tail structure in good agreement with experiments is formed. With respect to sound generation, good agreement with the measured acoustic signal for colliding rings is obtained and a feature previously thought to be due to viscous effects is shown to be an effect of inviscid core deformation alone. For passage interactions, a component of high frequency is present. Evidence for the importance of this noise source in jet noise spectra is provided. Finally, processes of fluid engulfment and rejection for an unsteady vortex ring are studied using the stable and unstable manifolds. The unstable manifold shows excellent agreement with flow visualization experiments for leapfrogging rings suggesting that it may be a good tool for numerical flow visualization in other time periodic flows
    corecore