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Abstract

A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design

optimization has been developed and is extended to model geometrically complex configurations. The advantage of

unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped

domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex

configurations of practical interest, in this work the nonlinear Euler equations are solved using an upwind, cell-centered,

finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a

preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel

algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity

equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale

gradient-bused aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact

Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the

surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs.

Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with

ADIFOR (which is an advanced automatic.differentiation software tool). To demonstrate the ability of this procedure to

analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been

performed for a two-dimensional high-lifi multielement airfoil and for a three-dimensional Boeing 747-200 aircraft.

1. Introduction

With the aid of modern computers, aerodynamic design

optimization procedures [1-5] have emerged which directly

couple the fields of computational fluid dynamics (CFD),

sensitivity analysis, and numerical optimization. These

procedures have enormous potential as design tools and are

therefore receiving considerable attention in the

aerospace, automotive, and biomedical research

communities (among others). Bottlenecks, moreover,

associated with the analytic evaluation of discrete

sensitivity derivatives, appear to have been address [3] via

the use of an incremental iterative solution of the

sensitivity equation [5] where memory efficient methods

[6] are used to construct Jacobian matrix-vector products.
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Solutions to the excessive CPU run times, to perform the

design optimization, are being explored through the use of

simultaneous analysis and design optimization (S_)

[71, one-shot methods [8], and exploiting parallel

computing architectures [9,10]. Another crucial hurdle, for

these aerodynamic optimization procedures to become

useful design tools, is their ability to analyze and design

complex configurations of practical interest. Elliot and

Peraire [11], with regards toward the geometrically

complex domains associated with the integration of the

engine into the wing design process and to the possible

mutlipoint design of the aircraft's high lift system and

cruise design, assert that this may be "the step that

determines the economic viability of the vehicle".

As recently noted by Reuther et al. [21 "while flow

analysis has matured to the extent that Navier-Stokes

calculations are routinely carried out over very complex

configurations, direct CFD based design is only just

beginning to be used in the treatment of moderately
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complexthree.dimensional configurations". This i s

primarily due to the fact that to generate a single structured

grid about such a configuration is difficult, if not

impossible. Thus, to handle a typical complex geometry

of practical interest, some sort of domain decomposition

scheme must be incorporated into the design code. For

structured grid solvers, these techniques would include

multiblocked, zonally patched, and overlapped (sometimes

referred to as Chimera) grid algorithms. However, as the

geometric flexibility of the method increases, so does the

complexity of the underlying algorithm. Since the use of

sensitivity analysis, to evaluate the needed gradients for a

numerical optimizer, is still evolving, little work has been

done toward extending these algorithms to include these

domain decomposition methods. The research which has

been accomplished has mostly concentrated on the use of

multiblocked grids. To this end, Reuther et al. [2] have

developed a multibiock-multigrid adjoint solver

("continuous" or "control theory" approach [12])which

was applied to the wing redesign of a transonic business

jet. Eleshaky and Baysal [13] developed a multiblock

"discrete" adjoint solver which was applied to a simple

axisymmetric nozzle near a flat plat. As for the use of the

more advanced domain decomposition methods (zonal and

overlapped grids), and combinations of the three various

types, Taylor [14,15] has differentiated an advanced flow-

analysis code to perform the discrete sensitivity analysis.

An alternative, to resorting to structured grid domain

decomposition methods to cope with complex

configurations, is the use of unstructured grid schemes.

Since triangles and tetrahedra are the simplest geometric

shapes possessing area and volume, respectively, they are
capable of resolving irregularly shaped domains easier and

with greater efficiency. Another attribute of unstructured

grids is that they may be adapted and locally enriched

where needed without affecting other regions of the mesh.

As for unstructured grid approaches to aerodynamic

design optimization, Beux and Dervieux [16] performed

spatially first-order accurate sensitivity analysis and

optimization of a two-dimensional nozzle using a

continuous adjoint method to derive the optimality

conditions, but a discrete approach for computer

implementation. Newman, Taylor, and Burgreen [17]

subsequently developed a two-dimensional, and later a

three-dimensional [3], second-order spatially accurate

discrete sensitivity analysis approach which has been used

to perform the design optimization of airfoils and

transport wings in transonic flow. Elliot and Peraire [11]

have also developed an unstructured discrete sensitivity

analysis approach which was used to match target pressure

distributions for a two-element airfoil, a 3D infinite wing,

and a wing-body configuration. Subsequently, Elliot and

Peraire [4] have applied their algorithm to perform the

inverse pressure design of a business jet wing immersed in

transonic flow. An equally impressive use of unstructured

grid approaches, for the design of geometrically complex

devices, has been performed by Burgreen and Antaki [18].

In Ref.[18], CFD-based design optimization methods are

used to improve the thrombogenic performance of an axial

flow blood pump. The research of Burgreen and Antaki

[18], furthermore, represents the expansion of traditional

aerodynamic design optimization procedures into the

biomedical field to aid in artificial heart design. More

recently, Anderson and Venkatakrishnan [19] have

developed an unstructured grid approach to sensitivity

analysis which truly utilizes a continuous adjoint

approach. Moreover, in Ref.[19], limitations of the

continuous adjoint approach are discussed and a hybrid

continuous-discrete approach, which addresses some of

these deficiencies, is developed.

In this work the current unstructured grid approach to

aerodynamic design optimization [3,17] is demonstrated

on non-trivial, complex configurations. Presented herein

is a discussion of the algorithms used to solve the

nonlinear fluid and the linear sensitivity equations, to

parameterize the design surfaces, and to perform the

unstructured grid adaptation. Special considerations that
arise from the use of unstructured meshes, as well as the use

of memory efficient Jacobian matrix-vector product

methods which make large-scale optimization possible,

are discussed. To demonstrate this procedure, the

aerodynamic shape sensitivity analysis and design

optimization of a high-lift multietement airfoil and for a

complete Boeing 747-200 aircraft is performed. Accuracy

is accessed by comparing the analytically obtained

sensitivity derivatives with central finite-differences.

2. Aerodynamic Design Optimization Problem

Aerodynamic design optimization is simply a

constrained minimization problem which attempts to

reduce an objective or cost function F(Q, X, _k) subject to

constraints Cj(Q,X,_k). Here, Q is the aerodynamic state

vector, X is the computational mesh, and _k is the vector

of design variables which control the shape of the

configuration.

A procedure to accomplish this minimization is

obtained by iinearizing the above constrained problem and

then solving the resulting set of equations. For a gradient-

based optimization method, such as the Method of

Feasible Directions [20] used in the present work, frequent

evaluations of the objective function and constraints as

well as sensitivity gradient information are required. The

sensitivity gradients of the objective function, VF, and

the constraints, VCj, are commonly referred to as the

sensitivity derivatives. These sensitivity derivatives may

be simply evaluated by finite differences; however, this

approach is not only computationally expensive, it has

been found at times to produce highly inaccurate gradient

approximations. The preferable approach is to obtain the

sensitivity derivatives quasi-analytically via

v_ (0F_ 7 ,_Q _" _ dF
r=lml _+___+_ (la)



dQ aX
VCj=

d#k d'/X d/3, + 3_, (Ib)

To compute the sensitivity derivatives in Eqs.(la,b), the

sensitivity of the state vector dQ/d_k is needed. This,

consequently, results in the difficulty of solving an

extremely large system of linear equations. The methods

used in the present work to obtain the state vector, and the

sensitivity of the state vector, will be discussed in
sections to follow.

3. Fundamental Equations

Nonlinear Aerodynamic Analysis
The nonlinear fluid model considered in this work will

be the three-dimensional Eder equations. These equations

represent the conservation of mass, momentum and energy

for an inviscid compressible flow. Applying the backward

Euler time-integration scheme to the unsteady term and

linearizing the right hand side of the semi-discrete

approximation yields

+ z_Q - R_ (2)
[mi

where Ri represents the steady-state residual

Ri= _ F..hdA= ]_Ei. j (3)
o_.0 j=r(i)

with the face area through which the flux passes contained
within E.

In the present work, the inviscid flux vector, E, and the

Jacobian, c_i/o3 Q, are evaluated using the flux vector

splitting technique of Van Leer [21]. The Jacobian matrix

may then be expressed in terms of the Van Leer fluxes as

@Ri = _ ( _E_.j _Q._.j+ dE_.j @Q_.j) (4)

where the flux Jacobians are evaluated with variables
4-

interpolated to the j cell faces, and o3Ql,j/o3Q represents

the cell center contribution from the interpolation or

reconstruction. When higher-order spatial accuracy is

desired in Eq.(4), the form of the Jacobian becomes

extremely complicated and the computational stencil very

large. This is due to the upwind biased interpolation

scheme that must be used for unstructured grids. The order

of accuracy of the aerodynamic analysis, however, is
determined from the evaluation of the residual vector, and a

first-order Jacobian has been found sufficient to converge

the implicit scheme. Since the left hand side operator is

not an exact linearization of the residual, the ability to

achieve quadratic convergence is now lost. It should be

noted that an inexact linearization is not permitted for the

aerodynamic sensitivity equation. This is because the

underlying equations are linear and no approximations to

the higher-order Jacobian matrix are allowed.. This will be

discussed in a subsequent section.

A higher-order upwind scheme is obtained by expanding

the cell-centered solution to the left and right of each cell

interface using a Taylor series expansion [22]. This

expansion may be expressed as

= Q+VQ.z9 (5)

where the solution gradient, VQ, at the center of the cell

is found using the geometric

tetrabedm. The expression for the

cell center may be obtained from

theorem as

m

VQ.z_ = 4 Q._ +Q.2

invariant features of

solution gradient at the

application of Green's

+Qn3)-Q,4] (6)

where Qnl, Qn2, Qn3 are the primitive variables at the

three nodes that constitute the face through which the flux

passes, zff is the distance from the centroid of the

tetrahedron to the center of that face, and Qn4 are the same

variables at the fourth node of the tetrahedron.

The data at the nodes are obtained from the cell centered

solution by using either an inverse distance or a psuedo-

Laplacian weighting procedure [23]. Both procedures,

described in Ref.[24], attempts a multidimensional

weighted averaging of the form

Q. = wl Qi wi (7)

where w i is the computed weighting factor from the desired

node, n, to the surrounding N cell centers.

Aerodynamic Shape Sensitivity Analysis

As noted in a previous section, to determine the needed

sensitivity derivatives, the sensitivity of the state vector

dQ/d_t is required. To obtain this, the discrete residual

vector (for a steady-state solution) may be recast as

where the explicit and implicit dependencies of the residual

on the state vector, the computational mesh, and the

design variables are asserted.

At this point, one of two discrete formulations may be

used to determine the sensitivity derivatives. These
formulations are referred to as the direct differentiation

method and the adjoint variable method. For reasons which

will be summarized in the conclusions, the direct approach
is used in the current work. For a more detailed discussion

of both methods, and their associated boundary

conditions, the reader is referred to Ref.[25].

In this formulation Eq.(8) is directly differentiated with

respect to the vector of design variables and rearranged to

produce the following linear equation



Ca k (9)

where 9R/JQ and JR/fiX are the Jacobian matrices

evaluated at a converged flow solution, and dX/dflt is the

grid sensitivity term. It should be noted that the task of

constructing exactly or analytically all of the required

Jacobians and derivatives by hand, and then building the

software for evaluating these terms can be extremely

complex. This problem is exemplified by the inclusion of

even the most elementary turbulence model (for viscous

flow) or use of a sophisticated grid generation package for

adapting (or regenerating) the computational mesh to the

latest design. A promising .possible solution to this

problem, however, has been found in the use of a technique

known as automatic differentiation (AD). AD involves the

application of a precompiler software tool called ADII:_R

(Automatic Differentiation of FORtran, Ref.[26]). This
software has been utilized, with much success, to obtain

complex derivatives from advanced CFD and grid

generation codes for use within aerodynamic design

optimization procedures [ 14,15,27-29].
In the present work, the Jacobians 3R]o_, aR/fix as

well as all derivatives (except for the grid sensitivity term)

are constructed by hand. This is due to the fact that an
inviscid fluid model is assumed, with the inviscid fluxes

being constructed via the flux vector splitting scheme of

Van Leer (a scheme which is continuously differentiable

and well documented). ADIFOR, on the other hand, is used

on the unstructured grid adaptation algorithm to provide

the required grid sensitivity terms. Details of this

algorithm and the evaluation of grid sensitivities will be
discussed in a later section.

The solution of Eq.(9) above poses the difficulty of

solving an extremely large linear system for each design

variable. Solving these systems, however, is made more

tractable when the above equations are recast into what has
been termed the incremental iterative form [5,14;?.9_30] as
follows

J (lOa)

/"+':¢ / <,0b>
) t ) t dJk7

where ,4 may now be any convenient approximation to

the higher-order Jacobian which converges the linear

system. This is because the equations are now cast in delta

form, with the physics contained in the right-hand-side

vector. It has been found that the first-order Jacobian

works well for use in the coefficient matrix of Eq.(lOa),

and is therefore used in the present work. A more detailed

and thorough discussion of this incremental iterative

technique may be found in the above cited literature.

Two particularly attractive features of the incremental

iterative strategy are that (i) a more diagonally dominant

matrix may be used to drive the solution of the linear

systems (as opposed to the sometimes ill-conditioned

higher-order Jacobian), and (i/) the higher-order Jacobian

now resides on the right-hand-side of the equations and

may be dealt with in an explicit manner. When in this

form, only the k-vectors resulting from the matrix-vector

product of (oaR[JQ) •(dQldflk) are of concern. Hence, CPU

time and memory efficient methods for constructing the

-exact matrix-vector product can be utilized. To this end,

Barth and Linton [6] have developed a new technique which

permits the construction of the higher-order Jacobian-

vector product using slightly less memory than that which

would be required to evaluate the first-order Jacobian-

vector product. This is accomplished by avoiding the need

to assemble the full Jacobian prior to multiplication. With
the details omitted (and the reader directed to Ref.[6] for the

proof and further explanation of this method), this

technique, applied to the desired matrix-vector product in

Eq.(10a), may be symbolically written (using the notation

of Eq.(4)) as

<,o._ ( r<,o + ( ]+ ]
+

where (dQId_k)7,j and (dQId_k)f,j arc the vectors

reconstructed from dQ/d_k using the same scheme

employed in the CFD analysis. The resulting vector, from

this matrix-vector product, is then scattered to the adjacent
cells in the same manner as used for the nonlinear flow-

residual calculation.

It should be noted that this method only requires the

storage of the 5x5 flux Jacobians, and the reconstructed

vectors, at the cell faces. Since this product is to be used in

the sensitivity analysis, the memory which was utilized to

compute the flux Jacobians for the first-order Jacobian,

and that used to reconstruct the CFD state vector, may be
reused. Thus, the spatially first- and higher-order accurate

sensitivity analysis may be performed with virtually the

same memory as the CH) analysis. The only additional

memory is due to the storage of the grid and metric

sensitivity terms and the derivative c)R/gflk or

(gR/fix).(dX/dflk). (Note that for geometric design

variables cgR/cgflk is zero, and for non-geometric design

variables (gR/fix). (dX/dflk) is zero). Another attribute of

this method is that the matrix-vector product computation

only requires a fraction of the CPU time originally needed

to assemble the full higher-order Jacobian; hence, the
benefits are two-fold. The use of Barth and Linton's

technique within the incremental iterative method has

significant ramifications in that it makes large-scale

optimizations of practical three-dimensional

configurations possible.

4. Solution Methodology

The linear systems resulting from the nonlinear

aerodynamic analysis, as well as those from the



aerodynamicshape sensitivity analysis, can be expressed

in the simple form Ax=b. Within the optimization

process, it is evident that the aerodynamic analysis not

only consumes more CPU time (than the shape sensitivity

analysis) to converge the nonlinear systems, it also is

needed more frequently. Thus, solution algorithms which

have high convergence rates are imperative when multiple

analyses are to be performed. To this end, it has been found
that a fully implicit iterative solver, utilizing

preconditioned GMRES techniques developed by Saad and

Schultz [31], often out perform conventional explicit as

well as classical iterative solvers [32-34]. In previous

work [3,17], all linear systems resulting from the solution

of Eq.(2) and Eq.(lOa) for the aerodynamic analysis and

shape sensitivity analysis, respectively, utilized GMRES.

However, the selection of the preconditioner used in

conjunction with GMRES essentially governs the

performance and memory required by this algorithm.

Computations performed in Refs.[3,17] used an

incomplete LLT factorization (ILU(0)) as a left

preconditioner for Eq.(2) and as a right preconditioner for

Eq.(lOa). In the current work, the two-dimensional

computations about the multielement airfoil use GMRES,

but due to the memory requirements associated with this

algorithm, it was not possible to utilize it for the Boeing

747-200 configuration. Hence, a Gauss-Seidel iterative
method was used to solve the fluid and sensitivity

equations for this geometry.
As a final note, it has been observed that the ordering of

the cells in a grid has an affect on the rate of convergence

of iterative solvers [35]. With this in mind, many

researchers [34,36,37] currently working with unstructured

grids (which usually have a random ordering) have adopted

renumbering algorithms such as Cuthill-McKee (CM) [38]

or reverse-CM [39]. These algorithms attempt to reorder a

given mesh such that the bandwidth of the coefficient

matrix is minimized. In the present work, reordering is

accomplished, during the initial preprocessing of the grid,

using the Gibbs-Poole-Stockmeyer [40] algorithm.

5. Design Surface and Grid Representation

A key aspect in any design optimization procedure is

how the design surface and computational mesh are to be

represented. This selection will ultimately determine (i)

the type and number of design variables used, (ii) the grid

adaptation or regeneration method, and (iii) the means

through which grid sensitivities are calculated. In the
following sections, the techniques used in the present

work for (i), (ii), and (iii) will be discussed.

Design Surface Parameterization
Once an aerodynamic shape optimization code has been

developed and verified, only the design surface

parameterization routines change from application to

application. The particular parameterization technique
utilized depends on the geometry being studied and the

design problem formulation. An excellent example of a

sophisticated wing parameterization method capable of

(a) Unstructured mesh (7614 nodes and 14919 cells).

3 I_ Upper Surfa¢_ Bczier Control Point

• I Design Variable Number 3

•5

DemS n Van4d_e Number 8

(b) Design surfaceparametcrizationfor the vane.

l
(c) Grid sensitivity dy/d_7.

Fig. 1: Mesh, vane parameterization, and grid sensitivity
for the muitielement airfoil.

modeling wing-section (airfoil) definitions, taper

distribution, sweep, span and spanwise bending, global

angle-of-attack, and twist schedule was developed in

Ref.[41], and discussed at length in Ref.[1]. In the current

work, however, simpler parameterization techniques have

been used for demonstrative purposes and to keep the

number of design variables to a minimum for the Boeing

747-200 configuration.



(a)Unstructuredmesh(63828 nodes and 352547 cells).

(b) Grid sensitivity dz/dfll.

Fig. 2: Surface mesh and grid sensitivity for the Boeing

74%200 configuration.

For the high-lift multielement airfoil, the upper and

lower surfaces of the vane were parameterizad with separate

Bezier curves. Details of this type of parameterization for

the design of airfoils may be found in Refs.[17,32]. The

design variables are the vertical locations of the 10

interior Bezier control points. The unstructured mesh, and

this parameterization, are shown in Fig. la and lb,

respectively. As for the Boeing 747-200 geometry, the

dihedral and twist schedule along the wing, outboard of the

outermost engine nacelle, was parameterized with cubic

polynomials. At the point where the engine strut meets the

wing, point and slope continuity are enforced. Thus, only

the coefficients of the quadratic and cubic terms are free and

are therefore chosen as the design variables. This

constitutes 2 design variables for the dihedral and 2 for the

twist. The unstructured surface mesh for the Boeing 747-

200 configuration is depicted in Fig. 2a, and is derived

from the model tested in the NASA Ames 11 foot Transonic

Pressure Tunnel (Test AR0502). It should be noted that the

twist distribution of this geometry is not representative of

the normal shape of the production wing.

Unstructured Grid Adaptation

The mesh movement strategy adopted considers the

mesh as a system of interconnecting springs. This system

is constructed by representing each edge of each

tetrahedron by a tension spring. In the current method, the

stiffness of the springs is assumed inversely proportional

to the length of its edge. Then, for each mesh point, the

external forces due to the connecting boundary springs are

summed and resolved into Cartesian components. The

result is a set of linear systems which may be solved for

the displacements of each node using several Jacobi
iterations. For further details on this method the reader is

directed to the literature [42-44]. Reference [44] has the

added advantage of edge (2D, face in 3D) swapping based

on the Delaunay criterion which greatly improves the

performance of the method. This technique, however, is

not currently implemented in the present grid adaptation

algorithm, but is deemed a vital improvement.

Grid Sensitivities

Efficient and accurate evaluation of grid sensitivities is

an extremely important and vital aspect in any design

optimization procedure (which uses discrete sensitivity

analysis). The technique used to obtain the grid

sensitivities from the unstructured grid adaptation

procedure results from the direct application of ADIFOR.

Here, the subroutines which define the design variables

ilk, and the subroutines which perform the unstructured

grid adaptation to produce the mesh X(_lk), are

differentiated using ADIFOR. The result is an additional set

of subroutines which, upon compilation and execution,

will return the grid sensitivities, dX/dflk.

To verify that these sensitivities were indeed correct for

both geometries, the design variables were perturbed, the

grid adapted, and the grid sensitivities calculated via

ADItK)R generated subroutines. These sensitivities were

then compared with those obtained using finite-difference.

Quantitatively, ADItK)R generated grid sensitivities

matched finite-difference to approximately 8 significant

digits. A qualitative representation of computed grid

sensitivities are depicted in Fig. lc and Fig. 2b for the

multielement airfoil and Boeing 747-200 configurations,

respectively. Figure lc illustrates the sensitivity of the

internal mesh to one of the design variables (Bezier

control points) on the lower surface of the vane. Figure 2b

represents the sensitivity of the surface grid to a twist

design variable (specifically the coefficient of the

quadratic term in the spanwise twist schedule).

6. Results and Discussion

In the present work, aerodynamic shape sensitivity

analysis and design optimization for two sample complex

configurations are examined: a two-dimensional high-lift

multielement airfoil and a three-dimensional Boeing 747-
200 aircraft. The flow conditions for the multielement

airfoil calculation were a subsonic Mach number of 0.20 at

16.02 degrees angle-of-attack. For the Boeing 747-
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Fig. 4: Pressure coefficient distributions on the

multielement airfoil.

200, a transonic Mach number of 0,84 was chosen with a

freestream angle-of-attack of 2.73 degrees. To verify the

accuracy of present discrete sensitivity analysis approach,

the sensitivity derivatives of lift-to-drag ratio, with

respect to the geometric design variables previously

discussed, are computed and compared with finite-

differences. It should be noted that the work associated

with computing sensitivity derivatives via the direct

differentiation method does not scale with the number of

output functions. Hence, for the computations shown, any

number of output function sensitivities (i.e., for lift, drag,

pitching moments...etc.) can be computed with little

effort. To evaluate the corresponding finite-difference

derivatives, however, requires two analysis runs per design

variable for central differences. Thus, due to the expense of

finite-difference derivatives, only those derivative

comparisons with respect to one of the geometric design

variables were performed.

For the multielement airfoil, the geometric design

variable selected was the same Bezier control point used

above in Fig. lc for the grid sensitivity illustration. For

this configuration the analytically obtained derivative

dCL/d/] 7 was computed to be 0.210754 as compared to

the central finite-difference value, 0.210733. The

geometric design variable selected for the Boeing 747-200

was, once again, the one presented above in the grid

sensitivity demonstration of Fig. 2b; namely, the

coefficient of the quadratic term in the spanwise twist

schedule. Here, the computed derivative d(l_,[D)/d_l

yielded 1.3231, and the finite-difference calculation

1.3229. As should be expected with consistent, discrete

sensitivity analysis, computed derivatives match finite-

difference to approximately 4 significant digits for both

geometries.

Before presenting the design results, some brief words

about the importance of design problem formulation need

to be asserted. Sensitivity analysis is merely an extra level

of computation that provides additional information to the

designer. When the sensitivity analysis routines are

coupled with the fluid solver, a mesh movement strategy,

and a numerical optimizer, a functional design tool is

produced. The eventual designs created with this tool will

be only as good as the formulated design problem. If

improperly formulated, designs can be produced that will

violate constraints such as those needed for

manufacturability or structural feasibility, or produce a

design that has superb performance at one operating

condition, but is unacceptable off the design point. Thus,

experience is required in formulating meaningful design

problems.

For the multielement airfoil case, it is recognized that

the goal of a flap system is to maintain the highest

possible lift-to-drag ratio at the maximum lift coefficient

[45]. With this in mind, the problem formulation

consisted of maximizing the lift coefficient. Note, it is not

asserted that inviscid flow analysis and sensitivity

analysis are capable of modeling the physics or properly

designing such a configuration (especially at high angle-

of-attack situations such as take off and landing), but

rather that an unstructured grid method easily discretizes

the domain and that it is possible to carry out this type of

design study. Furthermore, a geometric constraint has been

placed on the thickness of the trailing edge to keep it from

becoming excessively thick or thin.

Results of this design study are summarized in Table 1.

This optimization required 7 design cycles with 83 CFD

analyses along the line searches and a total run time of a

little over 40.5 min. on a (:RAY Y/MP. The objective

function was increased by 6.2%. Figure 3 depicts the

initial and final optimized vane produced by this shape

optimization procedure. Illustrated in Fig. 4 are the

corresponding pressure coefficient distributions about the

multie|ement airfoil. It should be noted that the horizontal

location of the vane and flap have been altered so that their

Cp distributions may be easily distinguished. As seen, the

pressure distributions about the leading edge slat and the

main airfoil remain roughly unchanged, but those on the

vane and flap have been greatly altered. Another
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Fig. 5: Optimization results for the Boeing 74%200 wing

redesign.

interesting design problem, which may have produced

more dramatic improvements, could have been the design

optimization of the shape, location, and orientation of the

leading edge slat.

For the Boeing 747-200 aircraft, the design problem

was formulated to maximize the lift-to-drag ratio. Once

again, constraints that the lift coefficient at the final

design be greater than the initial value, and that the drag
coefficient be reduced for the optimized shape, have been

incorporated. The results of this optimization are also

shown in Table 1. It should be noted that since this design

study was for purely demonstrative purposes, the

optimization was halted after 3 design cycles and not

allowed to continue until an isolated local minimum was

found. Observe that the objective function has been

improved by 2.7%, but at the cost of 23.4 CRAY Y/MP

hours. This represents about 6 converged CFD analyses.

As noted in the introduction, however, techniques are now

being studied to reduce these excessive CPU times.

Nevertheless, the initial and final twist and dihedral

schedules are shown in Fig. 5a. Note that a positive twist

angle is defined herein as leading edge up. As seen, this

optimized wing has a greater twist at the tip station and an

altered dihedral distribution. The initial and optimized

surface meshes are viewed from an upstream vantage point

in Fig 5b to show the dihedral distributions of each wing.

Surface pressure contours for both the initial and final

designs are illustrated in Fig. 6 and 7 for the upper and

lower surfaces, respectively. It can be observed from close

inspection that the upper surface of the optimized wing has

a greater region of lower pressure than the initial wing and

that the lower surface has a slightly higher pressure. Once

again, a design problem which possibly could have

produced more significant increases in the lift-to-drag ratio

would have been to perform the shape optimization of the

wing airfoil sections. However, this current procedure has

demonstrated the ease with which an unstructured grid

approach to aerodynamic shape sensitivityanalysis and

optimization may be used to analyze and design

geometrically complex configurations.

7. Conclusions

A three-dimensional unstructured grid approach to

aerodynamic shape sensitivity analysis and optimization

has been demonstrated on geometrically complex

configurations of practical interest. It was shown that

shortcomings of discrete sensitivity analysis can be
bypassed by the use of an efficient Jacobian matrix-vector

product technique within the incremental iterative form of

the sensitivity equation and through the use of automatic

differentiation to obtain grid sensitivities. This approach

was demonstrated through the shape optimization of the
vane in a two-dimensional multielement airfoil

configuration and by the twist and dihedral schedule on the

outboard stations of the wing on a Boeing 747-200

aircraft. The complexity of the geometries studied herein

illustrate the advantages of using unstructured grids for

aerodynamic shape optimization.

In the current work the direct differentiation approach,

as opposed to the adjoint variable approach, was used to

perform the discrete sensitivity analysis. As is well
known, for design problem formulations in which the

number of design variables exceed the number of

constraints plus one (for the objective function), the

adjoint method is the preferred approach. However, when

the reciprocal is true and there are more constraints than

design variables, as in the case of multidisciplinary

optimization, the direct approach is more attractive. Since

the ultimate goal of the present work is the development of

a multidisciplinary analysis and optimization procedure

(using discrete sensitivity analysis), the direct

differentiation method was adopted. Moreover, the current

algorithm has been extended to incorporate an existing

finite-element code to perform the aeroelastic analysis

[46,47], and work is currently underway to perform the

discrete aeroelastic sensitivity analysis. Results are

forthcoming.
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