4 research outputs found

    Average number of messages for distributed leader-finding in rings of processors

    Get PDF
    International audienceConsider a distributed system of n processors arranged on a ring. All processors are labeled with distinct identity-numbers, but are otherwise identical. In this paper, we make use of combinatorial enumeration methods in permutations and derive the one and the same exact asymptotic value, lJ2nH,,+O(n), of the expected number of messages in both probabilistic and deterministicbidirectional variants of Chang-Roberts distributed election algorithm. This confirms the result of Bodlaender and van Leeuwen (1986) that distributed Ieader finding is indeed strictly more efficient on bidirectional rings of processors than on unidirectional ones

    Exact average message complexity values for distributed election on bidirectional rings of processors

    Get PDF
    International audienceConsider a distributed system of n processors arranged on a ring. All processors are labeled with distinct identity-numbers, but are otherwise identical. In this paper, we make use of combinatorial enumeration methods in permutations and derive the one and the same exact asymptotic value, lJ2nH,,+O(n), of the expected number of messages in both probabilistic and deterministicbidirectional variants of Chang-Roberts distributed election algorithm. This confirms the result of Bodlaender and van Leeuwen (1986) that distributed Ieader finding is indeed strictly more efficient on bidirectional rings of processors than on unidirectional ones

    Some lower bound results for decentralized extrema-finding in rings of processors

    Get PDF
    AbstractWe consider the problem of finding the largest of a set of n uniquely numbered processors, arranged in a ring, by means of an asynchronous distributed algorithm without a central controller. Processors are identical, except for their unique number (identity). Using a technique of Frederickson and Lynch we show that arbitrary algorithms that solve this problem on rings where processors know the ring size cannot have a better worst-case number of messages than algorithms that use only comparisons between identities. We show a similar type of result for rings, where the ring size is not known. We use these results to answer a question, posed by Korach, Rotem, and Santoro in 1981 whether each extrema-finding algorithm that uses time n on a ring of n processors must use a quadratic number of messages; and to show a lower bound of 0.683 n log(n) on the worst-case number of messages for unidirectional rings with known ring size n. Also, we give a lower bound of 12n log(n) on the average number of messages for algorithms that use only comparisons on rings with known ring size n
    corecore