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Abstract. Consider a distributed system of » processors arranged on a ring. All processors are
labeled with distinct identity-numbers, but are otherwise identical. In this paper, we make use of
combinatorial enumeration methods in permutations and derive the one and the same exact
asymptotic value, 3v2nH, +O(#), of the expected number of messages in both probabilistic and
deterministic bidirectional variants of Chang- Roberts distributed election algorithm. This confirms
the result of Bodlaender and van Lecuwen (1986) that distributed leader finding is indeed strictly
more efficient on bidirectional rings of processcrs than on unidirectional ones.

1. Introduction

We consider the problem of finding a leader on an asynchronous bidirectional
ring of processors. Each site (processor) is distinguished by a unique identification
number (its “identity”). There is no central controller and every processor only has
local information about the network topology, namely it only knows its direct
neighbours in the distributed system. The problem is to design a distributed algorithm
that elects a unique processor as the leader {e.g. the largest numbered one) using
a minimum number of messages. Note that the problem is equivalent (up to O(n)
extra messages) to the problem of determining the identity of the largest processor
on the ring.

We assume that the processors work fully asynchronously and cannot use clocks
or timeouts. Hence, we can assume that the algorithms are message-driven: except
for the initialization-phase of an election, any processor can only perform actions
upon receipt of a message. We also assume the processors and the communication
subsystem to be error-free and that links operate in a FIFO-manner.

As to the terminology, a message is any information device which travels around
the ring, from one processor to one another, whether they are neighbours or not.
An elementary message, which is a message between two neighbour-sites on the ring
will also be called a message. Finally, pip will denote the traversal delay of one
elementary message (we assume here that all message delay times are equal).
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Much work has already been done to obtain good upper and lower bounds for
different variants of the problem, both in the worst and in the average case. Tight
upper and lower bounds for bidirectional variants of Chang-Roberts decentralized
extrema-finding algorithm were presented in [3]. These bounds were established for
the probabilistic algorithm given in [12] and [18] (Algorithm P) and for a determinis-
tic version of the same algorithm (Algorithm D). Up until now, these bounds were
the best approximation of the average number of messages required by Algorithm
P and Algorithm D.

In this paper, we derive the exact asymptotic value of the average number of
messages required both in Algorithm P and Algorithm D: 3v2nH, +O(n). This value
is obtained by using techniques and results from theory of permutations (inversion
tables mainly), average-case analyscs involving generating functions (e.g. generating
function of Eulerian numbers), and asymptotic techniques (e.g. Stirling formula
and Euler-Maclaurin summation formula).

The result confirms the positive answer (given in [3]) to the question (first posed
by Pachl, Korach and Rotem) of whether distributed leader finding can be solved
more efliciently on oidirectional rings than on unidirectional rings.

The paper is organized as follows. In Section 2, some definitions and preliminary
results from the theory of permutations are given. Sections 3 and 4 are devoted to
the analysis of the exact asymptotic value of the expected number of messages used
in Algorithm P and Algorithm D, respectively: 3v/2nH, +O(n). In Section 5, we
present the results of experimental tests, achieved on a bidirectional circular configur-
ation of 1000 up to 50 000 processors. The experimental values thus obtained may
be considered to be in good agreement with the preceding theoretical average value.

Tables 1 and 2 present an overview of the existing known upper bounds for the
leader finding problem, in rings where the size n is unknown to all the processors,
and (a priori) without sense of direction on the ring, in the bidirectional variant of
the problem.

Table 1
Distributed election algorithms for unidirectional ring

Algorithm Average Worst case

Le Lann (1977) n’ n’

Chang and Roberts {(1979) nH, in?

Peterson (1982) 144...nlgn
Dolev, Klawe and Rodeh (1982) 1.356...nlgn

For most of the quoted bidirectional algorithms, the existence of a giobal sense
of direction (i.e. each processor has the consistent global knowledge of the left and
right direction on the ring) is unnecessary, although this is of course not the case
for the algorithm of Dolev et al. Thus, the average message complexity of Algorithm
P or Algorithm D is the same on a ring with or without a global sense of direction.
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Table 2
Distributed election algorithms for bidirectional rings

Algorithm Average Worst case
Gallager et al. (1979) Snign
Franklin (1982) 2nign
Korach, Rotem and Santoro

(1981) Algorithm £ [prob]< 2nH, [prob)in?
Korach, Rotem and Santoro {1984) 189...nlgn
Bodlaender and van Leeuwen

(1986) Algorithm P 0.7033 ... nH, <{prob]=<0.7075... nH, iproblin’
(1986) Algorithm D [det]<0.7075... nH, [det]in?

Van Leeuwen and Tan (1985) 1.44...nlgn
Moran, Shalom and Zaks (1985) 144...nlgn
Dolev, Klawe and Rodeh (1982)

with sense of direction 1.356...nlgn
This paper (1988)

Algorithm P [prob)ivVZnH, [problin?
This paper (1988)

Algorithm D (detEvZnH, [det]in?
This paper (1988)

Algorithm D (0.972.../V2)nH,*

* Result experimentally obtained {Section 5).

The existence of a sense of direction on a bidirectional ring does not actually
shrink the average message complexity of distributed extrema-finding algorithms,
although this is a priori not the case for any bidirectional distributed election
algorithm.

The average lower bound of 3nH, on bidirectional rings (with sense of direction,
n unknown), derived by Bodlander in [2], displays the existing gap between the
coefficients 3 and 3v2 for the average message complexity of the bidirectional
distributed leader finding problem (with or without sense of direction on the ring).

2. Inversicn tables

Let w=(0,0, ...0,)€ S, be a permutation of size n. Associated with w7, define
its inversion table t = t,t, . . . t, such that f; is the number of elements (in ) to the
left of o; larger than o, (1<i<n). Hence, 0=<¢,<i for all i (1<i<n), and the
correspondence between a permutation and iis inversion table is one to ¢ne.

Leinma 2.1 (Vuillemin [19]). The left-to-right maxima (or upper records) of a permuta-
tion 7 € ©,, correspond to the occurrences of the value zero in the inversion tables of .

Example 2.2. Let 7=(2365174)(we &,). The (bold) upper records of  are
2 3 6 5 1 7 4,
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and the inversion table of s is such that

t=0 0 0 1 4 0 3.

An inversion table can thvs be pictured as a ‘‘staircase™: put a cross in each
column, the left-to-right maxi na are corresponding to the lower crosses (the zeros).
Now using variables to denote the values 0, 1,..., n—1 in the inversion table t of
m (e.g. X, X2, . . -, X,_1), the set of all inversion tables corresponding to all permuta-
tions in &, is fully described by the polynomial

Xo(xo+ X)) (Xg+ X+ X)) ... (Xp+x,+- -+ X,._,) (2.1)
T 1 ! )
1st column 2nd column 3rd column {n—1)st column

Notation

(i) The nth harmonic number is denoted by H,=Y._  1/i with asymptotic
expansion H,=Ilnn+y+ in! +0(n ") ~0.693... lgn (where y=0.577...is
Euler’s constant); In n is the neperian logarithm of n and lg n denotes the logarithm
in base 2.

(i) The notation [x*]f(x), with f(x) =Y, fix", reads as “the coefficient of x* in

S(x)”.

Deiinition 2.3 (Feller {5, p. 48]). The unsigned Stirling number of first kind, s, ;,
are such that s, = [x"']x(x+ 1)(x+2)...(x+n—1); and the enumerating poly-
nomial of s, is ¥, s, x*  =x(x+1)(x+2)...(x+n—1).

Lemma 2.4 (Vuillemin [19]). The average number of zero elements in an inversion
iable of size n is H,,. The number of inversion tables of size n having k zeros is the
unsigned Stirling number of first kind s, ;..

The unsigned Stirling number of first kind, s, x, is proved to count at the same
time: the permutations 7 € £, with k upper records, the permutations 7 € <,, with
k cycles, and the inversion tables of size n such that |{i|1<i<n,t,=0}|=k (see
{19, p. 231]).

Therefore, an immediate consequence of Lemmas 2.1 and 2.4 is the following.

Corollary 2.5. The average number of left-to-right maxima (ugper records) of a
permutation me€ =, is H,.

Lemma 2.6. Let 7 =(0,0,...0,). The average distance to the first left-to-right
maximum (upper record) of 7w is H, — 1.

This well-known result occurs repeatedly in the theory of permutations
[5,17, 11,19, 3]. However, this result may be obtained with very direct proofs, using
two arguments involving different properties of we &, [13, p. 142].
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Proof. On the one hand, it represents nothing indeed but the average number of
left-to-right maxima of =, whenever we assume its first element o, to be an upper
record. H=nce, since the first upper record of 7(o,) is not counted in the enumeration,
the average distance to the first upper record, different from o,, is the average
number of occurrences of the value zero in the inversion tables of size n, minus 1:
ie. H,—1.

On the other hand, the average distance to the first upper record of 7 may simply
be derived as the direct solution of a linear recurrent equation. Let D, be the
distance to the first upper record of #, then D, satisfies the recurrence

D,=D, +(n—-1)D,_,+(n—1)!, subjectto D,=0
(since o, is the first left-to-right maximum). Now the average value of D, is
D,/n'=D,_,/(n—1)!4+1/n, subjectto D, =0,

from which we obtain the solution

Proposition 2.7. The probability I,.(j) that a permutation w€ Z,, has exactly j upper
records (j = 2), with the leftmost one in position a (a > 1) aiid the rightmost in position

B is

=[x ! 2 (142 X
I, (j) =[x ]B<a—1)(ﬂ—1)(l+a)(l+a+1)"'(1+ﬁ—2)' (2.2)

Proof. Let G,(x) dencte the generating polynomial of permutations 7€ Z, with
exactly j upper records { j = 2). the leftmost one being in position a and the rightmost
cne in position B, so that G,{x) is conditioned over the values a and S. Let us first
consider all the positions of the j lefi-to-right maxima of 7 (j=2) in an inversion
table of size n (the leftmost in a, the rightmnst in B). Let us then write down all
the monomials corresponding to the possible upper reccrds of .

Positions 12 3... ... (e —1a(a+1)... L (B-1DBB+1)  ...n
Monomials 1 1 2... (a—-2)x(x+a)(x+a+1) ...(x+B-2)x(B+1)...n

The corresponding generating polynomial G,(x) is derived from the above terms

as the product of all the stated monomials, divided by the preduct of all the positions

in an inversion table of size n. Namely,

1-1-2-. .. (e =2)x(x+a)(x+a+1)...(x+B-2)x(B+1)...'n
1-2:3- ... {a=1)a(a+1)...(B=2)(B-1)B(B+1) ... 0

~ x2 xta)[x+tati x+p-2
G"(x)_ﬁ(a—l)(ﬁ—l)( a )( o+ )( B2 )

b

G,(x)=
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Secondly, expressing the generating polynomial G,(x) as the generating function
of the probability IT,(j), we obtain

G.(x)= ¥ I,G)x'=x* ¥ IL(j)x'. (2.3)

i=2 i=2

Thus, IT,(j) is the coefficient of x’ 2 in G,(x), for 38 <a < B <2a; and the value
of IT,(j) follows. O

3. Analysis of Algorithm P

We know from [12] that Algorithm P (Fig. 1) requires an expected number of
messages of at most 3nH, +O(n). This value is only an upper bound, because of
possible effects of higher order upper records which remain ignored in this evalu-
ation. The detailed proof of correctness of the algorithm may be found in [3], or [16].

In the following, we assume that all processors start the algorithms simultaneously
(at time 0), otherwise the first message a processor receives serves to wake it up
and trigger its Stage 1, before it actually processes the message. For the analyses,
we also assume throughout the paper that the processors operate synchronously,
and that the algorithms can deal with the case when a processor receives two
messages (from both neighbours) at the same moment. Furthermore, we ignore the

Algorithm P (3]
Each processor P; keeps the largest identity (identification number) it has seen in a local variable
MAX; (1=i<n). Each processor P; goes through the following stages.

Stage 1 (initialization)

MAX; =o;;

choose a direction d € {left, right} with probability 3;
send message {o;) in direction d on the ring;

Stage 2 (election)
repeat the following steps, until the end of the election is signaled by receipt of a (!) message:
if two messages are received from the left and the right simultaneously, then ignore the smaller message
and proceed as if only the larger message is received;
if message (o;) is received from a neighbour, then
if o;>MAX;, then MAX, = o;; pass message (o;) on
else if o, = MAX,; then send message (!) on the ring /=P, has won the election*/
fi;

Stage 3 (inauguration)
if a message (!) is received, the election is over and MAX; holds the identity of the leader; if this
processor was elected in Stage 2 then the inauguration is over, otherwise pass message (!) on and stop.

Fig. 1.
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time necessary for possible internal computations within the processors. These
assumptions enable us to have asynchronous, message-driven algorithms, running
on a syachronovs ring with a fully deterministic behaviour [3]; however, similar
results can be proved when weaker assumptions hold.

3.1. Exact evaluation of the expected number of messages

Consider a ring of n processors P,, ..., P, with identities o, through o,,. Without
loss of generality, we may assume each o, to be an integer between 1 and n. And
thus, 7 = (0,03 ...0,) is a permutation of S,. Assuming also that the permutations
of @, are equally likely, we can make use of the preceding resuits to analyse
Algorithm P.

First, set i =1; the message (o)) is sent 0 ti:e right or to the left with probability
5. Thus, the expected number of elements in = visited by (a,) is 2(H, — 1) whenever
P, sends its message (o) to the right, and 3[1H, | whenever P, sends its message
(o)) to the left, since from Lemina 2.6, H, —1 is the average distance to the first
left-to-right maximum in #. Accumulating the sum of these two quantities for all
{o;)-messages (1< i< n), which are independent random variables, yields the known
upperbound of 3nH,+O(n) for the average number of messages required by
Algorithm P. Now taking also into account the effect of higher order upper records,
the exact average value can be determined.

Proposition 3.1. The average number of {o,)-messages propagated by Algorithm P is
exactly 3H, =Y, ; (@ =3B)G,(3)+O(1), jor ip<a <P <2a, where G,(x) is the
generating polynomial defined in (2.2).

Proof. Let v, v,,...,berandom variables denoting the position of the first, second,
and higher order upper records. We may consider the »;s as independent random
variables conditicned over the values o and B; without loss of generality let (o)
be sent to the right. If processors P, to P;_, randomly choose to send their message
to the right while P, sends its message to the left, then the (o, )-message is annihilated
by the (o,)-message if the messages meet before P, is reached; i.e. at position
1+ |38, provided B < 2a. Otherwise, the {o,)-message is simply annihilated at P,.
Let 7 dencte the permutation (g, ...0,)€ S, ; then the number of positions in
visited by message (o) is exactly & —(1+ |38]), with 38 < @ <8 <2a. Recall now
formulae (2.2) and (2.3), and the definition of probability IT,(j) and consider the
effect of all upper records of #. The average number of {o,)-messages propagated
by Algorithm P is

Ni=3(H,-D)+3H,] - T 27 ¥ (a— 8] - DIL()) (3.1)

i=2 a,fB
and, since

T 27,() = ¥ 2741 71G,(:)) =4 % 271X 1G, (0} = G.0),
j=2 i=2 iz
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then

Nl %l n % Z %B)Gn(%)'i‘()(l), %B <o <2a. (3.2)

Shifting from « — [38] — 1 to a — 38 produces indeed an O(1) error term; besides,
a ranges from 38+1to 8—1, and B ranges from 2to n. [

Note that the identity Z ~027{[x"] f(x)} Sf(@) is obvious, since f(}) = Y=ok 274
whenever f(x) =3}, fx". The coefficient z in (3.2) comes precisely from the fact
that we have here [x’ *1G,(x) instead of [x’]1G,(x).

Corollary 3.2. The average number of messages required by Algorithm P is exactly
3nH, —nS, +O(n), where

, 1 1 1 1
So= X LI s ﬁ(a—l)(B‘l)( e )(1+2a+2)'“(1+23—4)'

Proef. Accumulating in (3.2) the quantity N, for all the n {o;)-messages (1<i<n)
which are independent random variables yields the exact average number of
messages, namely

N=jinH,-n ¥ ¥ {a-18)G,(})+0(n),
2=B=nlig<a<p

Now,

- 1 1 1 1
Gn(i)_ﬁ(a_l)(ﬁ_l)( 2a)(1+za+2).(l+zﬁ_4)

Summing, respectively, over  (2<g8<n)and a ({B<a< B), it follows that

N=13nH — (a—3B) 1 1
N =anH, "§§‘B(a—n)(ﬁ—1;(l+2a)(1+2a+2)“‘(1+

)+0ML
(3.3)

28 -4

which gives the exact average number of messages:

inH,—nS,+0(n). 0O

3.2. Asymptotic analysis of S,

The following asymptotic analysis of S, in [6], makes use of Stirling’s formula
and Euler-Maclaurin (one-dimensienal) summation formula (see [7] for similar
techniques). For p eN define

(14! vy, (1 1Y 35T ...-Qp+1) (p+1)!
Q7(1+JU+A..-(HEP) 246 . 2p) " 2N

and, by means of Stirling’s formula for large p, we have Q, ~2Vp/v, with an error
term of O(1/p).
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The sum S, may then be rewritten with the Q,s as follows:

QB 1 (a— 7.3) 1 QBvI (a’"%ﬂ) }
S,,— == .
ﬂzﬂ Qn' ﬁ(a—l)(B_l) 42‘(25‘41{ 3—‘2""\'3 Qu B(a _1)(3_1)

Denote by u(B) the inner sum (with index a). For B large enough, by Stirling’s

formula,
u(p) = § —B) —E(HO(-;-)), B<a<p.

If we now set a = 13, where “'t” ranges between ; and 1 by steps of 1/, then

u(B) =~ {Z’(t,f) ,1;} (‘ O(ﬁ))

and by approximation of the discrete sum by an integral (Euler-Maclaurin summa-
tion formula), one obtains the asymptotic expression

(r—‘)
w)-5{ | L5 arvo (5}

which is uniform in 8. And at last,

1 1
=— 3—2J§+o(—)} 3.5

which yields the following.

Theorem 3.3. The asyr.ptotic value of the expected number of messages used in
Algorithm P is %/2nH,+0(x) =0.707106 ... n In n+0(n).

Proof. From (3.3),
‘N =32nH, —nS,+0(n).
The exact computation of S, from (3.4) and (3.5) gives rise to the expression
Sa %21(3—2\/§)+0(%);
s B B
and since

>0 (-Bl—z-) =0(1), S, being uniform in g,
8

N =3inH,-ny3- 2¢‘)z +0(n)

= W2nH,+0(n). O
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4. Analysis of Algorithm D

Algorithm P is probabilistic, and hence does not constitute in itself a proof that
distributed leader finding can be achieved strictly more efficiently in bidirectional
rings than in unidirectional rings. To solve the problem, a deterministic version of
Algoritim P is described in [3] in which Stage 1 is replaced by a fully deterministic
stage. The idea is to let each processor P; send its (*o;)-message in the direction of
the smallest neighbour and thus get rid of all the smaller neighbours from the cutset
(Fig. 2). _

Stage 1* requires exactly 2n messages and leaves at most |5n] processors active
or candidate in the election, viz. the peaks of the permuiation 7 =(«, ... g,), which
clearly pass on to the next stage. The other [3n] remaining processors, the “non-
peaks™” of =, thus stay in the state defeated after Stage 1*. By pairing every
permutation of &, with one in which the neighbours of P, are interchanged, one
can see that P, sends its (*o;)-message to the left or to the right with probability 3
(averaged over all the permutations of &,).

Algorithm D [3]
Similar to Algorithm P except that for each processor P,, Stages 1 and 2 are replaced as follows:

Stage 1*
send message (*o,) to both neighbours on the ring;
wait for the message (*o,_,) and (*o,,,) of both neighbours (with the indices **i — 1™ and “*i + 1" interpreted
in the usual circular sense as indices of the lefi and right neighbour, respectively);
MAX, =max{*o;_,, *0;, *o: .\ };
if MAX,; =*g; then
if *a,_, <%0, then send message (*o;) to the left
else send message (*o;) to the right
fi
fi;

Stage 2* (election)
repeat the following steps, until the end of the election is signaled by receipt of a (!) message:
if two messages are received from the left and the right simultaneously, then ignore the smaller one and
proceed as if the larger message is received;
if message (*o;) is received from a neighbour then
if *r;>MAX, then MAX,; :=*o;;
pass message (*o;) on
else if *o; = MAX, and *g, =*0; then send message (!) on the ring
/*P; has wor: the election#*/
else if *o;, = MAX; and *o, # *0; then pass mussage (*o;) on
/*the neighbour of P; will win the election*/
fi;

(Stage 3 remains unchanged)

Fig. 2.
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For the analysis of Algorithm D, our assumptions (emphasized in Section 3) still
hold in the following analysis.

4.1. Average number of peaks, rises and average length of rises and falls

In order to obtain an exact asymptotic estimation of the average number of
messages sent by the active processors that pass on to Stage 2* in Algorithm D, we
need to know the average number of these active processors (the peaks) and the
average distance between twe of them. This we obtain thanks to combinatorial
average-case results about permutations, namely the expected number of peaks and
rises of 7, and the expected length of the rises and falls of =.

Lemma 4.1. The expected number of peaks of we S, is P, = y\(n+1).
Following is a simple proof of Lemma 4.1, originally proved by Bienaymé in [1].

Proof. Let J denote the (binary) tournament tree associated to the permutation 7,
and let T, and T, denote the left and the right subtree of J, respectively. It is easily
seen that the number of peaks of 7 is the number of leaves of J [7]. Let A[T]
denote the number of leaves of 7, then

ALT]= 85+ M TN T+ A[ T T = 85, + 24T |A[T].

Thus, the ordinary generating function (ogf) of the expectation of A is

A(z)=L A" =z+2 J: A{x)

[}

94X 40 =0,
i—x

which leads to the first-o.der differential equation
d )
(1-2z)—A(2)-2A(z)=1-2z
dz

with the solution

z

1-22 1-2°

A(z)=3

and, since

A@)=1 Y (n—-2)z2"+ Z z"

n=3
(ogf of A(z) obtained from the above solution),
(n—2)+l___n+l.
3 3
The expected number of peaks of = is then P,=1(n+1). The central !imit theorem

applies; however, since the variance is of order n” (and whence th- standard deviation
of order n*’?), it cannot be used to derive the distribution of P,. []

A.=[z"1A(2) =
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Note that the average number V, of valleys of 7 is such that V,, = P, -1 = j(n—2),
and that the average number of peaks and valleys of = is then {(2n-1), a well-known
result in the theory of permutations.

Lemma 4.2. The cxpected number of rises of we S, is R,=Yn+1).

Proof. Louis Comtet, for example in [4], shows that the eulerian numbers A(n, k)
count the number of permutations w € &, with k rises. The bivariate exponential
generating function (bgf) of eulerian numbers,

Ut 2)=1+Y A(n k) 3=+
ik n!
has the value (see [4, p. 63, T.1])
1—-1

Ul{s, z)=e:7_‘—,_—'? (4.1)

Hence, developing (4.1) with regard to (1 —1),

U(t,Z)=( gl zn\ +(l"’l)( Z-’nglzn)*—(_l;z‘_)-( 23("-‘2)1(23"—5) Z")+" .

Considering the bgf U(¢, z) and its derivatives in =1, we obtain

[2"1U(t 2)u=r =T A, k) = n! (4.2)

{z“]% Ul 20y~ = (k= 1)A(n, k) = n— D! 4.3)

-~

[z"]% Uty 2)y1 =¥ (k= 1)(k —2)A(n, k) =
2

(n—2)(3n-5)
n
12

The mean R, =(4.3)/(4.2)+1=¥(n+1), and the variance var(R,)=(n+1)/12 are
easily derived from the above identities. In this case, the standard deviation being
of order vn, the central limit theorem shows that R,, when normalized, converges
to the normal distribution.

Note that the expected number of falls of 7 is then 3(n—1). O

Lemma 4.3. The expected length of rises and falls of we S, is L, =2n/(n+1).

Proof. Let us first recall the fundamental one to one correspondence (due to J.
Francon and G. Viennot [9, 10]) between permutations of S, and weighted paths,
with n—1 steps, from altitude 0 to altitude 0 with possibility functions: pos,(k)=
k+1, posg(k) =2(k+1) and pos_,(k) = k+ 1 (recall that the initial and final elements
of a permutation 7w € ©,, are recognized by notationally placing a zero at both ends
of m; whereas in a circular configuration of processors, we assume that of course
the “first” and “last™ elements of 7 are the same).
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Define the set E, of “subexceeding functions” on [1, n] [8), to be the set of
functions f on [1, n] such that f(i)<i for all i in [1, n]. Then there exists a one to
one mapping beiween the set E, and G, which may be seen as the correspondence
between the crossed squares of the inversion table of a permutation (recall Lemma
2.1) and the corresponding value f(i)— 1 (forall 1<i<n), f being then a subexceed-
ing function (see [8, 14] for a more detailed argumentation).

E, may be described by means of the formal (non-commutative) polynomial
F(xy, ..., %) =x{3,+2) ... (x; +x,+ - -+x,), from which we can obtain ¢he
generating polynomial F;(f)=(j—1)/(¢+j—1)...(1+n—1), of subexceeding func-
tions on [1, n] according to the number of times when value j is reached: Fi(1)
corresponds to the length of a rise or a fall of 7. By summing F; (1), j ranging from
1 to n, one cbtains the generating polynomial of the total length of rises and falls
of permutations =, provided that the constant term in F;(t) has value zero. Let

. . -1
d(1)= % {]!(t+1)...(t+n—l)}—n!n2 (4.4)
i=0
be this generating polynomial. From (4.4),
n—1 n+l
D(1)=n-n!—n! = !
(1)=n-n!'—n 2 > n!,
n—1i n n p-1
dM=Y ' Y p'+ntY p'Y 1=n-n
j=0 p=j+1 p=1 0

Hence, the expected iength of rises and falls of 7 is L,=®'(1)/®(1)=
2n/(n+1). O

Note that the variance is 2n(n+3)/(n+1)*~[4/(n+1)]H,, and the central limit
theorem shows that L,, when normalized, converges to the normal distribution.

4.2. Exact asymptotic estimation of the expected number of messages

At the end of Stage 1%, there remain i(n+1) active processors on average (the
peaks of 7). The remaining active peak-processors are at least one position apart,
and the independence of their choice of direction for serding messages around the
ring {left or right) is a priori not guaranteed for all of them. Indeed, for an arbitrary
pair i and j, the random variables for the directions of the peaks’ messages ((*o;)
and (*o;)) are in general not independent. However, as proved in the following
lemma, these random variables satisfy a condition weaker than independence as
they are pairwise independent, in the sense of Feller [5, p. 127 and p. 220].

The permutations of &,, are assumed equally likely, and also the order type of
the resulting configuration of the peaks of 7 is again assumed to be rairidom at the
end of Stage 1*.

Let d,,...,d, (1<p=<|n/2]) be the sequence of p random variables denoting
the directions towards which the peak-processors” messages (*o), ..., (¥o,) are sent
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on the ring, and let this sequence of variablcs be such that d; equals the left or right

direction on the rin:
the following.
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Definition 4.4. The p random variables d,, ..., d, are pairwise independent if they
are not mutually independent though their distributions and joint distributions verify
the identity

Pr{d,=1l,d;=r}=Pr{d, =1} - Pr{d;=r}, (4.5)

for an arbitrary pair i and j (1<, j<p).

Lemma 4.5. (i) In the case where two consecutive peak-processors are at least two
positions apart on the riv.g, we may claim the independence of their choice of direction
at the end of Stage 1%,

(ii) In the case where two consecutive peak-processors are exactly on iti
on the ring, the directions d, , . . ., d,, at the end of Stage 1* are not mutually independent
random variables, but satisfy ihe weaker (and sufficient) property of being pairwise
independent, according to identity (4.5) of Definition 4.4.

messages at the end of Stage 1* cannot depend on the respective placemen

- It .

s which are at least two positions apa

The proof of the claim (ii) of Lemma 4.5 is a little more involved. Let us consider
two consecutive peak-processors P, and P, which are exactly one position apart
around the ring and the directions d; and d;, respectively (1 <<i<p). Suppose d;=r

and d; = |, for example; the following equalities hold:
Pld =r}=Pr{*0;_ <*0;,}= %
Prid, =1} =Pr{* G <*o_ } =14

(i—1,i+1, etc. being taken modulo n).

Naw
iNOW,

Prid,=r,d, =1} =Pr{*o,_,<*o *oroa<*o,_,

22 i i+l Vji+i

e
i

ot
.

BN -

=Pr{d. =r} - Pr{d =1}, (4.6)

and the above identities (4.6) still hold for d, =1, d;=r, or d,=d; =1, etc. But the p
identically distributed random variables d,,...,d, are not mutually independent
whenever at least two of them correspond to peak-processors which are exactly one

position apart on the ring. In such a case indeed, the distributions and joint
distributions verify the inequality

TS

Pr{id,=D,...,d,=D}#Pr{d,=D}- ... -Pr{d,=D}, De{lr}. D
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Fig. 3.

Example 4.6. As an example, we may consider the permutation 7€ &,, with (bold)
peaks10,7,11,6,and12: #=(8 9 16 1 7 4 11 2 3 6 5 12). Accord-
ing to the Stage 2* in Algorithm D, the choice of direction of processors
Py, P;, P,,, P, and Py; only depends on the respective identities of their (immediate)
right and left neighbours on the ring (Fig. 3). P,, sends its (*10)-message clockwise
(towards P,), and so does P,, (towards P,); whereas P,, P, and P,, send their
respective messages anticlockwise (towards P,, P; and P;, respectively) around the
ring.

This “weak” form of dependence is illustrated in the fact that P, and P,, on the
one hand, Py, and P; on the other hand, are pairwise consecutive peak-processors
which send their messages in the same direction around the ring for the first pair,
whereas the peak-processors of the second pair send their messages in opposite
directions.

In other words, this is i 1 exammple in which no firee consecutive random variables
of the sequence d,, ... ., d, arc independent. Hence, the 4;s are pairwise independent
((4.5) or (4.6) are verified) without being mutually independent, and the distribution
of the messages’ directions does not depend on the placement of pairwise peak-
processors, even in the case where the latter are exactly one position apart on the
ring (P,, and P;, or P, and P,,).

Thecrem 4.7. The asymptotic value of the expected number of messages used in
Algorithm D is 32nH, +0(n)=0.707106 ... n In n+O(n).

Proof. Denote by n*= j(n+1) the average number of peak-processors, and by L,
the average distance between two consecutive peak-processors.

We know from Lemma 4.3 that the average length of rises and falls of w€ &, is
L,=2n/(n+1). Now, L, also represents the average distance between two consecu-
tive peaks and thus, the average distance between two consecutive peak-processors
in the ring. Moreover, it follows from Lemma 4.5, that fortunately, e ery message
within Stage 2* travels along the ring in a direction which is ‘rrespective of the
pairwise positions of peak-processors.
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Therefore, the probability that a message is sent to the right or to the left is 1
and we are brought back to the average-case analysis of Algorithm P. In this case,
Algorithm P revisited, the asymptotic expected number of messages is

2n*H .+ W2n*L, H,+0(n),

when accumulating the average distance L, for all the n* peak-processors. And since

2n (n+l)( 2n)
V2n* — ) H,+ =3 + +
WV2n (1+n+1)H,, O(n)=3V2 3 1 p— H,+0(n),

the asymptotic expected number of messages propagated in Algorithm D is

L2¥3n+1)H,+0(n) = 32nH,+0(n) O

In the case when s < n starters/initiators start Algorithm P and Algorithm D, the
previous results remain basically valid; namely, the expected number of messages
propagated in both algorithms is then 3v/2nH, +0(n).

Note however that we assumed (Section 3) that ali the processors start the election
“simultaneously” and work synchronously. The first assumption allows us not to
consider the case when there exists s < n initiators, and the second assumption
(together with the first one) yields an O(n) “time” complexity for both Algorithm
P and Algorithm D: viz. in the best case, n+ in and n+1+ 3in pips, respectively;
in the worst case, 3n and 3n+1 pips, respectively; 2n and 2n+1 pips on average,
respectively (“pip” is the elementary delay time defined in the Introduction). In
this case, the 3n pips applies to the delay time elapsed for the inauguration of the
leader.

As to the worst-case message complexity of Algorithm P and Algorithm D, note
that Bodlaender and van Leeuwen proved in [3] that the maximum number of
messages is 3n° and in’, respectively.

5. Experimental tests

In the following tests, the basic theoretical number of messages which is considered
is the expected message complexity, 3v2nInn of Algorithm P. The number of
messages computed by the sequent machine (a 12 processors PRAM) is the total
number of messages propagated during the processing simulations of Algorithm D
minus 3n. The implemented algorithm is actually quasi-synchronous, since the
minimum and maximum message delay times range betweer. 1 and 2, respectively
(some tests performed with message transmission delays ranging from 1 to 100 do
not apparently alter the preceding results). All the n processors which participate
in the election have distinct (pseudo-random) identification numbers, randomly
drawn from a 9-digits decimal generator.

In the 70 experimental tests performed (with 1000 to 50 000 processors), the ratio
'N'/'N of the average number of simulated messages to the theoretical average value
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‘N, only varies from 0.945 to 0.994. Moreover, the ratios are all sharply close to 1
(up to 0.6% at best), and the mean ratio of 0.9725... diffeis less than 2.75% from
1. However, all ratios remain strictly smaller than 1.

The remarks which arise from this sampie of tests, though it is certairly too

mited an experiment, are twofold. First, the tight experimental values obtained
seem to confirm the equality N = N’. Secondly, the ratios distribute too systemati-
cally below 1.

Yet, a conclusion may be drawn from these limited simulations and the apparent
contradiction arising from the latter remarks. Indeed, we know that the simulations
performed do not bring enough cont.ol over the factor O(n) (in spite of the
subtraction of 3n from the enumeration), and that the variations in the message
transmission delays are not really taken into account in the above tests. This, together
with the help of the very full and accurate empirical analysis completed by Mattern
in [15], actually enables us to explain the fact that the ratios so systematically
distribute below 1: Mattern’s experimental results show that the asymptotic value
3V2 of the coefficient of nH, is approximated very slowly.

Thus, both the simulation results in Table 3 and Mattern’s own empirical analysis
of Algorithm P and Algorithm D confirm very strongly the mathematical analysis
of the present paper. Therefore, we may conclude that the experimental analyses
in [15] and the simulation tests results in Table 3 are in good agreement with the
theoretical result obtained in Theorems 3.3 and Theorem 4.7.

Table 3 .
Average number of messages N’ used in Algorithm D, and ratio N’/ N

Number n N=W3nH,+0(n) ‘N = average number Ratio N'/N*®
of processors for 70 tests
20 000 140 056.46 137 290.687 0.98
30000 218 685.9 218 355.758 0.966
40 000 299 718.09 288 955.7 0.964
50 000 382 536.929 3787471 0.994
(for 50 tests)
1000 4884.5 4733.2 0.945
5000 30112.825 29735.5 0.985
10000 65 126.94 6374 0.977

% The mean ratio, 0.9725. .., differs about 2.75% from 1.

6. Conclusions

We have presented a detailed analysis which shows that the probabilistic aigorithm
Algorithm P as well as the deterministic algorithm Algorithm D have the same
asymptotic average message complexity for the extrema-finding problem on a
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bidirectional ring, while requiring nearly the same amount of “time”. Besides, the
simulation resulis obtained in the experimental tests show good agreement with the
asymptotic constant’s value 3v2.

Furthermore, this result is a confirmation of the fact (already proved in [3]) that
distributed leader finding can be solved more efficiently on bidirectional rings than
on unidirectional rings by a deterministic algorithm.

Indeed, combinatorial enumeration and analytic methods (e.g. generating func-
tions) prove powerful and general enough to provide efficient tools and cope with
most average-case analyses of distributed algorithms and distributed data structures.
However, the bidirectional variants of distributed election algorithms seem surpris-
ingly harder to analyse on average, and it is still an open problem to find an exact
expression for the variance of Algorithm P and Algorithm D, as well as to characterize
the distribution of asymptotic constants for other bidirectional distributed election
algorithins [15].

In [2], Bodlaender has shown that any bidirectional leader finding algorithm on
rings (with sense of direction, n unknown) requires at least 3nH,, +QO(n) on average
(see Section 1). The gap between the coefficients  and 3v?2 raises the question
whether the bidirectional variant of the Chang-Roberts algorithm is average-case
optimal. This result also raises the question of determining the average message
complexity of other bidirectional distributed election algorithms, and possibly
finding average-case optimal election algorithms (with respect to Bodlaender’s
lowerbound of inH,).
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