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Abstract. Consider a distributed system of n processors arranged on a ring. All processors are 
labeled with distinct identity-numbers, but are otherwise identical. In this paper, we make use of 

combinatorial enumeration methods rn permutations and derive the one and the same exact 

asymptotic value, j&H,, +0(n), OF the expected number of messages in both probabilistic and 
deterministic bidirectional variants of Chang-Roberts distributed election algorithm. This confirms 

the result of Bodlaender and van Leeuwen (1986) that distributed leader finding is indeed strictly 
more efficient on bidirectional rings or processcrs than on unidirectional ones. 

1. Introduction 

We consider the problem of finding a leader on an asynchronous bidirectional 

ring of processors. Each site (processor) is distinguished by a unique identification 

number (its “identity”). There is no central controller and every processor only has 

local information about the network topology, namely it only knows its direct 

neighbours in the distributed system. The problem is to design a distributed algorithm 

that elects a unique processor as the leader (e.g. the largest numbered one) using 

a minimum number of messages. Note that the problem is equivalent (up to O(n) 

extra messages) to the problem of determining the identity of the largest processor 

on the ring. 

We assume that the processors work fully asynchronously and cannot use clocks 

or timeouts. Hence, we can assume that the algorithms are message-driven: except 

for the initialization-phase of an election, any processor can only perform actions 

upon receipt of a message. We also assume the processors and the communication 

subsystem to be error-free and that links operate in a FIFO-manner. 

As to the terminology, a message is any information device which travels around 

the ring, from one processor to one another, whether they are neigh 

An elementary message, which is a message between two neighbour-sites on the ring 

will also be called a message. Finally, pip will denot 

elementary message (we assume here that all message 
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Much work has already been done to obtain good upper and lower bounds for 
different variants of the problem, both in the worst and in the average case. Tight 
upper and lower bounds for bidirectional variants of Chang-Roberts decentralized 
extrema-finding algorithm were presented in [3]. These bounds were established for 
the probabilistic algorithm given in [ 121 and [lg] (Algorithm P) and for a determinis- 
tic version of the same algorithm (Algorithm D). Up until now, t ese bounds were 
the best approximation of the average number of messages required by Algorithm 
P and Algorithm D. 

In this paper, we derive the exact asymptotic value of the average number of 
messages required both in Algorithm P and Algorithm D: i&H,, +0(n). This value 
is obtained by using techniques and results from thccry of permutations (inversion 
tables mainly), average-case analyses involving generating functions (e.g. generating 
function of Eulerian numbers), and asymptotic techniques (e.g. Stirling formula 
and Euler-Maclaurin summation formula). 

The result confirms the positive answer (given in [3]) to the question (first posed 
by Pachl, Korach and Rotem) of whether distributed leader finding can be solved 
more efficiently on bidirectional rings than on unidirectional rings. 

The paper is organized as follows. In Section 2, some definitions and preliminary 
results from the theory of permutations are given. Sections 3 and 4 are de:oted to 
the analysis of the exact asymptotic value of the expected number of messages used 
in Algorithm P and Algorithm D, respectively: &hH,, +0(n). In Section 5, we 
present the results of experimental tests, achieved on a bidirectional circular configur- 
ation of 1000 up to 50 000 processors. Tine experimental values thus obtained may 
be considered to be in good agreement with the preceding theoretical average value. 

Tables 1 and 2 present an overview of the existing known upper bounds for the 
leader finding problem, in rings where the size n is unknown to all the processors, 
and (a priori) without sense of direction on the ring, in the bidirectional variant of 
the problem. 

Table 1 
Distributed election algorithms for unidirectional ring 

Algorithm Average Worst case 

Le Lann (1977) 

Chang and Roberts ( 1979) 
Peterson (1982) 

Dolev, Klawe and Rodeh ( 1982) 

n’ n’ 
nt!,, jn’ 

1.44...nIgn 

1356...nIgn 

For most of the quoted bidirectional algorithms, the existence of a global sense 
of direction (i.e. each processor has the consistent global knowledge of the left and 
right direction on the ring) is unnecessary, although this is of course not the case 
for the algorithm of olev et al. Thus, the average message complexitv of Algorit 
P or A~gor~t~rn D is the same on a ring witk or without a global sense of direction. 
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Table 2 
Distributed election algorithms for bidirectional rings 
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Algorithm Average Worst case 

Gallager et al. (1979) 5nIgn 
Franklin (1982) 2nlgn 
Korach, Rotem and Sarrtoro 
(1981) Algorithm P 
Korach, Rotem and Santoro (1984) 
Bodlaender and van Leeuwen 

(1986) Algor’thm P 
(!986) Algorithm D 
Van Leeuwen and Tan (1985) 
Moran, Shalom and Zaks (1985) 
Dolev, Klawe and Rodeh (1982) 
with sense of direction 
This paper ( 1988) 
Algorithm P 
This paper ( 1988) 
Algorithm D 
This paper (1988) 
Algorithm D 

[prob] < $nH,, 

0.7033.. . nH,, s [prob] s 0.7075 
[det] s 0.7075 . . . nH,, 

[prob]f&!nH,, 

[diet&&H,, 

(0.972 . . . /J”i)t~Cf,,~’ 

[prob]jn’ 
1.89...nIgn 

nH,, iprob]{n* 
[det]an’ 
1.44...nIgn 
:.44...nIgn 

1.356...nIgn 

[ prob]fn2 

[det]an’ 

’ Result experimentally obtained (Section 5). 

The existence of a sense of direction on a bidirectional ring does not actually 

shrink the Lzcerrage message complexity of distributed extrema-finding algorithms, 

although this is a priori not the case for any bidirectional distributed election 

algorithm. 

The average lower bound of &+I, on bidirectional rings (with sense of direction, 

n unknown), derived by Bodlander in [2], displays the existing gap between the 

coefficients f and &f? for the average messa ge complexity of the bidirectional 

distributed leader finding problem (with or without sense of direction on the ring). 

2. Inversion ta 

Let 7r=((c+,cz . ..gm)~G” be a permutation of size n. Associated v:i:h z-, deRne 

its inversion table t = t, t2 . . . t, such that tj is the number of elements (in n) to the 

left of ui larger than a,(l<i<n). Hence, 0s t;<i for all i(lsicn), and the 

correspondence between a permutation and its inversion table is one to tine. 

(Vuillemin [ 191). 7%e kjit- to-right maxima (or upper records) ofa permuta- 
tion ar E G, correspond to the occurrences of the value zero in thp inversion tables of T. 

.2. Let w = (2 3 6 5 1 7 4)( g _,). The (bold) upper recor E 
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and the inversion table of w is such that 

t=CB 0 0 I 4 0 3. 

An inversion table can t 17s be pictured as a “staircase”: put a cross in each 
column, the left-to-right maxi na are corresponding to the lower crosses (the zeros). 
Now using variables to denore the values 0, 1, . . . , n - 1 in the inversion table t of 

n(e.g.x,,x, ,... 5 x,~-~), the set of all inversion tables corresponding to all permuta- 
tions in G, is fully described by the polynomial 

x,(x,+x,)(x,+-x,+x,). . . (x,+x,+- - -+x,,._*j 

t t r T 

1st column 2nd column 3rd column (n - 1 )st colllmn 

(2.1) 

(i) The nth harmonic number is denoted by H, = Cy_, l/ i with asymptotic 
expanston H,,=lnn+~+$-‘+O(n-‘)-0.693...lgn (where y=OS77...is 
Euler’s constant); In n is the neperian logarithm of n and lg n denotes the logarithm 
in base 2. 

(ii) The notation [x”]f(x), withf(x) =CkXxL, reads as “the coefficient of xk in 

f(x)“. 

efinition 2.3 (Feller 15, p. 481). The unsigned Stirling number of first kind, s,,.~, 
are such that s,>,~ = [x”]x(x + 1)(x + 2) . . . (x + n - 1); and the enumerating poly- 
nomial of s,,_~ is 1, s,,x”=x(x+l)(x+2). . .(x+n-1). 

Lemma 2.4 (Vuillemin [ 191). The average number of zero elements in an inversion 

table of size n is H,,. The number of inversion tables of size n having k zeros is the 

unsigned Stirling number of jirst kind s,,,~ . 

The unsigned Stirling number of first kind, s,,,~, is proved to count at the same 
time: the permutations 7r E Z,, with k upper records, the permutations v E G, with 
k cycles, and the inversion tables of size n such that I{ i 11 Q i c n, ti = O}] = k (see 

[ 19, p. 2311). 
Therefore, an immediate consequence of Lemmas 2.1 and 2.4 is the following. 

orollary 2.5. The average number of left-to-right maxima (upper records) of Q 
permutation n E Z:, is H,, . 

ma .6. Let ~=(o,a,... a,). The average distance to the first left-to-right 
maximum (upper record) of v is H,, - 1. 

This well-known result occurs repeatedly in the theory of permutations 
[S, 17, 11, 19,3]. owever, this result may e obtained with very direct proofs, using 

two arguments involving different properties of r E Z,, [ 13, p. I4ZJ 
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roof. On the one hand, it represents nothing indeed but the average number of 
left-to-right maxima of T, whenever we assume its first element ul to be an upper 
record. Hence, since the first upper record of ST( c,) is not counted in the enumeration, 
the average distance to the first upper record, different from c+~, is the average 
number of occurrences of the value zero in the inversion tables of size n, minus 1: 
i.e. k&-l. 

On the other hand, the average distance to the first upper record of v may simply 
be derived as the direct solution of a linear recurrent equation. Let D,, be the 
distance to the first upper record of T, then D,, satisfies the recurrence 

D,=D,,-,+(n--l)D,,_,+(n-l)!, subject to D,=O 

(since o, is the first left-to-right maximum). Now the average value of Q is 

D,,/n!=D,_,/(n_1)!+I/n, subject to D, =O; 

from which we obtain the solution 

Proposition 2.7. T&e probability I&,(j) that a permutation T E Z,, has exact/y j upper 

records (j b 2), with the /eftFnOSt one in position a ( CY > 1) aiid the rightmost in position 

P is 

n,Aj) = W’l p(a _ :,@ _ *) 
1+&)...(1+-&). (2.2) 

roof. Let G,(x) denote the generating polynomial of permutations T E Z-, with 
exactly j upper records \J / .a 2), the leftmost one being in position LY and the rightmost 
one in position p, so that G,,ix) is conditioned over the values (Y and p. Let us first 
consider all the positions of the j left-to-right maxima of n (j 3 2) in an inversion 
table of size n (the leftmost in LY, the rightmost in /I). Let us then write down all 
the monomials corresponding to the possible upper rtzcr& of r. 

Positions 1 2 3... . ..(a-1)&Z+1)... . ..(/3-1)/3(P+l) . ..n 

Monomials 1 1 2.. . (a-2)x(x+cr)(xta+1) . ..(x+P-2)x(P+l)...n. 

The corresponding generating polynomial G,(x) is derived from the above terms 
as the product of all the stated monomials, divided by the preduct of all the positions 

in an inversion table of size n. Namely, 

G,(x) = 
1.1-2.. . . “(a -2)~x$x+a)~(x+a+1)~..:(x+p--2)~xq~+1)=.:~ 

1.2-3. . . . .(a - n)vx+l+ 1). . . . .(P-2).(p-I).S.(P+n)...:” ’ 

G,,(x) = 
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Secondly, expressing the generating polynomial G,(x) as the generating function 
of the probability I?,(j), we obtain 

G,(x) = C 17,(j)xj = x2 1 rr,(j)x’-*. (2.3) 
432 jz2 

Thus, n,(j) is the coefficient of xi-* in Gn(x), for $p < CY <p < 2cr; and the value 

of II”(j) follows. q 

3. Analysis of Algorit 

We know from [12] that Algorithm P (Fig. 1) requires an expected number of 
messages of at most fnH, +Q(n). This value is only an upper bound, because of 
possible effects of higher order upper records which remain ignored in this evalu- 
ation. The detailed proof of correctness of the algorithm may be found in [3], or [ 161. 

In the following, we assume that all processors start the algorithms simultaneously 
(at time 0), otherwise the first message a processor receives serves to wake it up 
and trigger its Stage 1, before it actually processes the message. For the analyses, 
we also assume throughout the paper that the processors operate synchronously, 
and that the algorithms can deal with the case when a processor receives two 
messages (from both neighbours) at the same moment. Furthermore, we ignore the 

Algorithm P [3] 
Each processor Pi keeps the largest identity (identification number) it has seen in a local variable 

MAXi (1 G i c n). Each processor Pi goes through the following stages. 

Stage I (initialization) 
MAXi := ai ; 
choose a direction d E {left, right} with probability ); 

send message (ui) in direction d on the ring; 

Srage 2 (election) 

repeat the following steps, until the end of the election is signaled by receipt of a ( !) message: 

if two messages are received from the left and the right simultaneously, then ignore the smaller message 

and proceed as if only the larger message is received; 
if message (a;) is received from a neighbour, then 
if ui > MAXi thea MAXi := vii; pass message (CT,) on 

else if vi = MAX, then send message ( !) on the ring /*P, has won the election*/ 
fi; 

Stage 3 (inauguration) 

if a message (!) is received, the election is over and MAX, holds the identity of the leader; if this 

processor was elected in Stage 2 then the inauguration is over, otherwise pass message ( !> on and stop. 

Fig. 1. 
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time necessary for possible internal computations within the processors. These 
assumptions enable us to have asynchronous, message-driven algorithms, running 
on a synchronous ring with a fully deterministic behaviour [3]; however, similar 
results can be proved when weaker assumptions hold. 

3.1. E.xact evaluation of the expected number of messages 

Consider a ring of n processors P, , . D . , P, with identities a, through a,,. Without 
loss of generality, we may assume each ui to be an integer between 1 and n. And 
thus, ~=(a,o~... a,) is a permutation of G,,. Assuming also that the permutations 
of G, are equally likely, we can make use of the preceding results to analyse 
Algorithm P. 

First, set i = 1; the message (a,) is sent to t;;e fight or to the left with probability 
$. Thus, the expected number of elements in P visited by (a,} is i( H,, - 1) whenever 
Pr sends its message (or) to the right, and j]#“J whenever PI sends its message 
(a,) to the left, since from Lemlna 2.6, I-I, - 1 is the average distance to the first 
left-to-right maximum in 7r. Accumulating the sum of these two quantities for all 
(o,)-messages (1 d i =z n), which are independent random variables, yields the known 
upperbound of $zH, +0( n) for the average number of messages required by 
Algorithm P. Now taking also into account the effect of higher order upper records, 
the exact average value can be determined. 

Proposition 3.1. 77ze average number of (cr,)-messages propagated by Algorithm P is 

exactly ;I+,, -C,,p (a -$)G,($)+O(I), for $<ar<j3<2a, where G,(x) is the 

generating polynomial de$ned in (2.2). 

PPOO~. Let u1 , u2, . . . , be random variables denoting the position of the first, second, 

and higher order upper records. We may consider the Vis as independent random 
variables conditioned over the vaiues (Y and /3; without loss of generality let (a,) 
be sent to the right. If processors P, to P’_r randomly choose to send their message 
to the right while Pp sends its message to the left, then the (a&message is annihilated 
by the (o&message if the messages meet before P,, is reached; i.e. at position 
f + if@] ) provided fi <2a. Otherwise, the (u&message is simpiy annihiiated at P,. 

Let r denote the permutation (a, . . . a,) E 5, ; then the number of positions in 7r 

visited by message (a,) is exactly (Y - (1 + Lib] ), with $3 < (Y < /3 < 2a. 
formulae (2.2) and (2.3), and the definition of probability (j) and consider the 

effect of all upper records of 7r. The average number of (a&messages propagate 

by Algorithm P is 

N,= -04 - I)+ 419XlJ -jFz 2-j nc, (a - ltPJ - M,,(j) 
. 

and, since 

(3.1) 
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then 

N,=;H,,-: C (a- $)G,(;)+Q(l), $p <a <2a. (3.2) 
4 

Shifting from Q - L$3J - 1 to (Y - $3 produces indeed an O( 1) error term; besides, 

a! ranges from $3 + 1 to /3 - 1, and p ranges from 2 to n. Cl 

Note that the identity xjzO 2-‘{[x’]f(x)} =f(i) 

whenever f(x) = I._ 

is obvious, since f(i) = C,&2-j, 

,_O ,x1. The coefficient a in (3.2) comes precisely from the fact J: 

that we have here [xj-‘]G,,(x) instead of [x”]G,,(x). 

Corollary 3.2. The average number of messages required by Algorithm P is exactly 

&H,, - nS,, +0(n), where 

s, = c 2qd8-? pa,(a-,I(,_,, 2 . < (l+t)(l+zb)---(l+&)~ 
. Accumulating in (3.2) the quantity z for all the n (cri)-messages (1 s i G n) 

which are independent random variables yields the exact average number of 

messages, namely 

x=&H,,--n x C 
2sp5n $<a<:P 

$(a - ;PW&+Wn), 

Now, 

G,(i) = 1 (l+$J(l+&j)...(l+& Pb - l)(P - 1) 

Summing, respectively, over p (2 s p s n) and LY ($3 < LY < p), it follows that 

~=$nr-r,-n~C~ (0 - $9 

IJ c1 p(cu-q(p--li 
(l+~)(l+z&J...(l+$-&O(n), 

(3.3) 

which gives the exact average number of messages: 

&H,,-nS,,+O(n). 0 

3.2. Asymptotic analysis of S,, 

The following asymptotic analysis of S, in [6], makes use of Stirling’s formula 

and Euler--Maclaurin (one-dimensional) summation formula (see [7] for similar 

techniques). For p E RJ define 

and, by means of Stirling’s formula for large p, we have 

term of O( l/p). 
- 2~5/4%, with an error 
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The sum S,, may then be rewritten with the Q,,s as follows: 

Denote by u(p) the inner sum (with index a). For /3 large enough, by Stirling’s 
formula, 

If we now set (Y = @I, where “t” ranges between i and 1 by steps of l//3, then 

and by approximation of the discrete sum by an integral (Euler-Maclaurin summa- 
tion formula), one obtains the asymptotic expression 

which is uniform in j3. And at last, 

u(P) = $I3-2n+o(f)} (3.5) 

which yields the following. 

Theorem 3.3. The asyn.potic value of the expected number of messages used in 

Algorithm P is $finff,, +0(n) =0.707106.. . n In n+(-)(n). 

roof. From (3.3), 

N= $lH,,-r&+0(n). 

The exact computation of S,, from (3.4) and (3.5) gives rise to the expression 

and since 

= O(l), S, being uniform in J3, 

N= ~nH,,-na(3-2~)~$+0(ni 
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4. Analysis of Algorit 

Algorithm P is probabilistic, and hence does not constitute in itself a proof that 

distributed leader finding can be achieved strictly more e ciently in bidirectional 

rings than in unidirectional rings. To solve the problem, a deterministic version of 

Algorithm P is described in [3] in which Stage 1 is replaced by a fully deterministic 

stage. The idea is to let each processor Pi send its (*oJ-message in the direction of 
the smallest neighbour and thus get rid of all the smaller neighbours from the outset 

(Fig. 2). 
Stage l* requires exactly 2n messages and leaves at most [in] processors active’ 

or candidate in the election, viz. the peaks of the permutation w = (a+, . . . u,,), which 

clearly pass on to the next stage. The other I&] remainir,g processors, the “non- 

peaks” of n; thus stay in the state defeated after Stage 1”. By pairing every 

permutation of G, with one in which the neighbours of Pi are interchanged, one 
can see that Pi sends its (*a,)-message to the left or to the right with probability f 

(averaged over all the permutations of 5,). 

Algorithm D [3j 
Similar to Algorithm P except that for each processor Pi, Stages 1 and 2 are replaced as follows: 

Stage I* 
send message (*u,,) to both neighbours on the ring; 
wait for the message (*u,_J and (*a,, ,) of both neighbours (with the indices “i - 1” and”i + 1” interpreted 
in the usual circular sense as indices of the left and right neighbour, respectively); 
MAX,:=max{*~~_,,*o,,*a,+,}; 
if MAX, = *ui then 

if "oi_,<*ai+, then send message (*u,) to the left 
else send message (*ui) to the right 
n 

ii; 

Sfuge 2* (election) 
repeat the following steps, until the end of the election is signaled by receipt of a ( !) message: 
if two messages are received from the left and the right simultaneously, then ignore the smaller one and 
proceed as if the larger message is received; 
if message (*ui) is received from a neighbour then 
if *ci > MAX, then MAX, := *uj ; 

pass message (*ai) on 
else if *ui = MAX, and *a, = *ui then send message ( !) on the ring 

/*Pi has WOK the election*/ 
else if *cri = MAX, and *a, #*u, th.?ri pass m<:ssage (*uj) on 

/*the neighbour of c will win the election*/ 
fi; 

(Stage 3 remains unchanged) 

Fig. 2. 
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For the analysis of Algorithm D, our assumptions (emphasized in Section 3) still 
hold in the following analysis. 

4.1. Average number of peaks, rises and average length df rises and falls 

In order to obtain an exact asymptotic estimation of the average number of 
messages sent by the active processors that pass on to Stage 2” in Algorithm D, we 
need to know the average number of these active processors (the peaks) and the 
average distance between two of them. This we obtain thanks to combinatorial 
average-case results about permutations, namely the expected number of peaks and 
rises of n, and the expected length of the rises and falls of W. 

emma 4.1. 71re expected number of peaks of r E Z:, is E = j( n + 1). 

Following is a simple proof of Lemma 4.1, originally proved by Bienayme in [I]. 

Proof. Let 3 denote the (binary) tournament tree associated to the permutation T, 
and let Ts and Td denote the left and the right subtree of 9, respectively. It is easily 
seen that the number of peaks of T is the number of leaves of 5 [7]. Let A[ $1 
denote the number of leaves of 9, then 

h[~]=~.3,,,+h[TC][9[+h[Td]1~~=S,.i,.,+21~^)~[T]. 

Thus, the ordinary generating function (ogf) of the expectation of A is 

I 
z 

n(z)=~n,,z”=z+2 
0 

A(x)$, A(O)=O, 

which leads to the first-o.der differential equation 

(I-z)$n(r)-*A(z)=*-z 

with the solution 

Z3 
A(z)= f- +--?-. 

l-z2 l-z’ 

and, since 

n(z)=: c (n-2)z”+ c zn 
ns3 ,I :- 1 

(ogf of A(z) obtained from the above solution), 

A,=[z”]A(z)=~ - 
(n-2)+L=n+l 

3 - 

The expected number of peaks of T is then 
applies; however, since the variance i 
of order n”‘), it c;a not be used to 
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Note that the average number K of valleys of 7r is such that K = E- 1 = f( n - 2), 
and that the average number of peaks and valleys of P is then ;( 2n - I), a well-known 
result in the theory of permutations. 

2. Ttie sxpected number of rises of rr E Z” is R, = i( n -I- I). 

roof. Louis Co tet, for example in [4], shows that the eulerian (n, k) 
count the number of permutations P E G,, witk k rises. The bivariate exponential 
generating function (bgf) of eulerian numbers, 

U(r, z) = 1+ 1 A(n, k) $ r’-’ 
n,k . 

has the value (see [4, p. 63, T.f]) 

(4.0 

Wence, developir =g (4.1) with regard to (t-l), 

U(r,z)= ( ) c zn’ 
nat 

Considering the bgf W(I, z) and its derivatives in t = 1, we obtain 

[z”]U(t, z),,,, =C A(n, k) = n! 
P 

[ziJI~U(f,~)i,=!=~(k-l)A(n, k)=i(n-I)n! 

(4.2) 

(4.3) 

[z+$‘(f.z)i,=,=~(k-l)(k-2)A(n,k)=(”-2):23n-5).! 
k 

The mean K=(4.3)/(4.2)+1= i(n+l), and the variance var(R,I)=(n+1)/12 are 
easily derived from the above identities. In this case, the standard deviation being 
of order 6, the central limit theorem shows that R,, when normalized, converges 
to the normal distribution. 

ote that the expected number of falls of 7r is then i(n - 1). Cl 

.3. The expected length of rises and falls; of 7r E 5, is z = 2n/( n + 1). 

Let us first recall the fundamental one to one correspondence (due to 3. 
Fraqon and G. Viennot [9, lo]) between permutations of G, and weighted paths, 
with n - 1 steps, from altitude 0 to altitude 0 with possibility functions: pos,( k) = 

k + 1, pos,( k) = 2( k + 1) and pas_,(k) = k + 1 (recall that the initial and final elements 
of a permutation rr E G, are recognized by notationally placing a zero at both ends 

in a circular configuration of processors, we assume that of course 
‘“last” elements of 7r are t 
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Define the set E, of “subexceeding functions” on [I, n] [8], to be the set of 
functions f on [ 1, n] such that f( i) c i for all i in [ 1, n]. Then there exists a one to 
one mapping between the set E, and G, which may be seen as the correspondence 
between the crossed squares of the inversion table of a permutation (recall Lemma 
2.1) and the corresponding valuef( i) - 1 (for all 1 G i 6 rt ), f being then a subexceed- 
ing function (see [8,143 for a more detailed argumentation). 

E, may be described by means of the formal (non-commutative) polynomial 

F(x ,,..., x,,)=x,(x,+x*)...(x,3x,+o. a+~,), from which we can obtain the 
generating polynomial 4 (t) = (j - I)!( 1 +j - I) . . . ( t + n .- l), of subexceeding func- 
tions on [ 1, n] according to the number of times when value j is reached: 4 (t) 

corresponds to the length of a rise or a fall of ?r. By summing 4 (f),j ranging from 
1 to n, one obtains the generating polynomial of the total length of rises and falls 
of permutations ?r, provided that the constant term in Fj (t) has value zero. Let 

n-l 

G(t)= E {j!(r+j)...(ri-n-l))-n!? 
j-C, 

(4.4) 

be this generating polynomial. From (4.4), 

@(I)= 
n-1 n+l , 

n. n!-n!-=-n 
2 2 .’ 

n - 1 

@‘(I)= 1 j! t p-‘+n! i p-“i’l=n*n!. 
j=O p=j+l p=l 0 

Hence, the expected length of rises and falls of T is E = W(l)/ @( 1) = 
2n/(n+l). El 

Note that the variance is 2n( n + 3)/( n + 1)’ - [4/( n + l)]N,,, and the central limit 
theorem shows that L,, when normalized, converges to the normal distribution. 

4.2. Exarr asymptotic estimation of the expected number of messages 

At the end of Stage l*, there remain !(n + 1) active processors on average (the 

peaks of T). The remaining active peak-processors are at least one position apart, 
and the independence of their choice of direction for sending messages around the 
ring (left or right) is a priori not guaranteed for all of them. Indeed, for an arbitrary 
pair i and j, the random variables for the directions of the peaks’ messages ((*a,) 
and (*ai)) are in general not independent. However, as proved in the following 
lemma, these random variables satisfy a condition weaker than independence as 
they are pairwise independent, in the sense of Feller [5, p. 127 and 

The permutations of EJ,~ are assumed equally likely, and also t 
the resulting configuration of the peaks of T is again assumed to be random at the 
end of Stage 1”. 

be the sequence f p random variables 
fOCeSSOBS9 essages (*q)r.. . , (“up 



on the ring, and let this sequence of variab1c.s 5, 1 e such that d; equals the left or right 

direction on the ring for the message (*ai). From [5, p. 127 and p. 2201, we have 
the following. 

e p random variables d, , . . . , d,, are pairwise independent if they 

are not mutually independent though their distributions and joint distributions verify 
the identity 

Pr{ di = 1, dj = r} = Pr{ dj = I} . Pr{ dj = r}, 

for an arbitrary pair i and j (1 G i, j d p). 

(4.5) 

mma 4.5. (i) In Ge case where two consecutive peak-processors are at least two 

positions apart on the rit;g, we may claim the independence of their choice of direction 

at the end of Stage I*. 
(ii) in the case where two consecutive peak-processors are exactly one position apart 

on the ring, the directions d, , . . . , dfl at the end of Srage 1* are not mutually independent 

random variables, btrt satisfy the weaker (and suflcient) property of being pairwise 

independent, according to identity (4.5) of Definition 4.4. 

Proof. The first claim of Lemma 4.5 is straightforward, since the direction of 
messages at the end of Stage I* cannot depend on the respective placement of 
consecutive peak-processors which are at least two positions apart around the ring 

PI. 
The proof of the claim (ii) of Lemma 4.5 is a little more involved. Let us consider 

two consecutive peak-processors Pi and 4 which are exactly one position apart 
?round the ring and the directions di and dj, respectively (1 s i G p). Suppose di = r 

and dj = 1, for example; the following equalities hold: 

Prlf.1, = r} = Pr{*oi_, <*CT;+,} = $, 

Pr(dj=l}=Pr{“cj+r Q*T__,}=$ 

(i - 1, i + 1, etc. being taken modulo n). 
Now, 

= Pr{ d: = r} * Pr{ dj = I}, (4.6) 

and the above identities (4.6) still hold for di = I, di = r, or di = {j = 1, etc. But the p 

identically distributed random variables d, , . . . , d,, are not mutually independent 
whenever at least two of them correspond to peak-processors which are exactly one 
position apart on the ring. In such a case indeed, the distributions and joint 
distributions verify the inequality 
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Fig. 3. 

Example 4.6. As an example, we may consider the permutation 7r E !ZIz with (bold) 
peaks 10,7,Bl, 6, and 12: w = (8 9 ). Accord- 
ing to the Stage 2* in Algorithm D, the choice of direction of processors 

PIO, p7, P,, 3 P6 and PI2 only depends on the respective identities of their (immediate) 
right and left neighbours on the ring (Fig. 3). P,,, sends its (*lO)-message ctockwise 
(towards P,), and so does P,, (towards P2); whereas P,, P6 and P,z send their 
respective messages anticlockwise (towards P, , P3 and PS , respectively) around the 
ring. 

This “weak” form of dependence is illustrated in the fact that P6 and P,2 on the 
one hand, P,, and P7 on the other hand, are pairwise consecutive peak-processors 
which send their messages in the same direction around the ring for the first pair, 
whereas the peak-processors of the second pair send their messages in opposite 
directions. 

In other words, this is i.1 example in which no Crier LOnSecUtiUe random variables 

of the sequence d, , . . . , dp are independent. Hence, the /Ils are pairwise independent 
((4.5) or (4.6) are verified) without being mutually independent, and the distribution 
of the messages’ directions does not depend on the placement of pairwise peak- 
processors, even in the case where the latter are exactly one position apart on the 
ring (so and P,, or Ph and PJ. 

Theorem .7. The asymptotic value of the expected numbev of messages used in 
Algorithm D is $/%rH,, +0(n) = 0.707106.. . II In n +0(n). 

roof. Denote by n* = $(n + 1) the average number of peak-processors, arrd by x 
the average distance between two consecutive peak-processors. 

We know from Lemma 4.3 that the average length of rises an falls of 7b E Zn is 

E = 2n/( n + 1). Now, E also represents the average distance between two consecu- 

tive peaks and thus, the average distance between two consecutive pea 
in the ring. Moreover, it follows from Lem at fo~~nate~y, 

within Stage 2” trave g the ring in a direction w 

rocessff rs. 
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Therefore, the probability that a message is sent to the right or to the left is 4 
and we are brought back to the average-case analysis of Algorithm P. In this case, 
Algorithm P revisited, the asymptotic expected number of messages is 

when accumulating the average distance z for all the n* peak-processors. And since 

Qw” 1+ ( > 2 l&*+0(n) = fd2 

the asymptotic expected number of messages propagated in Algorithm D is 

f,~~(3n+1,)H,+O(n)=f~~nH,+O(n) cl 

In the case when s < n starters/initiators start Algorithm P and Algorithm D, the 
previous results remain basically valid; namely, the expected number of messages 
propagated in both algorithms is then $%zkl, +0(n). 

Note however that we assumed (Section 3) that all the processors start the election 
“simultaneously” hnd work synchronously. The first assumptron allows us not to 
consider the case when there exists s c n initiators, and the second assumption 
(together with the first one) yields an O(n) “time” complexity for both Algorithm 
P and Algorithm D: viz. in the best case, II + $r and n + 1 + in pips, respectively; 
in the worst case, 3n and 3n + 1 pips, respectively; 2n and 2n + 1 pips on average, 
respectively (“pip” is the elementary delay time defined in the Introduction). In 
this case, the $r pips applies to the delay time elapsed for the inauguration of the 
leader. 

As to the worst-case message complexity of Algorithm P and Algorithm D, note 
that Bodlaender and van Leeuwen proved in [3] that the maximum number of 
messages is fn’ and $‘, respectively. 

In the following tests, the basic theoretical number of messages which is considered 
is the expected message complexity, @r! !n .r! of Algorithm P. The number of 
messages computed by the sequent machine (a 12 processors PRAM) is the total 
number of messages propagated during the processing simulations of Algorithm D 
minus 30. The implemented algorithm is actually quasi-synchronous, since the 
minimum and maximum message delay times range between 1 and 2, respectively 
(some tests performed with message transmission delays ranging from 1 to 100 do 
not apparently alter the preceding results). All the n processors which participate 
in the election have distinct (pseudo-random) identification numbers, randomly 
drawn from a 9-digits decimal generator. 

experimental tests performed (with 1000 to 50 000 processors), t 
e average number of simulated messages to the theoretical average value 
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N, only varies from 0.945 to 0.994. Moreover, the ratios are all sharply close to 1 
(up to 0.6% at best), and the mean ratio of 0.9725 . . . differs less than 2.75% from 
1. However, all ratios remain strictly smaller than 1. 

The remarks which arise from this sample of tests, though it is certainly too 
limited an experiment, are twofold. First, the tight experimental values obtained 
seem to confirm the equality N = N’. Secondly, the ratios distribute too systemati- 
cally below 1. 

Yet, a conclusion may be drawn from these limited simulations and the apparent 
contradiction arising from the latter remarks. Indeed, we know that the simulations 
performed do not bring enough control over the factor O(n) (in spite of the 
subtraction of 3n from the enumeration), and that the variations in the message 
transmission delays are not really taken into account in the above tests. This, together 
with the help of the very full and accurate empirical analysis completed by Mattern 
in [IS], actually enables us to explain the fact that the ratios so systematically 
distribute below 1: Mattern’s experimental results show that the asymptotic value 
&/? of the coefficient of &-I,, is approximated very slowly. 

Thus, both the simulation results in Table 3 and Mattern’s own empirical analysis 
of Algorithm P and Algorithm D confirm very strongly the mathematical analysis 
of the present paper. Therefore, we may conclude that the experimental analyses 
in [15] and the simulation tests results in Table 3 are in good agreement with the 
theoretical result obtained in Theorems 3.3 and Theorem 4.7. 

Table 3 

Average number of messages N’ used in Algorithm D, and ratio w/N 

Number n 

of processors 
7v=;&H”+O(n) N’= average number Ratio F/Na 

for 70 tests 

20 000 140 056.46 
30 000 218 685.9 
40 000 299 718.09 
50 000 382 536.929 

1000 4884.5 
5000 30 112.825 
10 000 65 126.94 

137 290.687 
218 355.758 
288 955.! 
378 747.1 

(for 50 tests) 
4733.2 
29 735.5 
6374 

0.98 
0.966 
0.964 
0.994 

0.945 
0.985 
0.977 

a The mean ratio, 0.9725.. . , differs about 2.75% from 1. 

We have presented a detailed analysis which shows t 
Algorithm P as well as the deterministic alg 
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bidirectional ring, while requiring nearly the same amount of “time”. 
simulation results obtained in the experimental tests show good agreement with the 
asymptotic constant’s value $3. 

Furthermore, this result is a confirmation of the fact (already proved in [3]! that 
distributed leader fmding can be solved more efficiently on bidirectional rings than 
on unidirectional rings by a deterministic algorithm. 

Indeed, combinatorial enumeration and analytic methods (e.g. generating func- 
tions) prove powerful and general enough to provide efficient tools and cope with 
most average-case analyses of distributed algorithms and distributed data structures. 
However, the bidirectional variants of distributed election algorithms seem surpris- 
ingly harder to analyse on average, and it is still au open problem to find an exact 
expression for the variance of Algorithm P and Algorithm Ia, as well as to characterize 
the distribution of asymptotic constants for other bidirectional distributed election 
algorithms [ 151. 

In [2], Bodlaender has shown that any bidirectional leader finding algorithm on 
rings (with sense of direction, n unknown) requires at least $nH,, +0(n) on average 
(see Section 1). The gap between the coefficients r and $fi raises the question 
whether the bidirectional variant of the Chang-Roberts algorithm is average-case 
optimal. This result alJo raises the question of determining the average message 
complexity of other bidirectional distributed election algorithms, and possibly 
finding average-case optimal election algorithms (with respect to Bodlaender’s 
lowerbound of $I-&). 

This work could not have been completed without Philippe Flajolet’s first impulse 
and general contribution; it benefited also from discussions with FranGois Lassner 
(especially for the proof of Lemma 4.5). 

[ 1] J. Bienayme, Sur une question de probabilites, Bull. Sot. Math. Frunce 2 ( 1874) 153-154. 
[2] H.L. Bodlaender, A better lower bound for distributed leader finding in bidirectional asynchronous 

rings of processors, Inform. Process. Lett. 27 (1988) 287-290. 
[3] H.L. Bodlaender and J. van Leeuwen, New upperbounds for decentralized extrema-finding in a 

ring of processors, STACS ‘86, Lecture Notes in Computer Science (Springer, Berlin, 1986) 119- 129. 
[4] L. Comtet, Analyse Combinatoire, 2 Tomes (Presses Universitaires de France, 1970). 
[S] W. Feller, An Introduction to Pro&ability Theory and its Applications, Vol. 1 (Wiley, New York, 1968). 
[6j P. Flajolet, Personal communication, 1987. 
[7] P. Flajolet and J.S. Vitter, Average-case ar.alysis of algorithms and data structures, INRIA Res. 

Rep. 718, August 1987. 
]8] D. Foata and M.P. Schiitzcnberger, T’hGorie Gkome’tiiyae des Po/yno^mes Eufkriens, Lecture Notes 

in Mathematics (Springer, Berlin, 1970). 



Distributed election on bidirectional rings of processors 79 

[9] J. Frangon and G. Viennot, Permutations selon les pics,creux,double montees,double descen- 
tes, nombre d’Euler et de Genocchi, Discrete Math. 28 (1979) 21-35. 

[IO] 1.P. Goulden and D.M. Jackson, Combinatorial Enumerarion (Wiley, New York, 1983). 

[ 111 D. Knurh, The Art $Computer Programming, Vol. 3 (Addison-Wesley, Reading, MA, 1973). 
[ 121 E. Korach, D. Rotem and N. Santoro, A probabilistic algorithm ior decentralized extrema-finding 

in a circular configuration of processors, Res. Rep. CS. 81-19, Department of Computer Science, 
University of Waterloo, 1981. 

[13] C. Lavault, Algorithmique et complexite distribuees, These d’Etat, Univ. Paris XI-Orsay, December 
1987. 

[ 141 C. Lava& Average number of messages for distributed leader finding in rings of processors, ln$orm. 
Process. Lett. 30 (1989) 167-176. 

[ 151 F. Mattern, Message complexity of simple ring-based election algorithms-an empirical analysis, 
Draft version of Report SFB 124-36/88 (21.9.88), Department of Computer Science, University of 
Kaiserslautern, 1988. 

[16] J. van Leeuwen and R.B. Tan, An improved upperbound for distributed election in bidirectional 
rings of processors, Distributed Comput. 2 (1987) 149-160. 

[17] A. RCnyi, Egy megfigyelbsorozat kiemelkedii elemeiriil, MTA III. Oscr. K&l. I2 (1962) 105.121. 
[IS] D. Rotem, E. Korach and N. Santoro, Analysis of a distributed algorithm for extrema-finding in 

a ring, J. Parallel and Distributed Compur. 4 (1987) 575-591. 
[19] J. Vuillemin, A unifying look at data st?Jctures, C:*rnrl~ .4CA;l 23 (1980) 229-239. 


