
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 42, 97-118 (1991)

Some Lower Bound Results for Decentralized
Extrema-Finding in Rings of Processors*

H. L. BODLAENDER

Department of Computer Science, University of Utrecht,
P. 0. Box 80.089, 3508 TB Utrecht, The Netherlands

Received June 16, 1986; revised July 20, 1989

We consider the problem of finding the largest of a set of n uniquely numbered processors,
arranged in a ring, by means of an asynchronous distributed algorithm without a central con-
troller. Processors are identical, except for their unique number (identity). Using a technique
of Frederickson and Lynch we show that arbitrary algorithms that solve this problem on rings
where processors know the ring size cannot have a better worst-case number of messages than
algorithms that use only comparisons between identities. We show a similar type of result for
rings, where the ring size is not known. We use these results to answer a question, posed by
Korach, Rotem, and Santoro in 1981 whether each extrema-finding algorithm that uses time
n on a ring of n processors must use a quadratic number of messages; and to show a lower
bound of 0.683 n log(n) on the worst-case number of messages for unidirectional rings with
known ring size n. Also, we give a lower bound of in log(n) on the average number of
messages for algorithms that use only comparisons on rings with known ring size n. c* IWI
Academic Press. Inc.

1. hm0DUcTI0~

Consider a ring of n processors, distinguished by unique identification numbers.
In general it is assumed that the size n of the ring is not known to the processors.
There is no central controller. The problem is to design a distributed algorithm for
finding the processor with the highest number, using a minimum number of
messages. The elected processor can act as a “leader” (central controller). Every
processor (possibly several or all processors simultaneously) can start the “elec-
tion,” and every processor has to use the same algorithm. We further assume that
the processors work fully asynchronously and cannot use clocks and/or timeouts.
(Frederickson and Lynch [113, and Vitanyi [21] analysed the case where this
strict assumption of asynchronicity does not hold and show that in that case a
significantly smaller number of messages is needed, if one is willing to spend con-
siderably more time.) This latter assumption allows us to assume that the algorithm
is message-driven: except for the initialisation of an election, a processor can only

*This work was supported by the Foundation for Computer Science (SION) of the Netherlands
Organization for Scientific Research (N.W.0).

97
0022-0000/9 1 53.00

Copyright 0 1991 by Academic Press. Inc
All rights of reproductmn in any form reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81940863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

H. L. BODLAENDER

Algorithm Average number Worst-case number
of messages of messages

Le Lann (1977)
Chang & Roberts (1979)
Peterson (1982)
Dolev, Klawe & Rodeh (1982)

n2 n2
nH, 0.5n2

1.44n log n
1.356~~ log n

FIG. 1.1. Election algorithms for undirectional rings.

perform actions upon receipt of a message. We also assume that there are no faulty
processors and no faults in the communication subsystem.

The leader-finding or “election” problem has received considerable attention,
after it was proposed by Le Lann [15] in 1977. It has been studied for unidirec-
tional rings as well as for general, bidirectional rings. Figures 1.1 and 1.2 summarize
the solutions presently known for both cases, together with the worst case or
average number of messages required for each algorithm. (All logarithms are taken
to the base 2.)

For bidirectional rings we assume a global sense of orientation; i.e., each
processor knows the left and right direction on the ring. This only strengthens our
lower bound results. For most of the bidirectional algorithms of Fig. 1.2 this
assumption is unnecessary.

There are some lower bounds known for the election problem on a ring. Burns
[6 J showed a lower bound of an log n messages for the worst-case for bidirectional
rings. This lower bound was improved to $nH, in [4],’ Pachl, Korach and Rotem
[17] proved a lower bound of nH,, x 0,69 n log n on the average number of

Algorithm

Gallager et. al. (1979)
Hirschberg & Sinclair (1980)
Burns (1980)
Franklin (1982)
Korach, Rotem & Santoro (1981)

Santoro, Korach & Rotem (1982)
Bodlaender & van Leeuwen (1985)

Van Leeuwen & Tan (1985)
Moran, Shalom & Zaks (1985)

Average number Worst-case number
of messages of messages

(prob.) 0.70..nH,
see also [14]

(det.) 0.70..nH,,
see also [14]

5nlogn
8n log n
3nlogn
2n log n

(prob.) 0.5nZ

1.89nlogn
(det.) 0.25n2

1.44n log n
1.44n log n

FIG. 1.2. Election algorithms for bidirectional rings.

’ H. is the n th harmonic number, i.e., H, =x;=, (l/n) z 0.69 log n.

DECENTRALIZED EXTREMA-FINDING 99

Problem

Every processor must know the
maximum.
One or more arbitrary processors
must know the maximum.
The maximum must know it is the
maximum.
One processor must declare itself
as a leader.
One processor must declare itself
as a leader, and all processors
must know the id of the leader.

Unidirectional

L $n(n t 1)

5 1.356nlogn + O(n)

z $(n t 1)

< 1.356nlogn + O(n)

_> +(n + 1)

Bidirectional Bidirectional i
------A

Q(n*) Q(n’) I
5 1.356nlogn $0(n) 5 1.356nlogn $0(n) /

Q(n*) Q(n*)

< 1.356nlogn + O(n) ’ < 1.356nlogn + O(n) j

Q(n”) Q(n”) I I

-i

FIG. 1.3. General bounds for the number of messages for problems that have to be solved in time
Gn.

messages required by a unidirectional algorithm (hence the Chang-Roberts
algorithm is optimal with respect to the average number of messages) and a lower
bound of $n log n + O(n) on the average number of messages for bidirectional rings.
For the case that the size of the ring n is initially known to the processors, they
proved lower bounds of (6/5 log 5) n logn + O(n) and an logn + O(n) on the
worst-case number of messages for unidirectional rings and for bidirectional rings,
respectively. Recently, Duris and Galil [9] proved Q (n log n) lower bounds for the
average number of messages for rings with known ring size. Very recently, these
lower bounds were improved in [S] to fn log n for the unidirectional case, and
0.173 n log n for the bidirectional case.

For the synchronous case, Frederickson and Lynch [111 prove a lower bound
of f n log n + O(n) on the worst-case number of messages for (bidirectional)
comparison algorithms (a comparison algorithm uses only mutual comparisons
between identification numbers (= , #, < , > , < , >,)), and for (bidirectional)
algorithms, that run in time, bounded by some constant t, on all rings with size n.
This lower bound is also valid for the asynchronous case: every algorithm that runs
on a asynchronous ring can also run on a synchronous ring, and the time the
algorithm uses is bounded, for instance, by the number of messages that is sent.

This paper is organized as follows. In Section 2 we give some preliminary
definitions and results. In Section 3 we relate the worst-case number of messages
for arbitrary (asynchronous) algorithms to this number for (asynchronous) com-
parison algorithms. Our results and proof techniques that we use in this section are
very similar to results proven by Frederickson and Lynch [ll] for the synchronous
case. The results of Section 3 will be used in Section 4 to answer a question, posed
by Korach, Rotem, and Santoro in 1981 [131, whether algorithms that use time n,
have to send a quadratic number of messages. The answer will be positive or
negative, depending on the precise assumptions made about whether we want to
find the maximum or whether we want to find a leader (which does not have to be

100 H.L.BODLAENDER

the maximum) and which processors have to “know” the maximum or leader after
completion of the algorithm. In Fig. 1.3 the results of Section 4 are summarized. In
Section 5 we consider the case where the size of the ring n is initially know to the
processors for unidirectional rings. We improve a result of Pachl, Korach, and
Rotem [171 and show an 0.689 n log n lower bound on the worst-case number of
messages for rings with known ring size. We also give a in log n lower bound on
the average number of messages for rings with known ring size, for comparison
algorithms only.

2. DEFINITIONS AND PRELIMINARY RESULTS

Pachl, Korach, and Rotem [17] introduced the notion of full-information algo-
rithms (for unidirectional rings). In full-information algorithms, when a processor
sends a message, it sends everything it knows. In this way, algorithms have to
specify only when to send (and no longer what to send). Every algorithm A
corresponds to an “equivalent” full-information algorithm A’: if during execution of
algorithm A’, a processor p receives a message s from a neighbouring processor, p
can decide from its own knowledge, the information that is contained in the message
s, and the direction from which it received s, whether or not it would have sent a
message on the corresponding moment during execution of algorithm A. A and A’
use the same number of messages (although messages sent by A’ can be con-
siderably longer than messages sent by A) and the same time. (We assume that in
one time unit each processor can send one message. We ignore the time used for
calculations in processors.) We also assume that identification numbers are chosen
from 2, the set of integers. N+ denotes the set of positive integers. R+ denotes the
set of positive real numbers.

We will first consider unidirectional full-information algorithms. In a unidirec-
tional full-information algorithm, the “knowledge” of a processor consists of its
identification number (abbreviated: its id) and the id’s of a number of processors
(initially zero) “before” it on the ring. Thus, we may assume, that when a processor
sends its “knowledge,” it does this by sending a string of identities (see also [17]).
So, if a processor with identification number id, receives a message (id, . + .id,),
then either it sends a message (id, . . . id, id,) to the next processor, or it does
nothing. If a processor id, receives a message (id, . . . id,) and id, = id,, then it
knows the id of every processor on the ring. It depends on what exactly we want
the algorithm to do whether we have to send some more messages. If we want an
arbitrary processor to know the maximum, then we are done. If we want that the
processor whose id is the maximum to become aware of this fact or if we want
every processor to know the maximum, then some extra messages may have to be
sent. In both cases, it is not difficult to find the most eficient way to finish the
algorithm, and at most n extra messages in total have to be used. We therefore only
consider messages with length <n = number of processors on the ring.

DECENTRALIZED EXTREMA-FINDING 101

DEFINITIONS. (i) Let XG Z. D(X) is the set of finite, non-empty sequences of
distinct elements of X, i.e.,

D(X)= {(Sl ..*S,)(k>l, l<i<kaSiEX; i#j*.!?;#Sj}.

(ii) D = D(Z).
(iii) Let s E D. len(s) is the length of s, i.e., len((s, . . sk)) = k.
(iv) Let s E D. C(s) is the set of cyclic permutations of s.
(v) Let s, t E D. t is a subsequence of s, if there are U, u E D u {E} (E is the

empty sequence), with s = utv.
(vi) For s E D, E c D, let N(s, E) = 1 {t E E 1 t is a subsequence of an element

of W)l.

DEFINITION. Let E G D. E is exhaustive, iff

(i) Vt,uED:tuEE=>tEE
(ii) VIED: C(s)nE#$3.

Theorem 2.1 is a minor extension of a result of Pachl, Korach, and Rotem [171.
We say that a ring is labeled with t E D, if the ring has len(t) processors with conse-
qutive identities t, , t,, tlenc,).

THEOREM 2.1 [17]. Let A be a (unidirectional) full-information algorithm. Let
E = (t E D (a message t will be transmitted when A executes on a ring labeled with t).
Then

(i) E is exhaustive

(ii) A requires exactly N(s, E) messages with length Glen(s), when executed
on a ring labeled s (and possibly some extra messages with greater length).

Conversely every effective computable (i.e., recursive) exhaustive set E c D
corresponds to a maximum finding algorithm; namely, use the full information
algorithm that sends a message if and only if it is an element of E.

An algorithm is said to be a comparison algorithm iff no other operations on the
id’s are used except mutual comparisons (= , # , < , > , <, 3). We now give the
corresponding notion for sets.

DEFINITION. Let s, t E D. s = t (s and t are order equivalent), iff len(s) = len(t) and
Vi,j, 1 < i,j<len(s): si<sjo tic t,.

DEFINITION. Let E E D. E is comparison-based, iff Vs, t E D: s = t =S
(sEEotEE).

102 H. L. BODLAENDER

DEFINITION. Let E c D. E is comparison-exhaustive, iff

(i) E is exhaustive

(ii) E is comparison-based.

THEOREM 2.2. Let A be a (unidirectional) full-information algorithm, corre-
sponding to a comparison algorithm. Then E = (t E D 1 message t will be transmitted
when A executes on a ring labeled t > is comparison-exhaustive.

Again, conversely, effective computable comparison-exhaustive sets E c D
corresponds to comparison maximum finding algorithms.

The notion of full information algorithms can be extended to bidirectional algo-
rithms. Our notion of a bidirectional full-information algorithm is very similar to
the notion of free algorithms of Frederickson and Lynch [ll]. (Free algorithms
run on bidirectional synchronous rings.) In bidirectional algorithms the behavior of
a processor does not necessarily depend fully on the id’s of the processors in the
neighbourhood it knows, but it can also depend on the order in which it received
messages from its neighbours, etc.

DEFINITION. Let XE Z. Db(X) is the smallest set of strings, such that

(i) idEX=> (id)EDJX)

(ii) idEX, k>,l, {s,,...,sk}~Db(Qr (d,,...,d,}c(Z,r}=>((id), ((d,,s,),
(4,4 ..-, (4, s,J > 1 E DdJ3.

We abbreviate DJZ) as D,.

The information that a certain processor has on a certain moment during execu-
tion of a bidirectional full-information algorithm can be represented by an element
of Db. For instance, read the string ((id), ((/, sr), (r, sz))) as: my own identifica-
tion number is id, the first message I received came from my left neighbour and
contained information s,; the second and last message I received came from my
right neighbour and contained information s2.

So if a processor sends a message, it sends all its information, that is, an element
of D,. If a processor p with information ((id), ((dl, sl), (dk, sk))) receives a
message s, its new information becomes ((id), ((d,, s,), (dk, sk), (dk+l, s))),
with dk+l= I if the message came from p’s left neighbour and dk+ 1 = r, if the
message came from p’s right neighbour.

Now every bidirectional full-information algorithm corresponds to a pair (L, R),
L, R subsets of D,. L corresponds to the messages that are sent to left neighbours,
R corresponds to the messages that are sent to right neighbours, in a manner
similar to the undirected case. Note that a message that is sent to both neighbours
will be a member of L n R. We will not give a bidirectional variant of the notion
of exhaustiveness.

DECENTRALIZED EXTREMA-FINDING 103

DEFINITION. Let s E D,. s” is obtained by taking the successive integers that
appear in s, ignoring other characters:

- if s is of the form (id), with id E Z, then S = id

- if s is of the form (id, ((d,, s,), (d,, sz), (dk, So))), then S= id 0 S, 0 S2 J
. OS, (where a, . ..a.,ob, . ..b.=a, . ..a.bl . ..b.).

DEFINITION. Let s, t E D,. s E t (s and t are order equivalent), iff len(?) = len(T)
and Si < s”, 9 ii < ii for all i, j, 1 < i, j d len(s). (5, is the ith integer in the string 5.)

DEFINITION. Let s, t E D,. s 0 t (s and t are equally typed), iff

(a) s and t are both of the form (id), with idEZ, or
(b) there exists a k E Z and d, , dk E (I, Y}, such that

(i) s is of the form (id,, ((d,,s,), (dk,sk)));

(ii) t is of the form (id,, ((d,, tI), (dk, tk)));

(iii) For all i, 1 < if k, si 0 ti.

We call a set E E D, comparison based, iff for all s, t with s Cl t and s z t:
s E E== t E E. Similar to the undirected case one has:

THEOREM 2.3. Let A be a bidirectional full-information comparison algorithm.
Let L, R c D, be the sets of all messages that could possibly be sent by algorithm A
to left and right neighbours, respectively. Then L and R are comparison based sets.

3. ARBITRARY VERSUS COMPARISON ALGORITHMS

In this section we relate the worst case number of messages needed in arbitrary
and comparison algorithms. The results and proof techniques are very similar to
results, proven by Frederikson and Lynch [111 for the synchronous case. In the
proof we will use a well-known Ramsey theorem (Theorem 3.1). We first consider
the unidirectional case.

DEFINITION. For n E N + and a set A, let P,(A) denote the collection of subsets
of A with cardinality n, i.e., P”(A)= {X~Allx(=n).

THEOREM 3.1 (Ramsey’s theorem, see, e.g., [l]). Let A be an infinite set,
k,nEN+, and CI, Ck a partition of P”(A). (U:=, Ci=P”(A), i#j*
C, n C, = @). Then there exists an infinite homogeneous subset Bc A, i.e.,
Ii: P”(B) c C,.

104 H.L.BODLAENDER

DEFINITIONS. (i) Let Er D be exhaustive, and let A E 2, n 6 N+. We let
E(n, A) denote the set of all strings in E with elements in A and length at most n,
i.e., E(n, A) = (s6 En D(A) 1 len(s) < n}.

(ii) Let nEN+. We fix an enumeration of all permutations of the set
(1, ..*, n}, denoted by 711, n;, rc;!.

(iii) Let XG Z, n = (XI, and 1 ,< i< II !. We let z;(X) denote the string,
obtained by placing the elements of A’, in the order, prescribed by rt;, i.e.,
A;(X) E D(X); X;(X) = II;.

THEOREM 3.2. Let E c D be exhaustive. There exists a collection of infinite sets
A,, A,, A,, with

(i) A,=Z
(ii) tln~N+: A,zA,+,
(iii) Vn E N +: E(n, A,) is comparison based.

Proof We use induction to n. First note that E contains every string (v), u E Z.
(We use that E is exhaustive.) So E(1, Z) = E(1, A,) is comparison based.

Now let an infinite set A, be given, with E(n, A,) comparison based. We will now
show that A,, 1 can be chosen such that it fulfils the requirements. With induction
we define a row of infinite sets B;+‘, B;n”+‘lJ!, as follows:

- B;;+‘=A,.
- Let with induction an infinite set BJ’+l be given. Let C1 =

{,,Pn+l(Bi”+‘)lnr=ll(X)~E} and Cz= {X~P”+‘(Bi”+‘)Jni”=,‘(X)~E}. Ramsey
theorem 3.1 with k = 2 gives that we can choose By:; such that:

(i) BT:: c Bin+’
(ii) BJ’:,’ is infinite

(iii) P”+‘(BJ’:,‘) E C, or P”+‘(Bj’:r) G Cz.
Finally choose A, + , = B&++‘l,!. It is obvious that A, + i is infinite and A,, I> A, + 1.

Now suppose sl, s2 E D(A,+ 1) and len(s,) =len(s,) <n + 1 and s, ES~. If
Ien in, then s, E Eo s2 E E, because A, 2 A,, i and E(n, A,) is comparison

II+1 based. Now suppose len(s,) =n + 1. There exists a unique rrk , with
SI~7ra;+‘rs,. Let S1, S, be the sets of integers, appearing in s,, s2, respectively
(St= (id, . . . id,,) * Si = { idi, id,}), S, , S2 E B[I+ ‘. The construction of B;+ ’
shows that ~;+‘(S,)=S,EE~S,EC,~P”+‘(B;+‘)EC,~S~EC~O”~+~(S~)
= s2 E E. So again s, E Eo s2 E E, This shows that E(n + 1, A,, 1) is comparison
based. 1

THEOREM 3.3. Let E E D be exhaustive. Then there exists a comparison-
exhaustive set Fc D, such that

Vn:max{N(s, F)~sED, len(s)=n}<max{N(s, E)[sED, len(s)=n}.

DECENTRALIZED EXTREMA-FINDING 105

Proof Let an exhaustive set E c D be given, and let the sets A,, A,, A I,
as implied by Theorem 3.2, be given. Now choose F= {s E D(3t~ EaD(A,,,,,,):
t = s >. F is comparison-exhaustive:

(i) Let t,u~D and turf. Then 3s~D: 3u~D:su~EnD(A,,,,,,,)~sv=
tu A len(s) = len(t) =- 3s E En D(A,,,(,J: s = t - t E F.

(ii) Let SE D. One can choose UE D(A ,en(sj), with u = s. (Choose len(s) dif-
ferent elements from Alencsj and place them in the right order.) Now C(o) n E # a.
Let w E: C(u) n E. We can find a f E C(s), with t = w. (Use the same cyclic permuta-
tion that is necessary to obtain w from u to obtain t from s.)

So trw and WED(A ,en(,j) n E. This implies t E F and C(s) n F# @.

(iii) Let s, tED and s-t. Then

s E Fo 3~: u E s and u E D(A,,,(,,)

o 3~: u E t and u E D(A,,,(,,)

otEF.

This concludes the proof that F is comparison-exhaustive.

Finally we will show that for all n:

max(N(s, F)JseD, len(s)=n}Qmax(N(s, E)Js~D,len(s)=n}.

Let n be given. Let SE D, with len(s) = n. There exists a t E D(A,), with t ES. It
follows directly from the exhaustiveness of F that N(s, F) = N(t, F). Further, for
every subsequence t, of t: t, E Eo tO~ F (use that t, E D(A,) c D(A,,,,,J); hence
N(t, F) = N(t, E). So for all s E D, len(s) = n there exists a t E D, len(t) = N, with
N(s, F) = N(t, E). So

max{N(s, F)(sED, len(s)=n} <max{N(s, E)JseD, len(s)=n}. b

The following is an algorithmic variant of Theorem 3.2.

THEOREM 3.4. Let A be a (unidirectional) extrema finding algorithm for rings.
There exist algorithms B,, B,, Bi, . . . for every i E N + :

(i) algorithm Bi works correctly on every ring with size d i.

(ii) algorithm Bi+ 1 is an extension of algorithm Bi (i.e., algorithm B,, , does
the first i steps the same as algorithm Bi.)

(iii) Bi is a comparison algorithm.

(iv) For every j< i, the worst case number of messages used by B, on rings with
size j is less than or equal to the worst case number of messages used by algorithm
A on rings with size j.

Proof Let A’ be the full information variant of algorithm A. Let E = {t E D 1 a

106 H. L. BODLAENDER

message t will be transmitted when A’ executes on a ring labeled t}. E is exhaustive
(cf. Theorem 2.1). Let the sets A,, AZ, Ai, . . . be given, as implied by Theorem 3.2.
Now let algorithm Bi be the (full information) algorithm, that sends a message S,
if and only if there is a t-s, with t E D(Ai) n E. We first have to show that Bi
indeed is a comparison algorithm, i.e., that it is computable using only comparisons
whether there exists a t = s with t E D(Ai) n E. Note that if a certain message s is
sent by Bi, then also all messages t, with t = s are sent. Bi can use a list of all per-
mutations of i or fewer elements, and with each permutation rr’, it is stored whether
messages S, with s = rcjk are to be sent or not. For each S, one can find, using com-
parisons only, for which rc$ s E rr{, and then one can look up whether to send s or
not.

It is not difficult to check that (i)-(iv) hold. (Compare the proof of
Theorem 3.2.) 1

Unfortunately, Theorem 3.3 does not imply the following conjecture:

Conjecture. Let A be a (unidirectional) extrema finding algorithm for rings.
There exists a (unidirectional) comparison algorithm B (for the extrema finding
problem for rings) such that for every n, the worst-case number of messages used
by algorithm B on rings with size n is at most the worst-case number of messages
used by algorithm A on rings with size n.

The key difference between this conjecture and Theorem 3.3 is the computability
of F. To let F “yield an algorithm,” it must be effectively computable (i.e., recursive)
whether a given SE D is an element of F or not. This is not necessarily true.
However, the results of this section show that some worst-case lower bound proofs
for comparison algorithms are also valid for arbitrary algorithms. This is when the
fact that the comparison is really an algorithm (that is, effectively computable) is
not used. For instance, a proof can show a lower bound for max{N(s, F) I s E D,
len(s) = n} for all comparison-exhaustive sets, not only for recursive comparison-
exhaustive sets. The results of this section show that this not only implies the same
lower bound on the worst-case number of messages that are sent on rings with size
n by comparison algorithms, but also by arbitrary algorithms.

The results can be generalized to the bidirectional case. A bidirectional variant of
Theorem 3.2 is:

THEOREM 3.5. Let A be a bidirectional full-information algorithm, and let L and
R be the sets of all messages that could possibly be sent by algorithm A to left and
right neighbours, respectively. There exists a collection of infinite sets A,, A,, with

(i) A,GZ
(ii) for all nEN+: A,zA,,l
(iii) for all n E N + and all strings s, t E D,(A,), with s 0 t, S= 7, and len(5) =

len(i)<n, one hassELotEL andsERotER.

ProojI The proof is more or less similar to the proof of Theorem 3.2. We will

DECENTRALIZED EXTREMA-FINDING 107

only stress the differences. As in the proof of Theorem 3.2, we use induction to n.
Where we had to use one “Ramsey-step” for each permutation of n elements in the
unidirectional case (i.e., for each equivalence class of the strings in D, induced by
the equivalence relation -), here we have to use the Ramsey theorem for every
combination of a fype of strings s, with len(Z) = n, together with an ordering of n
elements, i.e., for each equivalence class of the strings in D,, induced by the
equivalence relation Z, where z is defined by

In every “Ramsey-step” we divide the subsets of the current By+’ with the right
cardinality in four classes: those that correspond with messages sent to the left and
to the right neighbours, those that correspond with messages, sent only to the left
neighbour, etc. Now use Theorem 3.1 with k = 4. fl

Similar to Theorem 3.4 one now can prove:

THEOREM 3.6. Let A he a (bidirectional) extrema finding algorithm for rings.
There exists algorithms B,, B,, Bi, . . . with for every i E N + :

(i) algorithm B, works correctly on every ring with size < i

(ii) algorithm Bi+ 1 is an extension of algorithm Bi (on rings with size < i
algorithm B, and B,, I behave exactly the same)

(iii) B, is a comparison algorithm

(iv) for every j< i, the worst case number of messages used by B, on rings with
size j, is less than or equal to the worst-case number of messages used by algorithm
A on rings with size j.

Proof The proof is similar to that of Theorem 3.4. The main difference is that
we can no longer use the set Ai to obtain algorithm Bi, because messages on rings
with size i can have a size much larger than i. Suppose ti is an upper bound on the
number of time steps algorithm A takes on any ring with size i. Note that the size
of the largest knowledge of any processor can at most triple in one time step (that
is, when the processor receives equally large messages from both its neighbours). So
3’1 is an upper bound on the size of the largest message ever used by algorithm A
on rings with size i, and we can use set B,,, to obtain algorithm A,, similar to the
unidirectional case. 1

The same remarks we made about lower bound proofs concerning unidirectional
rings are also valid for bidirectional rings.

For rings with known ring size, one can prove the following result in the same
way as for theorems 3.4 and 3.6.

THEOREM 3.7. For every extrema finding algorithm A for rings with known ring
size n, there exists an extrema finding algorithm B, that uses at most the same
worst-case number of messages as A. If A is unidirectional, then B is unidirectional.

571’42,l.R

108 H.L.BODLAENDER

4. ALGORITHMS THAT USE TIME G n

The (running) time of an algorithm is the worst-case time, if each message can
take at most one time step and the time needed for internal computations is not
counted. In [13] Korach, Rotem, and Santoro posed the question “whether
algorithms with running time of n must have a quadratic number of messages in
their worst case.” The answer to this question depends on what exactly we want the
algorithm to do in time n. There are several possibilities:

(A) every processor must know the maximum (i.e., the id of the largest
numbered node)

(B) there are one or more arbitrary processors that know the maximum
(C) the processor that has the largest id must know that it is the node with

the largest id
(D) exactly one processor must declare itself as a leader

(E) exactly one processor must declare itself as a leader; all other processors
must know the id of the leader.

These five problems are closely related. In Fig. 4.1 it is shown which problems are
subproblems of which other problems. Also, without much difficulty one can show
the following relation:

THEOREM 4.1. If there exists an algorithm that solves one of the five problems
A-E, has a worst-case running time t(n), and uses a worst-case number of messages
m(n), then for each of the other four problems there exists an algorithm that has a
worst-case running time of at most t(n) + 2n and uses a worst-case number of
messages of at most m(n) + 2n.

Proof: Suppose we have an algorithm that solves (B). Every processor that
knows the maximum sends a message (final, maximum} to its neighbour.
Processors that did not know the maximum forward this message. Within n time
steps, every processor knows the maximum (A) and (C). If the processor with the
maximum id declares itself leader, we have also solved (D) and (E).

A

c/l E

\/
B D

FIG. 4.1. The partial ordering of the problems A-E. A line indicates that the lower problem is a
subproblem of the upper problem.

DECENTRALIZED EXTREMA-FINDING 109

Problem Unidirectional Bidirectional

A 1 $(n t 1) fVnZ)
B 5 1.356nlogn + O(n) 5 1.356nlogn + O(n)
C 2 in(n t 1) fl(4
D 5 1.356nlogn + O(n) 5 1.356nlogn + O(n)
E 2 $t(n + 1) Q(n”)

FIG 4.2. Bounds for the worst case number of messages for algorithms that use time $ n.

Suppose we have an algorithm that solves (D). The leader can initiate a message
that makes a full tour around the ring and determines the maximum id. The
resulting algorithm uses n extra time steps, and solves (B). To solve the other
problems, use the transformation given above. All the other cases now follow
directly. M

In Fig. 4.2 we summarize the bounds we prove on algorithms that use time d n.

THEOREM 4.2. Every unidirectional algorithm for problem C that uses time n.
must use at least $n(n + 1) messages in the worst-case.

Proof. If the processor with the largest id must be aware of the fact that it has
the largest id after time n, then it must have sent a message to its successor, and
this message must have been propagated around the whole ring, until it returned
to the processor that originated the message. The exhaustive set, induced by the
algorithm must therefore contain all messages sl, s,, with Vi, 2~ i<n: s, as,.
(This means essentially that every message, used by the Chang-Roberts algorithm
must be used here too.) Now this implies a worst case lower bound of in(n t 1)
messages on rings with size n. (Consider rings labeled with n, n - 1, n - 2, 2, 1.
Compare this result with the results of Chang and Roberts [7].) 1

THEOREM 4.3. For every bidirectional algorithm for problem C, that uses time
dn, there is a CE Rf, such that the algorithm uses at least cn2 messages in the worst-
case.

Proof: Let A be a bidirectional algorithm for problem C that uses time <n on
rings with size n and suppose there does not exist a c E R +, such that the algorithm
uses at least cn2 messages in the worst-case (on rings with size n). Without loss of
generality we can assume that A is a full-information algorithm. We first assume A
is a comparison algorithm.

Let rings r“,’ be defined as follows: the size of a ring rk,’ is kl, and the id of the
ith node of rk,’ is

(1 ~iikkl).

110 H.L.BODLAENDER

So, for instance, the processors of r3-5 have successive id’s:

12 9 6 3 15 11 8 5 2 14 10 7 4 1 13.

Note rk*’ consists of k pieces of 1 nodes. Each piece consists of a decreasing row of
I- 1 id’s; the last id is larger than every other id in the piece. The pieces are-in
a certain sense-mutually placed in a decreasing order: the ith processor in thejth
piece has a larger id than the ith processor in the (j+ 1)th piece.

We now suppose the ring is fully synchronous: all message transmission times are
equal and we ignore time needed for calculations in processors. This means, that
when a processor sends a message on a time step t + 1, this message can contain
the id’s of at most 2t + 1 processors: the id of the processor itself, the id’s of t
processors immediately to the left of the processor, and the id’s of t processors
immediately to the right of the processor. This also means that, when for two
processors pO, p1 the strings consisting of these 2t + 1 id’s are equally ordered, we
may assume that p. sends a message on time step t + 1 if and only if p1 sends a
message on time step t + 1. (We use that the ring is fully synchronous and the
algorithm is a comparison algorithm.)

Let @(k, I) be the smallest number t, such that on the ring rk,’ all messages that
are sent by the full information algorithm A after time t (under the assumption of
synchronicity) contain the value of the maximum (and, of course, many other
data).

CLAIM 4.3.1. VI: 3c,: Vk: @(k, I) d cl.

Proof: Suppose not. Let 1 be given, such that Vc: ilk: @(k, Z) > c. Now we first
claim that on every ring rk,’ at least the first LikZJ time steps messages are sent that
do not contain the maximum identity. This we can see by taking k’ such that
@(k’, 1) > LikZJ. On the ring rk’-’ on each of the first LaklJ time steps there are
messages sent that do not contain the value of the maximum (= k’l). Now use that,
for each part of the ring rk’,’ with length 6 2L$kZJ + 1 that does not contain the
maximum id, there exists an equally ordered part of the ring rk-’ that also does not
contain the maximum id of this ring (= kl). So on rk,’ the first LaklJ time steps
there are messages sent that do not contain the maximum id.

Finally we use, that for each part of rk,’ with length <2LbkfJ+ 1 that does not
contain the maximum id, there are at least $k + 0(1) equally ordered parts. So on
each of the first LikZJ time steps there are at least $k + O(1) messages sent; so in
total at least approximately i k21 messages. When we take I as a constant, and let
k grow to infinity, we see that the algorithm costs a quadratic number of messages
in the worst case; contradiction. 1

As the algorithm is “message-driven” (a processor can only send a message upon
reception of a message, except for the first time step), each message m, except those
sent on the first time step, has a “predecessor” message, that is, the message that
“triggered” the processor to send message m. The processor that sent the message

DECENTRALIZED EXTREMA-FINDING 111

on time step 1, obtained by taking recursively the predecessor message of m is
called the originator of m; the successive messages between the originator of m and
m we call the chain of messages of m.

Now look at the last message m, that arrives at the processor with the maximum
id, and look at its originator and chain of messages. Claim 4.3.1 shows that the
distance between the originator and the processor with the maximum id is at most
cI on a ring rli,‘. As the processor pmax with the maximum id must know all ids of
all processors after time step n, there are basically the following possibilities:

- Pmax is the originator of m, the chain of messages of m “goes around the
whole ring”: each processor sends one message of this chain; the successive
messages have either travelled around the whole ring in positive, or in negative
direction. (We say “m has travelled around the ring in positive/negative direction”)
(see Fig. 4.3a).

- the originator of m is pm,, or a processor with distance < c, to pmax ; the
chain of messages goes from the originator to a node, approximately halfway
around the ring and then returns. So m can inform pmax of the id’s of rt $n + c1
processors, all on approximately the same half of the ring (seen from p,,,). Some
other messages(s) must inform prnax of the other ids (see Fig. 4.3b).

CLAIM 4.3.2. For each 1, there are only finitely many k such that the last message
m, that is received at the maximum on ring rk,’ has travelled around the ring in
negative direction.

Proof Suppose not. For a ring rk,’ there are 4k + 0(1) pieces, that are equally
ordered to the piece, consisting of the maximum and the LiklJ ids of the
processors before the maximum. We again use that A is comparison based, hence
if on rk,’ the last message received at the maximum has travelled around the ring
in negative direction, then on each of the first L&kl_j time steps at least ik + 0(1)
messages are sent, so in total at least approximately %k21. Now we can keep 1 fixed,
and let k grow to infinity: the algorithm uses a quadratic number of messages in the
worst-case; contradiction. 1

CLAIM 4.3.3. For each 1, there is at least one k such that the last message m that
is received at the maximum on ring rk,’ has travelled around the ring in positive
direction.

FIGURE 4.3.

112 H.L.BODLAENDER

Proof: Suppose not. Then there are 1 and k’, such that for all k > k’ the chain
of messages of m goes from the originator to a node approximately halfway around
the ring and then returns. Because the maximum must be informed of the id’s of all
nodes on the ring, the turning point has a distance of ikl+ O(c,). Further, notice
that if a message chain goes halfway around the ring and then back to the maxi-
mum on a ring r “s’, then a messag e chain, with a similar length and behavior is sent
on P’, for all m > k. So when k grows to infinity, the number of messages sent
grows at least linearly to k21/c,: the algorithm uses a quadratic number of messages
in the worst-case; contradiction. 1

Now consider rings rl,‘, i.e., rings labeled 1 l- 1 I- 2... 2 1. The processor labeled
1 must send a message in positive direction, this message will continue to travel in
this direction, for at least the first ri11 time steps. (This follows from
Claim 4.3.3-the fact that the algorithm is a comparison algorithm and the fact that
during the first rfrl time steps, processors cannot distinguish between the cases
k = 1 and k > 1.) Because the algorithm is a comparison algorithm, this means that
at least 2+1- 1 +l-2+ ... +r$ll messages z zl’ messages are sent on the ring
r’*’ for every 1. Hence the algorithm sends a quadratic number of messages.

We now have shown that every comparison algorithm for problem C that uses
time Q n must use a quadratic number of messages. Because we have never used in
our proof that the way in which processors decide to send or not to send a certain
message must be by an algorithm in the processors, i.e., must be effectively com-
putable by a processor, the results of the previous section show that the obtained
result is also valid for arbitrary algorithms. 1

The bounds proven in Theorems 4.2 and 4.3 are of course also valid for problem
A: it contains problem C as a subproblem. Theorem 4.4 shows that these bounds
are also valid for problem E.

THEOREM 4.4. Every algorithm for problem E that uses time < n must use at least
$n(n + 1) messages in the worst-case for unidirectional rings or Q(n*) messages in the
worst-case for bidirectional rings.

Proof: First suppose we have a comparison algorithm for problem E that uses
time <n, but also uses a smaller number of messages. We will derive a contradic-
tion with Theorem 4.2 and Theorem 4.3 for the unidirectional and the bidirectional
case, respectively. We also assume the algorithm is a full-information algorithm. We
claim that when a processor knows what id the leader has, then it must know the
id’s of all the processors. Suppose this is not the case: a processor p decides that the
processor with identification number id is the leader (possibly p itself is the leader),
and the information of p does not contain all id’s of all processors. Suppose p
knows the id’s of k successive processors. We now define a ring r’ with 2k nodes.
The first k processors have the id’s of the successive processors p knows the id of,
the second k processors have id’s, such that this part of the ring is equally ordered
to the first part of k id’s. Now the processor pO with the same id as p, and the pro-

DECENTRALIZED EXTREMA-FINDING 113

cessor pi with distance k to it can behave similarly (the algorithm is a comparison
algorithm), so it is possible that p0 and pi will both decide on the id of the leader,
but then these id’s will not be the same; contradiction.

Because when a processor knows the id’s of all the processors it also knows the
maximum id, the full-information comparison algorithm can solve problem A in the
same time and with the same number of messages. This contradicts Theorem 4.2 or
Theorem 4.3. The results of Section 3 show that the obtained bounds are also valid
for arbitrary algorithms. 1

We assume that the number of bits, needed to express an id is m.

THEOREM 4.5. There exists a unidirectional algorithm for problem B that uses
time n, and < 1.356 n log n + O(n) messages in the worst-case, each consisting qf
O(m + log n) bits.

Proof Basically we use the algorithm of Dolev, Klawe, and Rodeh [S]. To
each message we add two fields: one contains the id of the originator, the other the
current maximum known id. If a processor id receives a message (id,,, id,,,, other-
data}, and id #id,,, then it uses the field “otherdata” to execute the algorithm of
[IS]. If this algorithm decides to let processor id send a message {newotherdata),
then instead it sends a message {ido,, max(id,,,, id), newotherdata). (Initialisation
messages of the algorithm of [S] {data} are changed in {id, id, data}.) If a pro-
cessor id receives a message (ido,, id,,,, otherdata} and id = id,,, then id,,, is the
maximum id of all the processors. It is easy to see that the algorithm works
correctly, uses time n, does not use more messages than the algorithm of [S], and
has a message size of O(m + log n) bits. 1

Note that the use of the algorithm of [8] is not essential in the proof. For
instance, when a better upper bound is found for unidirectional extrema finding,
then this upper bound is also valid for problem B and algorithms that use time n.

THEOREM 4.6. There exists a unidirectional algorithm for problem E that uses
time n and 1.356 n log n + O(n) messages in the worst-case.

ProojI Use the full-information variant of the algorithm of Dolev, Klawe, and
Rodeh [S], during the first n time steps. When a processor receives a message that
contains its own id in the first field, then it knows the successive id’s of all the pro-
cessors; hence it can decide what processors also receive messages that contain their
own id in the first field and whether it has the largest id of this set of processors.
If this is the case, then it declares itself as a leader. In this way in time n exactly
one processor will declare itself as a leader; the algorithm does not use more
messages than the algorithm of [8]. 1

Note that the size of the messages becomes as large as O(nm) bits. It is an open
question whether there exists an algorithm for problem E that uses time n, and
O(n log n) messages of O(m + log n) bits each in the worst-case.

114 H.L.BODLAENDER

5. LOWER BOUNDS FOR ALGORITHMS ON RINGS WITH KNOWN RING SIZE

In this section we consider the extrema-finding problem on rings “that know the
ring size”; i.e., the number of processors n is initially known to the processors.
For this problem a worst-case lower bound of (6/5 log 5) n log n+ O(n)%
0.51 n log n + 0(n) messages was proved by Pachl, Korach, and Rotem [173. We
will improve on this result by looking at comparison algorithms.

To start our analysis, again we replace an algorithm by its full-information
variant. Notice that if a processor receives a message with length n - 1 then it
knows all the id’s of the processors, so it also knows the maximum. So now the
notion of exhaustiveness is replaced by the following definition:

DEFINITION. Let ES D. E is exhaustive for known ring size n, iff

(i) Vt,uED: tuEE*tEE
(ii) Vs~Dwithlen(s)=n:3t~C(~):3u,v~D:t=~u,len(u)=n-l,len(u)=l,

u E E.

DEFINITION. Let E c D. E is comparison-exhaustive for known ring size n, iff E
is exhaustive for known ring size n and E is comparison based. Again we let iV(s, E)
denote 1 (t E E(t is a subsequence of an element of C(s)} (. We let K(n) (Fb(n))
denotes the worst-case number of messages sent by the “best” algorithm
(comparison algorithm) for rings with known ring size n.

DEFINITION. K(n) = min(max,, D, ,en(sJ = n N(s, E) 1 E c D is exhaustive for known
ring size n}.

Kcb(n)=min{max,.,,,,,(,)=. N(s, E) 1 E c D is comparison exhaustive for
known ring size n].

THEOREM 5.1. (i) K(n), KCb(n) are lower bounds for the worst-case number of
messages sent by unidirectional algorithms for known ring size n.

(ii) K(n) = Kcb(n).

Proof (i) This follows from the definitions. Compare with Section 2.
(ii) Compare with Theorems 3.2 and 3.4. 1

LEMMA 5.2. K(5) = Kcb(5) 2 12.

Proof Let E be comparison exhaustive for known ring size 5. If (1,2) and
(2,l)sE then N(L2,3,4,5),E)>12: Cl>, (2), (3), (4), (5), (42h
~2~3)~ c3,4h ~4~5) (5,1w (use that E is comparison based), and at least
one string with length 3 and one string with length 4, that are substrings of an
element of C((1,2, 3,4, 5)), must be an element of E. Without loss of generality
suppose (1,2)~E, (2,l)gE. If (1,2,3)~E then N(<1,2,3,4,5))>13. (Use

DECENTRALIZED EXTREMA-FINDING 115

again that E is comparison based.) So assume (1,2, 3) $ E. There must be a
substring with length 3 of an element of C((1,2, 3,4, 5)) an element of E, so
(4,5, ~)EE. Also (1,5,4)~E. (Use ring (5,4,3,2, 1). (3,2, l)$E, because
(3,2,1)~E*(3,2)~E*(2,1)~E,etc.)

Now consider the ring labeled (3, 5, 2, 4, 1). (3, 5, 2) E E, (2, 4, 1) E E and
(5,2,4)$E, (4,1,3)$E, (1,3,5)$E. This means that (3,5,2,4)~E or
(2,4, 1, 3) E E. Because (3, 5, 2,4) = (2,4, 1, 3), both are elements of E. Hence
N((3,5,2,4,1),E)~5+3+2+2=12.Somax,..,,,(,,=,N(s,E)312. 1

LEMMA 5.3. Vk, nE N+: Kch(kn) >, kKch(n) + nK”(k) - kn + k + n - 1.

Proof. Let 7tn be a permutation of the elements (1, n}, and let rck be a per-
mutation of the elements (1, k}. Let rrk 0 rcn be the permutation of { 1, kn},
defined by

(1 didk-n).

In this way the ring labeled by the successive values of rrkorrn consists of n pieces
of k elements. Every piece of k successive elements is order equivalent to an element
of C(nk); the relative ordering we obtain by dividing the ring in n pieces of k
elements each and then comparing these pieces is given by r?.

We now claim, that for every (full-information) comparison algorithm A the
worst-case number of messages that is sent by A, taken over all rings rckcrc” is at
least k . Kcb(n) + nKcb(k) - kn + k + n - 1. First note that we obtain a correct (full-
information) comparison algorithm for rings with known ring size k, by letting Ak
send a message, iff it has length at most k - 1 and is sent by algorithm A. Hence
A sends at least nKcb(k) messages with length 6 k - 1. It is easy to see that A sends
> n messages with length k. Now, for each rc’, let A”,“’ be the full information
algorithm for rings with size n, that sends a message s= (si, s,) (m <n), iff A
sends a message t = (t,, t,) mk < r < nk with t is a subsequence of an element
of C(rck 0 rt’j!) for certain rc”, and s E (tk, t Zk, t,,, tmk). One can check that A”,”
is a correct algorithm; let the number of messages sent by A”,“’ be c(, then the
number of messages sent by A with length between k + 1 and (n - 1)k (inclusive)
is k . o(- kn 2 kKcb(n) - kn. Finally, for each i, with (n - 1) k + 1 Q i < nk - 1, A will
send at least one message with length i.

The total number of messages is hence at least kKcb(n) + nKcb(k) -nk + k +
n+l. I

A similar, but weaker result was proved by Pachl, Korach, and Rotem [17].
From Lemma 5.3 it follows that for any fixed k 2 1 and infinitely many n,

K(n),(K(k)-k+l)nlogn+O(n), /
klogn

So now we have proved:

116 H.L.BODLAENDER

COROLLARY 5.4. There are infinitely many n, for which the worst-case number of
messages, sent by any unidirectional algorithm on a ring with known ring size n, is at
least (8/5 log 5) n log n + O(n) w 0.689 n log n + 0(n).

This result improves the lower bound of (6/5 log 5) n logn+ O(n) z
0.51 n log n + 0(n) messages, proved by Pachl, Korach, and Rotem [17], and is
quite close to the best known lower bound for the worst-case number of messages
in the case that the ring size is not known (i.e., nH, z 0.693 n log n + O(n)).

Until recently no results were known on lower bounds for the average number
of messages for algorithms that can use a known ring size. We will prove a result
for comparison algorithms.

LEMMA 5.5. Let E be a comparison exhaustive set for known ring size n. Then,

kin, k#n*(VsED:len(s)=k=>C(s)nE#12().

Proof: Let k (n, k # n, s E D, len(s) = k. Because E is comparison based, we may
assume without loss of generality, that s E D({ 1, k}); i.e., s can be written as a
permutation of the elements { 1, k}. Now label a ring r as

ri = (Si mod k) . z + r.1 $ (1 <i<n).

The size of r is n, and for all t E D, with t as a subsequence of an element of C(r)
and len(t) = k, there is a u E C(s) with t G S. There must be at least one t E E, with
t a subsequence of an element of C(r) and len(t) = k. Now there is a u E C(s), with
t=s, tEE; hence USE, so C(s)nE#fa.) 1

THEOREM 5.6. Let n = l-J;= 1 pi; let pl, pI be prime numbers. For every
unidirectional comparison algorithm A for known ring size n the average number of
messages sent is at least

n.i 1-i -1.
i= I (> Pi

Proof: Let E be the comparison exhaustive set for known ring size n, corre-
sponding to A. We can now use a technique similar to a technique used in [17].

We are going to estimate the total number of messages sent in all rings, labeled
with permutations of (1, n}. The total number of contiguous label sequences of
length k in all these rings is n(n - 1) ! = n ! These can be gathered together in groups
of size k, where every group consists of all the cyclic permutations of one sequence.
If k) n, k # n, then E intersects each of these groups (Lemma 5.5.) So k/n, k # n
implies that there are at least n(n - 1)!/k messages with length k sent.

Furthermore, notice that on any ring, for k, <k, the number of messages with
length kl that are sent is at least the number of messages with length k2 that are
sent. There must also be at least one message with length n - 1 sent.

DECENTRALIZED EXTREMA-FINDING 117

Let M(k) denote the total number of messages sent with length k, over all rings,
labeled with a permutation of { 1, n}. Write f(j) = I-I{= r p,:

k=l j=l k=f(j-l)+l

2 i (f(j)-f(j- lHf& n!
j=l (>

=(j, (l-;)n!)-n!

This means that the average number of messages sent by algorithm A is at least
n’Ci=l (l-(l/Pj))-l. I

COROLLARY 5.7. For every unidirectional comparison algorithm A for known ring
size n = 2’ (I E N) the average number of messages that is sent is at least in log n - 1.

THEOREM 5.8. Let A be a unidirectional algorithm .for known ring size
n = rIf= 1 pi (ply p, prime numbers). There exists an infinite set of labels X in Z,
such that the number of messages sent, averaged over all rings with size n, labeled
with elements of X, is at least

Zf n = 2’ (1 EN), then this average number is at least fn log n - 1.

Proof: One can easily prove a variant of Theorem 3.2 for rings with known ring
size. Now let E be the exhaustive set for known ring size n, corresponding to A,
apply the theorem and choose X= A,. Then use Theorem 5.6 and Corollary 5.7. 1

A stronger version of Theorem 5.8 was recently obtained, using powerful new
techniques and results of extremal graph theory [5,9]. Using more precise
counting arguments, the lower bound can be improved to (1 -E) nH,, for the
average number of messages of unidirectional comparison algorithms (and hence
the worst-case number of messages for arbitrary algorithms) for rings with known
ring size n (n large enough and of the form m !). A similar lower bound of
(4 - E) nH, x 0.346 n log n can be proven for the bidirectional case (see [33).

REFERENCES

1. J. BARWISE, (Ed.), “Handbook of Mathematical Logic,” North-Holland, New York, 1977.
2. H. L. BCIDLAENDER AND J. VAN LEEUWEN, New upperbounds for decentralized extrema-finding in a

ring of processors, in “Proceedings, 3rd Annu. Sympos. on Theoretical Aspects of Computer
Science,” Lect. Notes in Comput. Sci., Vol. 210, pp.1 19-129, Springer-Verlag. New York/Berlin,
1986.

118 H. L. BODLAENDER

3. H. L. BODLAENDER, New lower bounds for distributed leader finding in asynchronous rings of
processors, in “Proceedings, GI-17, Jahrestagung, Informatik Fachberichte, Vol. 156, pp. 82-88,
Springer-Verlag, New York/Berlin, 1987.

4. H. L. BODLAENDER, A better lower bound for distributed leader finding in bidirectional
asynchronous rings of processors, Inform. Proc. Left. 27 (1988), 287-290.

5. H. L. BODLAENDER, New lower bound techniques for distributed leader finding and other problems
on rings of processors, Theoret. Comput. Sci., to appear.

6. J. E. BURNS, “A Formal Model for Message Passing Systems,” Technical Rep. 91, Computer Science
Dept., Indiana University, Bloomington, IN, 1980.

7. E. CHANG AND R. ROBERTS, An improved algorithm for decentralized extrema-finding in circular
configurations of processes, Comm. ACM 22 (1979), 281-283.

8. D. DOLEV, M. KLAWE, AND M. RODEH, An O(n log n) unidirectional distributed algorithm for
extrema-finding in a circle, J. Algorithms 3 (1982), 245-260.

9. P. DURIS AND Z. GALIL, Two lower bounds in asynchronous distributed computation, in
“Proceedings, 28th Annu. Sympos. on Fundamentals of Comput. Sci., 1987,” pp. 326330.

10. W. R. FRANKLIN, On an improved algorithm for decentralized extrema-finding in circular contigura-
tions of processors, Comm. ACM 25 (1982), 336337.

11. G. N. FREDERICK.WN AND N. A. LYNCH, The impact of synchronous communication on the problem
of electing a leader in a ring, in “Proceedings, 16th ACM Sympos. Theory of Computing, 1984,”
pp. 493-503. Revised version “Electing a Leader in a Synchronous Ring” in J. Assoc. Comput. Much.
34 (1987), 98-115.

12. D. S. HIRSCHBERG AND J. B. SINCLAIR, Decentralized extrema-tinding in circular contigurations of
processors, Comm. ACM 23 (1980), 627-628.

13. E. KORACH, D. ROTEM, AND N. SANTORO, A probabilistic algorithm for decentralized extrema-
finding in a circular configuration of processors, Res. Rep. CS-81-19, Dept. of Computer Science,
University of Waterloo, Waterloo, 1981.

14. C. LAVAULT, Average number of messages for distributed leader-finding in rings of processors,
Inform. Proc. Left. 30 (1989), 167-176.

15. G. LE LANN, Distributed systems-Towards a formal approach, in “Information Processing,” Vol. 77
(IFIP) (B. Gilchrist, Ed.), pp. 155-160, North-Holland, Amsterdam, 1977.

16. S. MORAN, M. SCHALOM, AND S. ZAKS, An algorithm for distributed leader finding in bidirectional
rings without common sense of direction (draft), 1985.

17. J. PACHL, E. KORACH, AND D. ROTEM, A technique for proving lower-bounds for distributed
maximum-finding algorithms, in “Proceedings, 14th ACM Sympos. Theory of Computing, 1982,”
pp. 378-382. Revised version, “Lowerbounds for Distributed Maximum-Finding Algorithms,” in
J. Assoc. Comput. Mach. 31 (1984), 905-918.

18. G. L. PETERsON, An O(n log n) unidirectional algorithm for the circular extrema problem, ACM
Trans. Program. Lang. Syst. 4 (1982), 758-762.

19. N. SANTORO, E. KORACH, AND D. ROTEM, Decentralized extrema-finding in circular contigurations
of processor: An improved algorithm, Congr. Numer. 34 (1982), 401412.

20. J. VAN LEEWEN AND R. B. TAN, An improved upperbound for distributed election in bidirectional
rings of processors, Distr. Comput. 2 (1987), 149-160.

21. P. M. B. VITANYI, Distributed elections in an archimedian ring of processors, in “Proceedings, 16th
ACM Sympos. Theory of Computing, 1984,” pp. 542-547.

