339 research outputs found

    A Cross-Mode Universal Digital Pre-Distortion Technology for Low-Sidelobe Active Antenna Arrays in 5G and Satellite Communications

    Get PDF
    A cross-mode universal digital pre-distortion (CMUDPD) technology is proposed here to linearize low-sidelobe active antenna arrays with non-uniform fixed power levels for each branch, which are desired in satellite communications with stringent requirements to minimize interference. In low-sidelobe arrays formed by nonuniform amplitude excitation, conventional digital pre-distortion (DPD) techniques require multiple feedback paths for either one-to-one or average linearization of the PAs, which increases system complexity and is infeasible for large-scale arrays. This is because the power amplifiers (PAs) usually operate in different modes where the supply voltages, bias voltages, and input power levels are different. The proposed CMUDPD method aims at solving this issue by intentionally arranging the PAs to work in different modes but with shared nonlinear characteristics. Based on the nonlinear correlation established among the PAs’ different operating modes, a single feedback path is sufficient to capture the common nonlinearity of all the PAs and determine the parameters of the CMUDPD module. The concept is explained in theory and validated by simulations and experiments using GaN PAs operating with three significantly different output power levels and two orthogonal frequency division multiplexing (OFDM) signal bandwidths

    Modeling and Linearization of MIMO RF Transmitters

    Get PDF
    Multiple-input multiple-output (MIMO) technology will continue to play a vital role in next-generation wireless systems, e.g., the fifth-generation wireless networks (5G). Large-scale antenna arrays (also called massive MIMO) seem to be the most promising physical layer solution for meeting the ever-growing demand for high spectral efficiency. Large-scale MIMO arrays are typically deployed with high integration and using low-cost components. Hence, they are prone to different hardware impairments such as crosstalk between the transmit antennas and power amplifier (PA) nonlinearities, which distort the transmitted signal. To avert the performance degradation due to these impairments, it is essential to have mechanisms for predicting the output of the MIMO arrays. Such prediction mechanisms are mandatory for performance evaluation and, more importantly, for the adoption of proper compensation techniques such as digital predistortion (DPD) schemes. This has stirred a considerable amount of interest among researchers to develop new hardware and signal processing solutions to address the requirements of large-scale MIMO systems. In the context of MIMO systems, one particular problem is that the hardware cost and complexity scale up with the increase of the size of the MIMO system. As a result, the MIMO systems tend to be implemented on a chip and are very compact. Reduction of the cost by reducing the bill of material is possible when several components are eliminated. The reuse of already existing hardware is an alternative solution. As a result, such systems are prone to excessive sources of distortion, such as crosstalk. Accordingly, crosstalk in MIMO systems in its simplest form can affect the DPD coefficient estimation scheme. In this thesis, the effect of crosstalk on two main DPD estimation techniques, know as direct learning algorithm (DLA) and indirect learning algorithm (ILA), is studied. The PA behavioral modeling and DPD scheme face several challenges that seek cost-efficient and flexible solutions too. These techniques require constant capture of the PA output feedback signal, which ultimately requires the implementation of a complete transmitter observation receiver (TOR) chain for the individual transmit path. In this thesis, a technique to reuse the receiver path of the MIMO TDD transceiver as a TOR is developed, which is based on over-the-air (OTA) measurements. With these techniques, individual PA behavioral modeling and DPD can be done by utilizing a few receivers of the MIMO TDD system. To use OTA measurements, an on-site antenna calibration scheme is developed to individually estimate the coupling between the transmitter and the receiver antennas. Furthermore, a digital predistortion technique for compensating the nonlinearity of several PAs in phased arrays is presented. The phased array can be a subset of massive MIMO systems, and it uses several antennas to steer the transmitted signal in a particular direction by appropriately assigning the magnitude and the phase of the transmitted signal from each antenna. The particular structure of phased arrays requires the linearization of several PAs with a single DPD. By increasing the number of RF branches and consequently increasing the number of PAs in the phased array, the linearization task becomes challenging. The DPD must be optimized to results in the best overall linear performance of the phased array in the field. The problem of optimized DPD for phased array has not been addressed appropriately in the literature. In this thesis, a DPD technique is developed based on an optimization problem to address the linearization of PAs with high variations. The technique continuously optimizes the DPD coefficients through several iterations considering the effect of each PA simultaneously. Therefore, it results in the best optimized DPD performance for several PAs. Extensive analysis, simulations, and measurement evaluation is carried out as a proof of concept. The different proposed techniques are compared with conventional approaches, and the results are presented. The techniques proposed in this thesis enable cost-efficient and flexible signal processing approaches to facilitate the development of future wireless communication systems

    Design and demonstration of digital pre-distortion using software defined radio

    Get PDF
    Abstract. High data rates for large number of users set tight requirements for signal quality measured in terms of error vector magnitude (EVM). In radio transmitters, nonlinear distortion dominated by power amplifiers (PAs) often limits the achievable EVM. However, the linearity can be improved by linearization techniques. Digital pre-distortion (DPD) is one of these widely used linearization techniques for an effective distortion reduction over a wide bandwidth. In DPD, the nonlinearity of the transmitter is pre-compensated in the digital domain to achieve linear output. Moreover, DPD is used to enable PAs to operate in the power-efficient region with a decent linearity. As we are moving towards millimetre-wave frequencies to enable the wideband communications, the design of the DPD algorithm must be optimized in terms of performance and power consumption. Moreover, continuous development of wireless infrastructure motivates to make research on programmable and reconfigurable platforms in order to decrease the demonstration cost and time, especially for the demonstration purposes. This thesis illustrates and presents how software defined radio (SDR) platforms can be used to demonstrate DPD. Universal software defined peripheral (USRP) X300 is a commercial software defined radio (SDR) platform. The chosen model, X300, has two independent channels equipped with individual transceiver cards. SIMULINK is used to communicate with the device and the two channels of X300 are used as transmitter and receiver simultaneously in full-duplex mode. Hence, a single USRP device is acting as an operational transmitter and feedback receiver, simultaneously. The implemented USRP design consists of SIMULINK based transceiver design and lookup table based DPD in which the coefficients are calculated in MATLAB offline. An external PA, i.e. ZFL-2000+ together with a directional coupler and attenuator are connected between the TX/RX port and RX2 port to measure the nonlinearity. The nonlinearity transceiver is measured with and without the external PA. The experimental results show decent performance for linearization by using the USRP platform. However, the results differ widely due to the used USRP transceiver parameterization and PA operational point. The 16 QAM test signal with 500 kHz bandwidth is fed to the USRP transmit chain. As an example, the DPD algorithm improves the EVM from 7.6% to 2.1% and also the ACPR is reduced around 10 dB with the 16 QAM input signal where approximately + 2.2 dBm input power applied to the external PA

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-µm SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86º, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-µm SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86º, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    Digital Predistortion of Millimeter-Wave Phased Antenna Arrays

    Get PDF
    The cost of deployment of reliable, high-throughput, fifth-generation (5G) millimeter-wave (mm-wave) base stations will depend significantly on the maximum equivalent isotropically radiated power (EIRP) that the base stations can transmit. High EIRP can be generated using active beamforming antenna arrays with large apertures and driven by an array of power amplifiers (PAs). However, given the tight half-wavelength lattice that the arrays must retain to ensure a wide beam steering range, the achievable EIRP quickly becomes thermally-limited. Efficient power amplification is thus imperative to low-cost and reliable beamforming antenna array design. This work considers the application of Digital Predistortion (DPD) as an efficiency-enhancement technique for mm-wave beamforming antenna arrays. Two RF beamforming configurations were considered and corresponding DPD schemes were investigated. First, a single-input single-output (SISO) DPD is proposed that can linearize a single-user RF beamforming array in the presence of non-idealities such as PA load modulation and variation of phase shifter gain with phase. The SISO DPD relies on a feedback signal which reflects a coherent summation of the PA outputs. The SISO DPD is then validated by measurement of a 4-element and 64-element array at 28 GHz with 800 MHz modulated signals using a single over-the-air feedback signal. The SISO DPD uses different sets of coefficients to cope with changes in both linear and non-linear distortions as the beam is steered. Second, the SISO DPD formulation is extended to multi-user RF beamforming to linearize multiple sub-arrays. In this configuration, non-negligible inter-user interference can affect the DPD training. To address the interference, a linear estimate of the interference is calculated and canceled for each user before extracting the SISO DPD coefficients in each sub-array. The SISO DPD with interference cancellation is validated by measurement of a 2-user 2x64-element subarray hybrid at 28 GHz with 800 MHz modulated signals across different combinations of steering angles for the two users

    Nonlinear Equalization and Digital Pre-Distortion Techniques for Future Radar and Communications Digital Array Systems

    Get PDF
    Modern radar (military, automotive, weather, etc.) and communication systems seek to leverage the spatio-spectral efficiency of phased arrays. Specifically, there is an increasingly large demand for fully-digital arrays, with each antenna element having its own transmitter and receiver. Further, in order to makes these systems realizable, low-cost, low-complexity solutions are required, often sacrificing the system's linearity. Lower linearity paired with the inherent lack of RF spacial filtering can make these highly digital systems vulnerable to high-power interferering signals-- potentially introducing spectral regrowth and/or gain compression, distorting the signal-of-interest. Digital linearization solutions such as Digital Pre-Distiortion (DPD) and Nonlinear Equalization (NLEQ) have been shown to effectively mitigate nonlinearities for transmitters and receivers, respectively. Further, DPD and NLEQ seek to extend the effective dynamic range of digital arrays, helping the systems reach their designed dynamic range improvement of 10log10(N)10\log_{10}(N)~dB, where NN is the number of transmitters/receivers. However, the performance of these solutions is ultimately determined by training model and waveform. Further, the nonlinear characteristics of a system can change with temperature, frequency, power, time, etc., requiring a robust calibration technique to maintain a high-level of nonlinear mitigation. This dissertation reviews the different types of nonlinear models and the current NLEQ and DPD algorithms for digital array systems. Further, a generalized calibration waveform for both NLEQ and DPD is proposed, allowing a system to maximize its dynamic range over power and frequency. Additionally, an \textit{in-situ} calibration method, leveraging the inherent mutual coupling in an array, is proposed as a solution to maintaining a high level of performance in a fielded digital array system over the system's lifetime. The combination of the proposed training waveform and \textit{in-situ} calibration technique prove to be very effective at adaptively creating a generalized solution to extending the dynamic range of future low-cost digital array systems

    Single Input Single Output Digital Pre-Distortion at Millimeter Wave Frequencies for Phased Arrays

    Get PDF
    The limiting fact that is impeding the increase in data rate in the current generation of wireless communication is the limited available spectrum in the sub-6 GHz bands. This has motivated the shift to higher frequencies such as millimeter waves (mm-wave) and terahertz frequencies where modulation bandwidth of several hundreds of MHz can be utilized to increase the communication link capacity. The deployment of high data rate mm-wave base stations will highly depend on the maximum achievable equivalent isotropic radiated power (EIRP) and on the ability to generate reliable and error free wideband signals. High EIRP and high efficiency operation can be achieved by using active phased arrays operated deep into the power amplifiers (PAs) nonlinear region. In this work, a low power and low complexity compensation schemes to mitigate the impairments exhibited by phase arrays driven with wideband signals and high efficient nonlinear PAs at mm-wave frequencies are proposed. Digital pre-distortion (DPD) techniques can provide an attractive solution to linearize high efficiency and high EIRP nonlinear phased arrays at mm-wave frequencies. However, the viable deployment of DPD solutions call for the reduction in the power consumption of the transmitter observation receiver (TOR) feedback path required to train the DPD function. To that end, a low power DPD scheme for linearizing mm-wave hybrid beamforming antenna systems is presented. The proposed DPD scheme exploits the modularity of hybrid beamforming systems. During the training phase, the constituent sub-arrays, are categorized, into (i) the main sub-array that exhibits non-linear distortion and is to be linearized, and (ii) the auxiliary sub-arrays that operate in the backoff region to avoid nonlinearity. To produce the error signal necessary to train the DPD function (and compensate for the distortions exhibited by the main sub-array), the signals transmitted by the main and auxiliary sub-arrays are combined. This error signal is captured using a TOR with low dynamic range and is digitized using a low-bit resolution analog-to-digital converter (ADC). Proof-of-concept validation experiments are conducted by applying the proposed DPD system to linearize an off-the-shelf hybrid-beamforming array comprised of four 64-element sub-arrays, operating at 28 GHz and driven with up to 800 MHz orthogonal frequency-division multiplexing (OFDM) modulated signals. Using the proposed DPD scheme, a TOR with a 4-bit ADC was sufficient to improve the adjacent channel power ratio (ACPR) by 10 dB and the error vector magnitude (EVM) improved from 5.8% to 1.6%. These results are similar to those obtained using a TOR with 16-bit ADCs. Reducing the complexity of the DPD scheme for phased arrays is also of primordial importance to the successful deployment of DPD solutions. For instance, the DPD function needs to be desensitize to the load modulation effects exhibited by large antenna systems and be able to linearize phased arrays at different steering angles. To address the challenges associated with the load modulation for phased arrays, we propose a generalized SISO DPD scheme as solution to minimize the EVM variation at different steering angles. The measurement results of the proposed scheme, using a 400 MHz OFDM signal with subcarriers modulated using 256 QAM and on a commercial 64-elements beamforming array, was able to maintain the EVM below 2% across the full steering range. This solution, however, failed to maintain the ACPR below -45 dBc. The effect of tapering on the load modulation and the array nonlinearity is also analysed. The measurement results using different tapers are used to validate the theory and the simulation results. Using tapering, the ACPR and EVM variation before and after DPD were minimized versus steering angles. For instance, using taper setting 2, the ACPR and EVM are maintained below -46 dBc and 1% from -38° to 45° and below -42.3 dBc and 1.8% from -45° to 45° respectively. Better results are measured when tapering is used in conjunction with the proposed generalized DPD scheme. In that case, the ACPR is improved from -35.5 to at worst -46.4 dBc and at best -50 dBc and the EVM is improved from at worst 4.5% to at worst 1.2% and at best 0.85%. The EVM is also maintained below 0.95% from -39° to 45°
    corecore