11,846 research outputs found

    Argument Mining with Structured SVMs and RNNs

    Full text link
    We propose a novel factor graph model for argument mining, designed for settings in which the argumentative relations in a document do not necessarily form a tree structure. (This is the case in over 20% of the web comments dataset we release.) Our model jointly learns elementary unit type classification and argumentative relation prediction. Moreover, our model supports SVM and RNN parametrizations, can enforce structure constraints (e.g., transitivity), and can express dependencies between adjacent relations and propositions. Our approaches outperform unstructured baselines in both web comments and argumentative essay datasets.Comment: Accepted for publication at ACL 2017. 11 pages, 5 figures. Code at https://github.com/vene/marseille and data at http://joonsuk.org

    Minimum Spanning Tree under Explorable Uncertainty in Theory and Experiments

    Get PDF
    We consider the minimum spanning tree (MST) problem in an uncertainty model where uncertain edge weights can be explored at extra cost. The task is to find an MST by querying a minimum number of edges for their exact weight. This problem has received quite some attention from the algorithms theory community. In this paper, we conduct the first practical experiments for MST under uncertainty, theoretically compare three known algorithms, and compare theoretical with practical behavior of the algorithms. Among others, we observe that the average performance and the absolute number of queries are both far from the theoretical worst-case bounds. Furthermore, we investigate a known general preprocessing procedure and develop an implementation thereof that maximally reduces the data uncertainty. We also characterize a class of instances that is solved completely by our preprocessing. Our experiments are based on practical data from an application in telecommunications and uncertainty instances generated from the standard TSPLib graph library

    Introduction to Measurement with Theory

    Get PDF
    This working paper is the first draft of an overview and commentary on the papers to appear in a Macroeconomic Dynamics Special Issue on Measurement with Theory. The included papers in the special issue are part of a larger initiative to promote "measurement with theory" in economics and planned to appear as special issues of other journals. A later revised draft of this initial commentary is planned to appear as the introduction to the Macroeconomic Dynamics special issue, expected to appear in 2010.Measurement; index number theory; aggregation theory.

    Introduction to Measurement with Theory.

    Get PDF
    This paper is the introduction to the forthcoming Macroeconomic Dynamics Special Issue on Measurement with Theory. The Guest Editors of the special issue are William A. Barnett, W. Erwin Diewert, Shigeru Iwata, and Arnold Zellner. The authors of this detailed introduction and commentary are William A. Barnett, W. Erwin Diewert, and Arnold Zellner. The included papers are part of a larger initiative to promote measurement with theory in economics.Measurement; index number theory; aggregation theory.

    Neocortical Axon Arbors Trade-off Material and Conduction Delay Conservation

    Get PDF
    The brain contains a complex network of axons rapidly communicating information between billions of synaptically connected neurons. The morphology of individual axons, therefore, defines the course of information flow within the brain. More than a century ago, Ramón y Cajal proposed that conservation laws to save material (wire) length and limit conduction delay regulate the design of individual axon arbors in cerebral cortex. Yet the spatial and temporal communication costs of single neocortical axons remain undefined. Here, using reconstructions of in vivo labelled excitatory spiny cell and inhibitory basket cell intracortical axons combined with a variety of graph optimization algorithms, we empirically investigated Cajal's conservation laws in cerebral cortex for whole three-dimensional (3D) axon arbors, to our knowledge the first study of its kind. We found intracortical axons were significantly longer than optimal. The temporal cost of cortical axons was also suboptimal though far superior to wire-minimized arbors. We discovered that cortical axon branching appears to promote a low temporal dispersion of axonal latencies and a tight relationship between cortical distance and axonal latency. In addition, inhibitory basket cell axonal latencies may occur within a much narrower temporal window than excitatory spiny cell axons, which may help boost signal detection. Thus, to optimize neuronal network communication we find that a modest excess of axonal wire is traded-off to enhance arbor temporal economy and precision. Our results offer insight into the principles of brain organization and communication in and development of grey matter, where temporal precision is a crucial prerequisite for coincidence detection, synchronization and rapid network oscillations
    corecore