30 research outputs found

    Asymptotic and finite-time almost global attitude tracking: representations free approach

    Full text link
    In this paper, the attitude tracking problem is considered using the rotation matrices. Due to the inherent topological restriction, it is impossible to achieve global attractivity with any continuous attitude control system on SO(3)SO(3). Hence in this work, we propose some control protocols achieve almost global tracking asymptotically and in finite time, respectively. In these protocols, no world frame is needed and only relative state informations are requested. For finite-time tracking case, Filippov solutions and non-smooth analysis techniques are adopted to handle the discontinuities. Simulation examples are provided to verify the performances of the control protocols designed in this paper.Comment: arXiv admin note: text overlap with arXiv:1705.0282

    Intrinsic Reduced Attitude Formation with Ring Inter-Agent Graph

    Get PDF
    This paper investigates the reduced attitude formation control problem for a group of rigid-body agents using feedback based on relative attitude information. Under both undirected and directed cycle graph topologies, it is shown that reversing the sign of a classic consensus protocol yields asymptotical convergence to formations whose shape depends on the parity of the group size. Specifically, in the case of even parity the reduced attitudes converge asymptotically to a pair of antipodal points and distribute equidistantly on a great circle in the case of odd parity. Moreover, when the inter-agent graph is an undirected ring, the desired formation is shown to be achieved from almost all initial states

    Integral Control on Lie Groups

    Get PDF
    In this paper, we extend the popular integral control technique to systems evolving on Lie groups. More explicitly, we provide an alternative definition of "integral action" for proportional(-derivative)-controlled systems whose configuration evolves on a nonlinear space, where configuration errors cannot be simply added up to compute a definite integral. We then prove that the proposed integral control allows to cancel the drift induced by a constant bias in both first order (velocity) and second order (torque) control inputs for fully actuated systems evolving on abstract Lie groups. We illustrate the approach by 3-dimensional motion control applications.Comment: Resubmitted to Systems and Control Letters, February 201
    corecore