210,278 research outputs found

    Strategy Synthesis for Autonomous Agents Using PRISM

    Get PDF
    We present probabilistic models for autonomous agent search and retrieve missions derived from Simulink models for an Unmanned Aerial Vehicle (UAV) and show how probabilistic model checking and the probabilistic model checker PRISM can be used for optimal controller generation. We introduce a sequence of scenarios relevant to UAVs and other autonomous agents such as underwater and ground vehicles. For each scenario we demonstrate how it can be modelled using the PRISM language, give model checking statistics and present the synthesised optimal controllers. We conclude with a discussion of the limitations when using probabilistic model checking and PRISM in this context and what steps can be taken to overcome them. In addition, we consider how the controllers can be returned to the UAV and adapted for use on larger search areas

    A Survey on Service Composition Middleware in Pervasive Environments

    Get PDF
    The development of pervasive computing has put the light on a challenging problem: how to dynamically compose services in heterogeneous and highly changing environments? We propose a survey that defines the service composition as a sequence of four steps: the translation, the generation, the evaluation, and finally the execution. With this powerful and simple model we describe the major service composition middleware. Then, a classification of these service composition middleware according to pervasive requirements - interoperability, discoverability, adaptability, context awareness, QoS management, security, spontaneous management, and autonomous management - is given. The classification highlights what has been done and what remains to do to develop the service composition in pervasive environments

    HP-GAN: Probabilistic 3D human motion prediction via GAN

    Full text link
    Predicting and understanding human motion dynamics has many applications, such as motion synthesis, augmented reality, security, and autonomous vehicles. Due to the recent success of generative adversarial networks (GAN), there has been much interest in probabilistic estimation and synthetic data generation using deep neural network architectures and learning algorithms. We propose a novel sequence-to-sequence model for probabilistic human motion prediction, trained with a modified version of improved Wasserstein generative adversarial networks (WGAN-GP), in which we use a custom loss function designed for human motion prediction. Our model, which we call HP-GAN, learns a probability density function of future human poses conditioned on previous poses. It predicts multiple sequences of possible future human poses, each from the same input sequence but a different vector z drawn from a random distribution. Furthermore, to quantify the quality of the non-deterministic predictions, we simultaneously train a motion-quality-assessment model that learns the probability that a given skeleton sequence is a real human motion. We test our algorithm on two of the largest skeleton datasets: NTURGB-D and Human3.6M. We train our model on both single and multiple action types. Its predictive power for long-term motion estimation is demonstrated by generating multiple plausible futures of more than 30 frames from just 10 frames of input. We show that most sequences generated from the same input have more than 50\% probabilities of being judged as a real human sequence. We will release all the code used in this paper to Github

    Redundant neural vision systems: competing for collision recognition roles

    Get PDF
    Ability to detect collisions is vital for future robots that interact with humans in complex visual environments. Lobula giant movement detectors (LGMD) and directional selective neurons (DSNs) are two types of identified neurons found in the visual pathways of insects such as locusts. Recent modelling studies showed that the LGMD or grouped DSNs could each be tuned for collision recognition. In both biological and artificial vision systems, however, which one should play the collision recognition role and the way the two types of specialized visual neurons could be functioning together are not clear. In this modeling study, we compared the competence of the LGMD and the DSNs, and also investigate the cooperation of the two neural vision systems for collision recognition via artificial evolution. We implemented three types of collision recognition neural subsystems – the LGMD, the DSNs and a hybrid system which combines the LGMD and the DSNs subsystems together, in each individual agent. A switch gene determines which of the three redundant neural subsystems plays the collision recognition role. We found that, in both robotics and driving environments, the LGMD was able to build up its ability for collision recognition quickly and robustly therefore reducing the chance of other types of neural networks to play the same role. The results suggest that the LGMD neural network could be the ideal model to be realized in hardware for collision recognition
    • …
    corecore