218 research outputs found

    Autonomous moving target-tracking for a UAV quadcopter based on fuzzy-PI.

    Get PDF
    Moving target-tracking is an attractive application for quadcopters and a very challenging, complicated field of research due to the complex dynamics of a quadcopter and the varying speed of the moving target with time. For this reason, various control algorithms have been developed to track a moving target using a camera. In this paper, a Fuzzy-PI controller is developed to adjust the parameters of the PI controller using the position and change of position data as input. The proposed controller is compared to a gain-scheduled PID controller instead of the typical PID controller. To verify the performance of the developed system and distinguish which one has better performance, several experiments of a quadcopter tracking a moving target are conducted under the varying speed of the moving target, indoor and outdoor and during day and night. The obtained results indicate that the proposed controller works well for tracking a moving target under different scenarios, especially during night

    Autonomous Moving Target-Tracking for a UAV Quadcopter Based on Fuzzy-PI

    Get PDF
    Moving target-tracking is an attractive application for quadcopters and a very challenging, complicated field of research due to the complex dynamics of a quadcopter and the varying speed of the moving target with time. For this reason, various control algorithms have been developed to track a moving target using a camera. In this paper, a Fuzzy-PI controller is developed to adjust the parameters of the PI controller using the position and change of position data as input. The proposed controller is compared to a gain-scheduled PID controller instead of the typical PID controller. To verify the performance of the developed system and distinguish which one has better performance, several experiments of a quadcopter tracking a moving target are conducted under the varying speed of the moving target, indoor and outdoor and during day and night. The obtained results indicate that the proposed controller works well for tracking a moving target under different scenarios, especially during night

    Vision - based self - guided Quadcopter landing on moving platform during fault detection

    Get PDF
    Fault occurrence in the quadcopter is very common during operation in the air. This paper presents a real-time implementation to detect the fault and then the system is guaranteeing to safely land on the surface, even the moving landing platform. Primarily, PixHawk auto-pilot was used to verify in real-time, with platform detection and various environmental conditions. The method is ensuring the quadcopter operates in the landing area zone with the help of a GPS feature. Then the precise landing on the astable-landing platform is calibrated automatically using the vision-based learning feedback technique. The proposed objective is developed using reconfigurable Raspberry Pi-3 with a Pi camera. The full decision on an efficient landing algorithm is deployed into the quadcopter. The system is self-guided and automatically returns to home-based whenever the fault detects. The study is conducted with the situation of low battery operation and the trigger of auto-pilot helps to land the device safely before any mal-function. The system is featured with predetermined speed and altitude while navigating the home base, thus improves the detection process. Finally, the experiment study provided successful trials to track usable platform, landing on a restricted area, and disarm the motors autonomously

    Heterogeneous parallelization for object detection and tracking in UAVs.

    Get PDF
    Recent technical advancements in both fields of unmanned aerial vehicles (UAV) control and artificial intelligence (AI) have made a certain realm of applications possible. However, one of the main problems in integration of these two areas is the bottle-neck of computing AI applications on UAV's resource limited platform. One of the main solution for this problem is that AI and control software from one side and computing hardware mounted on UAV from the other side be adopted together based on the main constraints of the resource limited computing platform on UAV. Basically, the target constraints of such adaptation are performance, energy efficiency, and accuracy. In this paper, we propose a strategy to integrate and adopt the commonly used object detection and tracking algorithm and UAV control software to be executed on a heterogeneous resource limited computing units on a UAV. For object detection, a convolutional neural network (CNN) algorithm is used. For object tracking, a novel algorithm is proposed that can execute along with object tracking via sequential stream data. For UAV control, a Gain-Scheduled PID controller is designed that steers the UAV by continuously manipulation of the actuators based on the stream data from the tracking unit and dynamics of the UAV. All the algorithms are adopted to be executed on a heterogeneous platform including NVIDIA Jetson TX2 embedded computer and an ARM Cortex M4. The observation from real-time operation of the platform shows that using the proposed platform reduces the power consumption by 53.69% in contrast with other existing methods while having marginal penalty for object detection and tracking parts

    Unmanned Robotic Systems and Applications

    Get PDF
    This book presents recent studies of unmanned robotic systems and their applications. With its five chapters, the book brings together important contributions from renowned international researchers. Unmanned autonomous robots are ideal candidates for applications such as rescue missions, especially in areas that are difficult to access. Swarm robotics (multiple robots working together) is another exciting application of the unmanned robotics systems, for example, coordinated search by an interconnected group of moving robots for the purpose of finding a source of hazardous emissions. These robots can behave like individuals working in a group without a centralized control

    Vision-Based navigation system for unmanned aerial vehicles

    Get PDF
    Mención Internacional en el título de doctorThe main objective of this dissertation is to provide Unmanned Aerial Vehicles (UAVs) with a robust navigation system; in order to allow the UAVs to perform complex tasks autonomously and in real-time. The proposed algorithms deal with solving the navigation problem for outdoor as well as indoor environments, mainly based on visual information that is captured by monocular cameras. In addition, this dissertation presents the advantages of using the visual sensors as the main source of data, or complementing other sensors in providing useful information; in order to improve the accuracy and the robustness of the sensing purposes. The dissertation mainly covers several research topics based on computer vision techniques: (I) Pose Estimation, to provide a solution for estimating the 6D pose of the UAV. This algorithm is based on the combination of SIFT detector and FREAK descriptor; which maintains the performance of the feature points matching and decreases the computational time. Thereafter, the pose estimation problem is solved based on the decomposition of the world-to-frame and frame-to-frame homographies. (II) Obstacle Detection and Collision Avoidance, in which, the UAV is able to sense and detect the frontal obstacles that are situated in its path. The detection algorithm mimics the human behaviors for detecting the approaching obstacles; by analyzing the size changes of the detected feature points, combined with the expansion ratios of the convex hull constructed around the detected feature points from consecutive frames. Then, by comparing the area ratio of the obstacle and the position of the UAV, the method decides if the detected obstacle may cause a collision. Finally, the algorithm extracts the collision-free zones around the obstacle, and combining with the tracked waypoints, the UAV performs the avoidance maneuver. (III) Navigation Guidance, which generates the waypoints to determine the flight path based on environment and the situated obstacles. Then provide a strategy to follow the path segments and in an efficient way and perform the flight maneuver smoothly. (IV) Visual Servoing, to offer different control solutions (Fuzzy Logic Control (FLC) and PID), based on the obtained visual information; in order to achieve the flight stability as well as to perform the correct maneuver; to avoid the possible collisions and track the waypoints. All the proposed algorithms have been verified with real flights in both indoor and outdoor environments, taking into consideration the visual conditions; such as illumination and textures. The obtained results have been validated against other systems; such as VICON motion capture system, DGPS in the case of pose estimate algorithm. In addition, the proposed algorithms have been compared with several previous works in the state of the art, and are results proves the improvement in the accuracy and the robustness of the proposed algorithms. Finally, this dissertation concludes that the visual sensors have the advantages of lightweight and low consumption and provide reliable information, which is considered as a powerful tool in the navigation systems to increase the autonomy of the UAVs for real-world applications.El objetivo principal de esta tesis es proporcionar Vehiculos Aereos no Tripulados (UAVs) con un sistema de navegacion robusto, para permitir a los UAVs realizar tareas complejas de forma autonoma y en tiempo real. Los algoritmos propuestos tratan de resolver problemas de la navegacion tanto en ambientes interiores como al aire libre basandose principalmente en la informacion visual captada por las camaras monoculares. Ademas, esta tesis doctoral presenta la ventaja de usar sensores visuales bien como fuente principal de datos o complementando a otros sensores en el suministro de informacion util, con el fin de mejorar la precision y la robustez de los procesos de deteccion. La tesis cubre, principalmente, varios temas de investigacion basados en tecnicas de vision por computador: (I) Estimacion de la Posicion y la Orientacion (Pose), para proporcionar una solucion a la estimacion de la posicion y orientacion en 6D del UAV. Este algoritmo se basa en la combinacion del detector SIFT y el descriptor FREAK, que mantiene el desempeno del a funcion de puntos de coincidencia y disminuye el tiempo computacional. De esta manera, se soluciona el problema de la estimacion de la posicion basandose en la descomposicion de las homografias mundo a imagen e imagen a imagen. (II) Deteccion obstaculos y elusion colisiones, donde el UAV es capaz de percibir y detectar los obstaculos frontales que se encuentran en su camino. El algoritmo de deteccion imita comportamientos humanos para detectar los obstaculos que se acercan, mediante el analisis de la magnitud del cambio de los puntos caracteristicos detectados de referencia, combinado con los ratios de expansion de los contornos convexos construidos alrededor de los puntos caracteristicos detectados en frames consecutivos. A continuacion, comparando la proporcion del area del obstaculo y la posicion del UAV, el metodo decide si el obstaculo detectado puede provocar una colision. Por ultimo, el algoritmo extrae las zonas libres de colision alrededor del obstaculo y combinandolo con los puntos de referencia, elUAV realiza la maniobra de evasion. (III) Guiado de navegacion, que genera los puntos de referencia para determinar la trayectoria de vuelo basada en el entorno y en los obstaculos detectados que encuentra. Proporciona una estrategia para seguir los segmentos del trazado de una manera eficiente y realizar la maniobra de vuelo con suavidad. (IV) Guiado por Vision, para ofrecer soluciones de control diferentes (Control de Logica Fuzzy (FLC) y PID), basados en la informacion visual obtenida con el fin de lograr la estabilidad de vuelo, asi como realizar la maniobra correcta para evitar posibles colisiones y seguir los puntos de referencia. Todos los algoritmos propuestos han sido verificados con vuelos reales en ambientes exteriores e interiores, tomando en consideracion condiciones visuales como la iluminacion y las texturas. Los resultados obtenidos han sido validados con otros sistemas: como el sistema de captura de movimiento VICON y DGPS en el caso del algoritmo de estimacion de la posicion y orientacion. Ademas, los algoritmos propuestos han sido comparados con trabajos anteriores recogidos en el estado del arte con resultados que demuestran una mejora de la precision y la robustez de los algoritmos propuestos. Esta tesis doctoral concluye que los sensores visuales tienen las ventajes de tener un peso ligero y un bajo consumo y, proporcionar informacion fiable, lo cual lo hace una poderosa herramienta en los sistemas de navegacion para aumentar la autonomia de los UAVs en aplicaciones del mundo real.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Carlo Regazzoni.- Secretario: Fernando García Fernández.- Vocal: Pascual Campoy Cerver

    Autonomous Drone Landings on an Unmanned Marine Vehicle using Deep Reinforcement Learning

    Get PDF
    This thesis describes with the integration of an Unmanned Surface Vehicle (USV) and an Unmanned Aerial Vehicle (UAV, also commonly known as drone) in a single Multi-Agent System (MAS). In marine robotics, the advantage offered by a MAS consists of exploiting the key features of a single robot to compensate for the shortcomings in the other. In this way, a USV can serve as the landing platform to alleviate the need for a UAV to be airborne for long periods time, whilst the latter can increase the overall environmental awareness thanks to the possibility to cover large portions of the prevailing environment with a camera (or more than one) mounted on it. There are numerous potential applications in which this system can be used, such as deployment in search and rescue missions, water and coastal monitoring, and reconnaissance and force protection, to name but a few. The theory developed is of a general nature. The landing manoeuvre has been accomplished mainly identifying, through artificial vision techniques, a fiducial marker placed on a flat surface serving as a landing platform. The raison d'etre for the thesis was to propose a new solution for autonomous landing that relies solely on onboard sensors and with minimum or no communications between the vehicles. To this end, initial work solved the problem while using only data from the cameras mounted on the in-flight drone. In the situation in which the tracking of the marker is interrupted, the current position of the USV is estimated and integrated into the control commands. The limitations of classic control theory used in this approached suggested the need for a new solution that empowered the flexibility of intelligent methods, such as fuzzy logic or artificial neural networks. The recent achievements obtained by deep reinforcement learning (DRL) techniques in end-to-end control in playing the Atari video-games suite represented a fascinating while challenging new way to see and address the landing problem. Therefore, novel architectures were designed for approximating the action-value function of a Q-learning algorithm and used to map raw input observation to high-level navigation actions. In this way, the UAV learnt how to land from high latitude without any human supervision, using only low-resolution grey-scale images and with a level of accuracy and robustness. Both the approaches have been implemented on a simulated test-bed based on Gazebo simulator and the model of the Parrot AR-Drone. The solution based on DRL was further verified experimentally using the Parrot Bebop 2 in a series of trials. The outcomes demonstrate that both these innovative methods are both feasible and practicable, not only in an outdoor marine scenario but also in indoor ones as well

    A Dynamic Artificial Potential Field (D-APF) UAV Path Planning Technique for following Ground Moving Targets

    Full text link
    Path planning is a vital and challenging component in the support of Unmanned Aerial Vehicles (UAVs) and their deployment in autonomous missions, such as following ground moving target. Few attempts are reported in the literature on multirotor UAV path planning techniques for following ground moving targets despite the great improvement in their control dynamics, flying behaviors and hardware specifications. These attempts suffer several drawbacks including their hardware dependency, high computational requirements, inability to handle obstacles and dynamic environments in addition to their low performance regarding the moving target speed variations. In this paper, a novel dynamic Artificial Potential Field (D-APF) path planning technique is developed for multirotor UAVs for following ground moving targets. The UAV produced path is a smooth and flyable path suitable to dynamic environments with obstacles and can handle different motion profiles for the ground moving target including change in speed and direction. Additionally, the proposed path planning technique effectively supports UAVs following ground moving targets while maneuvering ahead and at a standoff distance from the target. It is hardware-independent where it can be used on most types of multirotor UAVs with an autopilot flight controller and basic sensors for distance measurements. The developed path planning technique is tested and validated against existing general potential field techniques for different simulation scenarios in ROS and gazebo-supported PX4-SITL. Simulation results show that the proposed D-APF is better suited for UAV path planning for following moving ground targets compared to existing general APFs. In addition, it outperforms the general APFs as it is more suitable for UAVs flying in environments with dynamic and unknown obstacles

    Convolutional neural network-based real-time object detection and tracking for parrot AR drone 2.

    Get PDF
    Recent advancements in the field of Artificial Intelligence (AI) have provided an opportunity to create autonomous devices, robots, and machines characterized particularly with the ability to make decisions and perform tasks without human mediation. One of these devices, Unmanned Aerial Vehicles (UAVs) or drones are widely used to perform tasks like surveillance, search and rescue, object detection and target tracking, parcel delivery (recently started by Amazon), and many more. The sensitivity in performing said tasks demands that drones must be efficient and reliable. For this, in this paper, an approach to detect and track the target object, moving or still, for a drone is presented. The Parrot AR Drone 2 is used for this application. Convolutional Neural Network (CNN) is used for object detection and target tracking. The object detection results show that CNN detects and classifies object with a high level of accuracy (98%). For real-time tracking, the tracking algorithm responds faster than conventionally used approaches, efficiently tracking the detected object without losing it from sight. The calculations based on several iterations exhibit that the efficiency achieved for target tracking is 96.5%
    corecore