9 research outputs found

    Occupancy Based Household Energy Disaggregation using Ultra Wideband Radar and Electrical Signature Profiles

    Get PDF
    Human behaviour and occupancy accounts for a substantial proportion of variation in the energy efficiency pro le of domestic buildings. Yet while people often claim that they would like to reduce their energy bills, rhetoric frequently fails to match action due to the effort involved in understand- ing and changing deeply engrained energy consumption habits. Here, we present and, through dedicated experiments, test in-house developed soft-ware to remotely identify appliance energy usage within buildings, using energy equipment which could be placed at the electricity meter location. Furthermore, we monitor and compare the occupancy of the location under study through Ultra-Wideband (UWB) radar technology and compare the resulting data with those received from the power monitoring software, via time synchronization. These signals when mapped together can potentially provide both occupancy and speci c appliances power consumption, which could enable energy usage segregation on a yet impossible scale as well as usage attributable to occupancy behaviour. Such knowledge forms the basis for the implementation of automated energy saving actions based on a households unique energy profi le

    Performance Comparison of Artificial Intelligence Techniques for Non-intrusive Electrical Load Monitoring

    Get PDF
    The increased awareness in reducing energy consumption and encouraging response from the use of smart meters have triggered the idea of non-intrusive load monitoring (NILM). The purpose of NILM is to obtain useful information about the usage of electrical appliances usually measured at the main entrance of electricity to obtain aggregate power signal by using a smart meter. The load operating states based on the on/off loads can be detected by analysing the aggregate power signals. This paper presents a comparative study for evaluating the performance of artificial intelligence techniques in classifying the type and operating states of three load types that are usually available in commercial buildings, such as fluorescent light, air-conditioner and personal computer. In this NILM study, experiments were carried out to collect information of the load usage pattern by using a commercial smart meter. From the power parameters captured by the smart meter, effective signal analysis has been done using the time time (TT)-transform to achieve accurate load disaggregation. Load feature selection is also considered by using three power parameters which are real power, reactive power and the TT-transform parameters. These three parameters are used as inputs for training the artificial intelligence techniques in classifying the type and operating states of the loads. The load classification results showed that the proposed extreme learning machine (ELM) technique has successfully achieved high accuracy and fast learning compared with artificial neural network and support vector machine. Based on validation results, ELM achieved the highest load classification with 100% accuracy for data sampled at 1 minute time interval

    Hidden Markov Model based non-intrusive load monitoring using active and reactive power consumption

    Get PDF
    This work presents a residential appliance disaggregation technique to help achieve the fundamental goal in Non-Intrusive Load Monitoring (NILM) problem i.e. simple breakdown of energy consumption based on the appliance type in a household. The appliances are modeled using Hidden Markov Model by utilizing both their active and reactive power consumption data. The data was recorded by attaching Power Standards Lab PQube measurement device to the appliances. Granularity of the power readings of the disaggregated appliance matches with that of the reading collected for individual device. The accuracy of the model is compared with other models developed using only active power consumption of the appliances. The results using the proposed method are more effective and are found to predict a better output sequence for the appliances compared to model using only active power for modeling loads --Abstract, page iii

    On a training-less solution for non-intrusive appliance load monitoring using graph signal processing

    Get PDF
    With ongoing large-scale smart energy metering deployments worldwide, disaggregation of a household’s total energy consumption down to individual appliances using analytical tools, aka. non-intrusive appliance load monitoring (NALM), has generated increased research interest lately. NALM can deepen energy feedback, support appliance retrofit advice and support home automation. However, despite the fact that NALM was proposed over 30 years ago, there are still many open challenges with respect to its practicality and effectiveness at low sampling rates. Indeed, the majority of NALM approaches, supervised or unsupervised, require training to build appliance models, and are sensitive to appliance changes in the house, thus requiring regular re-training. In this paper, we tackle this challenge by proposing a NALM approach that does not require any training. The main idea is to build upon the emerging field of graph signal processing to perform adaptive thresholding, signal clustering and pattern matching. We determine the performance limits of our approach and demonstrate its usefulness in practice. Using two open access datasets - the US REDD dataset with active power measurements downsampled to 1min resolution and the UK REFIT dataset with 8sec resolution, we demonstrate the effectiveness of the proposed method for typical smart meter sampling rate, with state-of-the-art supervised and unsupervised NALM approaches as benchmarks

    Non-intrusive load management system for residential loads using artificial neural network based arduino microcontroller

    Get PDF
    The energy monitoring is one of the most important aspects of energy management. In fact there is a need to monitor the power consumption of a building or premises before planning technical actions to minimize the energy consumption. In traditional load monitoring method, a sensor or a group of sensors attached to every load of interest to monitor the system, which makes the system costly and complex. On the other hand, by Non-Intrusive Load Monitoring (NILM) the aggregated measurement of the building’s appliances can be used to identify and/or disaggregate the connected appliances in the building. Therefore, the method provides a simple, reliable and cost effective monitoring since it uses only one set of measuring sensors at the service entry. This thesis aims at finding a solution in the residential electrical energy management through the development of Artificial Neural Network Arduino (ANN-Arduino) NILM system for monitoring and controlling the energy consumption of the home appliances. The major goal of this research work is the development of a simplified ANN-based non-intrusive residential appliances identifier. It is a real-time ANN-Arduino NILM system for residential energy management with its performance evaluation and the calibration of the ZMPT101B voltage sensor module for accurate measurement, by using polynomial regression method. Using the sensor algorithm obtained, an error of 0.9% in the root mean square (rms) measurement of the voltage is obtained using peak-peak measurement method, in comparison to 2.5% when using instantaneous measurement method. Secondly, a residential energy consumption measurement and control system is developed using Arduino microcontroller, which accurately control the home appliances within the threshold power consumption level. The energy consumption measurement prototype has an accurate power and current measurement with error of 3.88% in current measurement when compared with the standard Fluke meter. An ANN-Arduino NILM system is also developed using steady-state signatures, which uses the feedforward ANN to identify the loads when it received the aggregated real power, rms current and power factor from the Arduino. Finally, the ANN-Arduino NILM based appliances’ management and control system is developed for keeping track of the appliances and managing their energy usage. The system accurately recognizes all the load combinations and the load controlling works within 2% time error. The overall system resulted into a new home appliances’ energy management system based on ANN-Arduino NILM that can be applied into smart electricity system at a reduced cost, reduced complexity and non-intrusively

    Time-frequency analysis techniques for non-intrusive load monitoring

    Get PDF
    The work in this thesis examines time-frequency analysis techniques and in particular the wavelet transform to extract the features contained within the electrical load signals. A novel approach that is based on wavelet design was utilized to generate a wavelet library which was used to match each load signal to a specific wavelet using Procrustes and covariance analysis. In order to automate the load identification process, two machine learning classifiers representing an eager learner and a lazy learner were used in this work. The proposed wavelet design concept has been verified experimentally, and the results of implementing the proposed load detection and classification approach shows significant improvement in the classification accuracy compared to other existing detection approaches reaching an overall accuracy of 98%

    Autonomous load disaggregation approach based on active power measurements

    No full text
    corecore