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Abstract 

The role of existing revenue meters is to measure and record the energy consumed by 

the customer in order to report usage to the electric utilities for billing purposes. Existing smart 

meters use the automated meter reading (AMR) technology to transmit the customers’ load 

profiles at hourly or sub-hourly intervals, while providing time-of-use pricing to customers to 

motivate them to better utilize their appliances by avoiding the hours of peak demand. 

However, smart meters have proven to be not intelligent enough to provide useful information 

to the customers with respect to the devices/appliances that they use on a daily basis. The 

concept of non-intrusive load monitoring, in which the homes electrical signals are measured 

at a single point (i.e., one node), has been proposed to enhance the functionality of existing 

smart meters. In non-intrusive load monitoring, the collected data at a single point, represented 

by the smart meter, is used to monitor the energy consumption of individual 

appliances/devices instead of installing dedicated sensors on each individual component, 

which has proven to be cost-ineffective and time consuming to install and maintain. The work 

in this thesis examines time-frequency analysis techniques and in particular the wavelet 

transform to extract the features contained within the electrical load signals. A novel approach 

that is based on wavelet design was utilized to generate a wavelet library which was used to 

match each load signal to a specific wavelet using Procrustes and covariance analysis. In order 

to automate the load identification process, two machine learning classifiers representing an 

eager learner and a lazy learner were used in this work. The proposed wavelet design concept 

has been verified experimentally, and the results of implementing the proposed load detection 

and classification approach shows significant improvement in the classification accuracy 

compared to other existing detection approaches reaching an overall accuracy of 98%.  
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1. Introduction 

1.1 Background 

Over the past 10 years, the average price of electricity has steadily increased while 

the overall demand has decreased [1]. Smart meters have been installed in every home in 

Ontario, Canada to allow electric utilities to access energy data in 15 minute intervals, thus 

billing the customers based on the time at which they use energy. Time-of-Use (TOU) 

pricing is the method used in Ontario, Canada through which different prices for energy 

were identified based on the time of day [2]. The main limitation with existing smart meter 

technology is that no energy breakdown is provided to either the customer or the utility, 

only the aggregated energy usage per customer is measured. Therefore, residential 

customers have limited knowledge about the usage of their appliances and their efficiency. 

Furthermore, with this limited information on the energy usage of each customer, electric 

utilities are unable to fully take advantage of demand response programs since they have 

no information on the response of each appliance within each home to their signal requests. 

Due to these reasons, there is a dire need to identify individual load operation to ensure 

effective demand response and at the same time allow more customers to participate in 

utility programs. This can be accomplished by providing the breakdown of energy usage 

between the customers and utilities. Therefore, a homeowner’s total energy usage needs to 

be disaggregated into each individual load operation so that one sensor can be used to 

gather data at one location. This approach does not intrude on the homeowner, but does 

provide the necessary information about load usage. This process is referred to as load 

disaggregation or Non-Intrusive Load Monitoring (NILM) which is formally defined as 
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methods of monitoring an electrical signal from a single point and using information 

contained within the signal to determine individual load operation [3].  

1.2 Problem Statement and Motivation 

Existing approaches for NILM in the literature are grouped into three main 

categories: time domain analysis, frequency domain analysis and time-frequency domain 

analysis, as depicted in Fig. 1.1. Time domain analysis-based approaches focus on using 

active power, reactive power, voltage, and current in the time domain at sampling rates 

greater than or equal to one sample per second. Frequency domain-based analysis 

approaches focus on the use of information contained in the frequency domain, such as 

harmonics which require sampling rates typically greater than or equal to one sample per 

second. Time-frequency domain approaches focus on capturing the switching transients of 

loads using either the voltage or current waveform at higher sampling rates (kHz to MHz 

range). These approaches use advanced signal processing techniques such as the windowed 

Fourier transform to perform a time and frequency analysis of a signal. Both time domain 

or frequency domain approaches are usually found to be inaccurate due to their low 

sampling rate and the limitations associated with the analysis techniques, while time-

frequency approaches have been more effective due to their higher sampling rates and use 

of a wider range of signal processing techniques.  



3 
 

NILM Approaches

Time Analysis Frequency Analysis Time-Frequency 
Analysis

 
Fig. 1. 1: NILM Methods based on Time-domain Analysis Techniques 

NILM approaches are commonly evaluated by comparing the classification accuracy 

of one method against the other. This seems elementary but becomes difficult in reality as 

the majority of approaches use various types of data with different sampling rates. 

Therefore, classification accuracy is one of the main factors to compare, but additional 

hardware requirements and the algorithms complexity are crucial to an approaches overall 

performance.  

 Time domain analysis techniques rely on using information contained within power 

quantities such as active and reactive power [4]. Their strength is in their simplicity and 

use of lower sampling rates [5]. However, these methods are easily susceptible to noise 

and power quality disturbances which usually make their overall classification accuracies 

dissatisfactory [6]. Furthermore, due to the use of lower sampling rates, load detection time 

can be minutes or hours making these approaches unfavorable in close to real-time 

applications [7]. 

Frequency domain analysis techniques rely on using only frequency information 

such as harmonics and changes in frequency [8]. These techniques are acceptable at 
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distinguishing loads that draw the same active power and perform well for large loads that 

have unique harmonic signatures [9]. These methods are not as susceptible to power quality 

disturbances, giving them advantages in some cases. However, frequency domain analysis 

techniques struggle for purely resistive loads with no harmonic signature and for small 

loads in which the harmonic profile is next to undetectable [9]. Frequency domain analysis 

techniques use only the information contained within the frequency, the time information 

is lost and cannot be used in the detection process.  

Time-frequency domain analysis techniques rely on using the raw information 

contained within the voltage or current waveforms themselves [10]. By analyzing the 

switching transients of loads in both the time and frequency domain, features from these 

unique transients are processed to classify load operation. These methods strengths are in 

obtaining high classification accuracies although come at the cost of higher sampling rates 

and higher computational complexities [11]. Time-frequency transforms are considered 

effective signal processing techniques to provide both time and frequency information of 

the analysis signals. Most approaches rely on the Short-Time Fourier Transform (STFT) 

or the Wavelet Transform (WT) to extract features from the transient signal [12].  The 

STFT uses the sine and cosine functions as the base signals for the analysis with a fixed 

window size. In contrast, the wavelet transform uses a large library of wavelet functions 

having different characteristics with a variable size window length. The sine and cosine 

functions forming the basis of STFT limits its applicability especially during transients 

which usually involve irregular wave shapes. Sine and cosine are smooth and extend from 

-∞ to +∞ making them undesirable for transient analysis. On the contrary, the wavelet 

library contains functions with limited time support and have different wave shapes that 
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are suitable for transient analysis. Moreover, the variable window size allows for better 

time and frequency resolution in the analysis compared to the STFT, which suffers from a 

fixed window size since any attempt to increase the frequency resolution comes at the 

expense of decreasing the time resolution and vise-versa.  

1.3 Contribution 

The main contribution of this thesis is to study the advantages and disadvantages of 

the time-frequency analysis techniques used for NILM in order to develop a systematic 

analytic approach that will preserve the load signal features in both time and frequency. 

The proposed NILM approach aims to detect common household load operation in close 

to real-time in order to help customers make better choices on their energy use. The 

advanced technique must be robust against noise and interference from other loads, able to 

detect loads with multiple different states, and able to detect when a new load is introduced.  

In this work, the NILM problem is addressed using the wavelet transform which 

provides time-frequency representation of the analysis signals, through the concept of 

wavelet design applied to the NILM problem. In wavelet design, each load signal is 

matched to a pre-designed wavelet that must satisfy the wavelet filters’ properties. The 

wavelet transform is utilized to extract specific load features from the transient signal 

through multi-resolution analyses. Machine learning algorithms are utilized to classify load 

operation based on a training set of known load data and a testing set of unknown load 

data. The performance of this approach is evaluated considering voltage variations, 

frequencies deviations, and harmonics distortion to demonstrate the robustness of the 

approach for different electrical supply conditions. The work presented in this thesis has 
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been published in several peer-reviewed journals and conferences which can be found in 

[13]-[16].  

1.4 Thesis Organization 

This thesis includes six chapters. Chapter 1 explains the motivation of the NILM and 

the issues with existing smart meters. This presents the need for a method to perform load 

disaggregation without intruding on the homeowner, which is followed by the problem 

statement discussing the three different analysis techniques used in NILM with emphasis 

on their pros and cons. Finally, the contribution of this thesis is outlined.  

Chapter 2 discusses the literature review of existing NILM approaches in terms of 

time, frequency, or time-frequency techniques, as well as the sampling rate required for 

each method, and the classification accuracy achieved. Furthermore, the time-frequency 

transforms used in NILM are reviewed with the pros and cons of each method.  

Chapter 3 introduces the wavelet transform and the wavelet design concept used in 

this thesis. This chapter explains the systematic analytic procedures of the wavelet design 

concept including the mathematical background of the wavelet transform, and its 

application to extract the time-frequency features of the load signal when monitored at a 

single point. As a powerful signal processing tool, the wavelet transform is capable of 

handling non-stationary signals, which is the case when considering transient signatures. 

Additionally, the implementation of wavelet design on two different lengths of wavelet 

filters to generate new wavelets with different characteristics is performed.   

 Chapter 4 describes the methodology used to address the NILM problem using the 

wavelet transform. The wavelet library is described and the concept of wavelet-signal 

matching is introduced through the development of the smart matching scheme. Different 
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transient lengths are investigated in order to determine the most ideal signal length. 

Moreover, machine learning classifiers are presented with k-fold cross validation and 

Monte Carlo to calculate classification accuracy. Finally, a test system is designed in which 

the system can be modelled to create a useful dataset.  

Chapter 5 discusses the simulation and experimental results with a detailed 

analysis. A thorough introduction of the test system is presented including methods of 

system modelling. The algorithm is implemented in the simulation environment while 

being tested rigorously by varying the voltage, frequency, and harmonics of the system 

over several trials. The results of these trials are presented and discussed by comparing 

classification accuracies. Additionally, the experimental work performed in this study is 

described with a breakdown of the different hardware components necessary to generate a 

dataset. The results of the experimental test have been presented, discussed, and compared 

to those obtained through simulation.   

Finally, Chapter 6 presents the main conclusion and recommendations regarding 

the time-frequency analysis technique adopted in this thesis, which has proven to be able 

to perform better than any other existing technique. Future work is discussed, which 

includes observing results on a larger wavelet library for higher orders of wavelets, and a 

future investigation into machine learnings role in further improving the methods success.  
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2. Literature Review 

2.1 Introduction 

The literature review is intended to provide a review of existing analysis techniques 

applied to NILM. By reviewing previously published work from a variety of sources the 

reader should be able to understand existing approaches used in NILM, the advantages and 

the disadvantages of each, and the research gaps that exist. The performance of each 

approach will be evaluated based on comparing whether the method is a time, frequency 

or time-frequency analysis technique, the sampling rate of the method, and the types of 

measurements required. At that point, the differences in methods are presented and a 

comparison of classification accuracies is completed. Finally, a performance metric is 

utilized to compare the effectiveness of each method in successfully identifying loads in 

different situations.  

2.2 Previous Work on Non-Intrusive Load Monitoring 

In the literature, previous work can be grouped based on whether the technique is 

time domain, frequency domain or time-frequency domain. These three analysis techniques 

differ in many aspects; hence the subsequent sections are dedicated for such comparison.  

2.2.1 Time Domain Analysis 

By far the most common methods of NILM, time domain techniques rely on 

extracting features contained in the time domain and in particular the active power over a 

given time. Usually these methods use the Root Mean Square (RMS) active power 

measured in 1 second, 10 second, 1 minute, 5 minute, 15 minute or 1 hour timestamps. The 

primary idea for time domain based NILM methods was first proposed by George W. Hart 

in 1992 [3]. Hart proposed that appliance level operation can be extracted by observing the 
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active and reactive power signals of the entire home by detecting when an appliance was 

switched on and comparing that to a list of known appliances. An example of the power 

signals Hart was referring to can be seen in Fig. 2.1 [3]. For example, a load may be 

switched and the change in power is detected as 2 kW. This 2 kW change is compared 

against a list of known loads in the home and matched to the oven knowing the oven is the 

only 2 kW load. Of course, there are many problems with this approach such as how to 

detect an appliance has changed states, multistate appliances, the rate at which data is 

collected, prior knowledge of the loads power draw, and struggling with loads that consume 

the same power. However, this idea initiated NILM research and many researchers today 

still compare their methods to that of Hart. 

  
Fig. 2.1: Example Electric Power Signal Breakdown [3] 

This section presents an overview of the different time domain methods that have 

been applied to the NILM problem. It can be observed in Table 2.1 that most time domain 

methods rely on fast (steady-state) sampling rates, previous knowledge of loads, and 

several electrical quantities. The first methods of NILM depend on examining the change 

in power as Hart had suggested. Mathematically, these methods can be described as 
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calculating active (P) and reactive (Q) power from voltage (V), current (I), and the angle 

between them (𝜃) as seen in Equation (2.1). 

𝑃 = 𝑉𝐼𝑐𝑜𝑠𝜃 
(2. 1) 

𝑄 = 𝑉𝐼𝑠𝑖𝑛𝜃 

The change in power can be calculated as the difference in power at two different 

time periods, as seen in Equation (2.2).  

∆𝑃 = 𝑃 𝑡< − 𝑃 𝑡>  
(2. 2) 

∆𝑄 = 𝑄 𝑡< − 𝑄 𝑡>  

 Dong et al. [17], developed a windowing technique to analyze only small portions 

of a power signal for the change in power. By doing so, they reduced the computational 

complexity and only focused on a portion of the total signal. This also allowed their method 

to be much faster in classifying load operation than what had previously been proposed. 

Henao et al. [18], proposed the use of subtractive clustering as a method to detect load 

operation by using the change in active power. They started with the assumption that all of 

the different load powers summed up to the total power plus some error, which can be seen 

in Equation (2.3). The load operation was determined using machine learning and 

subtracting each known load from the total power of the home. The main limitation with 

this approach is the error increases when many loads are switched on at the same time. 

𝑃 𝑘 = 𝑝A 𝑘 + 𝑒A(𝑘)

DE

AF>

 (2. 3) 

Where P is the total active power of all loads, 𝑝A is the active power of appliance i, 

e is the estimated error for that appliance, and 𝑁H is the number of loads in the home. 
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Another common method of NILM that was extensively discussed in the literature 

is appliance mapping. Appliance mapping can be described as capturing multiple different 

types of information and mapping them onto a physical space. The most common examples 

of these methods are V-I trajectory [19] or P-Q space [20]-[23]. Examples can be observed 

in Fig. 2.2 and 2.3 below. 

  

Fig. 2.2: Example of V-I Trajectory [19] Fig. 2.3: Example of P-Q Mapping [3] 

Combining this with the knowledge of different load types which may draw the 

same active power or current may be seen as a compelling way of determining appliance 

operation. The main pitfall of this method is that large resistive loads (e.g., electric oven, 

electric water heater, electric heat, electric dryer) all appear in the same area of the map 

due to their similarity in having a low reactive power component.  

In addition to these methods, step changes associated with the change in power over 

a longer period of time have been examined. Most loads do not simply turn on 

momentarily, as what is assumed in the previous methods, but instead take time to start up. 

This causes these loads power signatures to appear to switch on in a series of steps. Other 

loads are multi-state, which have multiple different operations which can each appear to 

be a new load (e.g., washing machine has rinse, wash, spin). Bijker et al. [24] pursued this 
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method by using an optimization approach to discover step changes while considering the 

time between every step. The time and the active power magnitude are able to more 

accurately predict whether a load has changed states or whether a new load has been 

switched on, as well as what load is in operation. Le et al. [25] added to this approach by 

using the least absolute error, differences in state, and probability with time and the active 

power to determine load states in order to classify load operation.   

More recently, time domain analysis techniques have shifted to Hidden Markov 

Models (HMM). In HMM, probability theory combined with unobserved states are utilized 

to build a mathematical model that can be used for applications where the state is not 

known, but the output associated with the state is known. This creates a useful method for 

NILM because it is simple to determine if a load is on (by looking at the power or current), 

but difficult to determine every load state for that time. An example could be if a home is 

consuming 1 kW, each load state is unknown, but what is known is that a load or 

combination of loads are on. HMM can be implemented to narrow down the number of 

possible different states by removing states that are not possible or that are improbable 

based on parameters such as time or energy consumption. Egarter et al. [26] use a HMM 

with Particle Filtering to detect appliance states, where Particle Filtering is a method of 

estimating states in nonlinear and non-Gaussian situations. Once these states have been 

estimated, Factorial HMM can be employed to create a model of a user’s power 

consumption in order to perform load classification. Makonin et al. [27] define super states 

to create models using Factorial HMM, in order to combine several HMMs to determine 

load states, where Factorial HMM creates chains for each load of different states (on/off), 

which allows for combining HMMs for multi-state appliances. Viterbi’s algorithm is 
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employed to keep dependencies between loads but is modified in their work for multi-state 

loads. Machine learning techniques are utilized to determine appliance states, as well as 

load operation.  

Together, these analysis techniques represent the majority of different time domain 

approaches that exist in literature, which can be grouped into: applying the change in 

power, appliance mapping, observing step changes, and implementing Hidden Markov 

Models. Table 2.1 compares the approaches discussed earlier by considering the 

differences in measurements required, if a previous knowledge of loads is necessary, the 

sampling rate, and the overall classification accuracy. It is important to note that 

classification accuracies should not be compared directly due to differences in datasets, 

load types, sampling rates and the type of measurement required in each method.  

Table 2.1: NILM Methods based on Time-domain Analysis Techniques 

Type of 
Method Reference Measurements 

Required 

Previous 
Knowledge 

of Loads 

Sampling 
Time 

Classification 
Accuracy 

Change in 
Power 

[3] V, I, P, Q Yes 1 second N/A 
[17] P, Q Yes 1 second 96% 
[18] P Yes 1 second 86% 

Appliance 
Mapping 

[19] V, I Yes 1 second 99% 
[20] P, Q Yes 1 second 99% 
[21] P, Q Yes 1 second 96% 
[22] P, Q, f Yes 1 second 98% 

[23] P,Q Yes 0.1 
seconds 80% 

Step 
Changes 

[24] P Yes 1 second 56% 
[25] P Yes 1 second 98% 

Hidden 
Markov 
Model 

[26] P Yes 1 second 90% 

[27] I, P, Q Yes 3 second 99% 
 



14 
 

2.2.2 Frequency Domain Analysis 

Some existing NILM methods are based on a frequency domain analysis where 

harmonics and change in frequency are employed to predict load operation. Chang et al. 

[28] proposed an approach in which harmonics are extracted as a feature set, with Particle 

Swarm Optimization (PSO) implemented on the feature set repeatedly until a load is 

chosen. Consequently, a neural network was designed for classification of appliance 

operation. In [29], Electro-Magnetic Interference (EMI) signatures (also known as radio 

frequency interference) of loads are collected and analyzed using frequency domain 

analysis and Principal Component Analysis (PCA). In PCA, the feature vector (harmonics) 

is determined by performing a projection into PCA space followed by calculating the 

smallest eigenvalues for the eigenvectors, which is useful in reducing the dimensionality 

and determining load operation. Chong et al. [30] employed a lookup table to compare 

different harmonic magnitudes against a known list, which was developed for each load. 

In total, they investigated 15 different harmonic orders for three different loads in order to 

distinguish loads with a high degree of accuracy. Table 2.2 compares the frequency domain 

approaches by considering the differences in measurements required, if a previous 

knowledge of loads is necessary, the sampling rate, and the overall classification accuracy. 
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Table 2.2: NILM Methods based on Frequency-domain Analysis Techniques 

Type of 
Method Reference Measurements 

Required 

Previous 
Knowledge 

of Loads 

Sampling 
Rate 

Classification 
Accuracy 

Optimization 
Approaches [28] V, I Yes 6kHz 96% 

Principal 
Component 
Null Space 
Analysis 

[29] EMI Yes 2MHz 80% 

Harmonic 
Comparison [30] V, I Yes 1.8kHz 90% 

 

2.2.3 Time-Frequency Domain Analysis 

Time-frequency analysis techniques combine the benefits of both time and frequency 

domain techniques since they can preserve both time and frequency information. 

Researchers identified that a significant number of appliances cannot be detected in time 

or frequency domains due to similarities in load type and power consumption, but could 

easily be detected by analyzing the switching transients of these loads in a joint time-

frequency domain. Switching transients are unique, and have been used in other power 

related applications such as predicting failure of a power system [31]-[32]. These switching 

transients occur for a few cycles, meaning they require fast sampling rates and are 

described as short signals which look similar to communication signals. This has led 

researchers to approach the NILM problem in a similar manner to communication signal 

processing. The STFT is a time-frequency method of performing feature extraction on a 

short signal by introducing a windowing function into the Discrete Fourier Transform 

(DFT). 
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𝑋[𝑓, 𝜏] = 𝑥[𝑛]𝑔 𝑛 − 𝜏 𝑒OA<PQR
S

RFOS

 (2. 4) 

 The STFT can be observed in Equation (2.4), where x[n] is a time domain 

representation of the target signal, X[f] is the frequency domain representation of the target 

signal and g[𝑛] is the window function with a fixed window size of 𝜏. Duarte et al. [33] 

proposed processing the voltage waveform using the STFT with a fast sampling rate 

achieving mediocre results due to the nature of the voltage switching transients. Leeb et al. 

[34]-[35] considered using both the voltage and current waveforms with a much lower 

sampling rate allowing them to achieve high classification accuracies. However, their work 

was not tested on a large number of different load types. Kong et al. [36] applied Cepstrum 

smoothing to the voltage waveform to remove noise in order to analyze the signal in the 

quefrency domain.  

The Hilbert transform (HT) was introduced in [37] as another method of performing 

a time-frequency analysis of switching transients. The HT can be described as the 

convolution of the target signal with 1/πt, which forces the integral in the convolution to 

diverge. The Cauchy principal value is applied in order to define the HT. In the HT, phase 

selectivity is employed in order to perform time-frequency analysis by shifting the positive 

and negative frequencies by 90°. Equation (2.5) shows the HT, where 𝑔(𝑡) is the HT of 

g(s). 

𝑔(𝑡) =
1
𝜋

𝑔(𝑠)
𝑡 − 𝑠

S

OS
𝑑𝑠 (2. 5) 
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The Fourier Transform (FT) of the HT can be calculated showing the relationship 

between the FT and HT, as seen in Equation (2.6). Where j=√-1, sgn(f) is the signum 

function and G(f) is the FT of g(s). 

𝐺 𝑓 = −𝑗𝑠𝑔𝑛 𝑓 𝐺(𝑓) (2. 6) 

The Wavelet Transform (WT) is a time-frequency analysis representation that is 

suitable for nonstationary signals. The WT is unlike the STFT which uses the sine and 

cosine functions as the base signals for the analysis with a fixed window size, while, the 

WT uses a large library of wavelet functions having different characteristics with variable 

window length. This variable window size allows for better time-frequency resolution 

compared to the STFT, which suffers from a fixed window size where any attempt to 

increase the frequency resolution decreases the time resolution and vise-versa. Equation 

(2.7) demonstrates the WT where x[t] is the target signal, w[t] is the chosen wavelet and υ 

and φ are the scale and shift parameters, respectively.  

𝑋[𝑓] =
1
𝜐

𝑥 𝑡 𝑤
𝑡 − 𝜑
𝜐

S

2FOS

 (2. 7) 

In the literature, the current waveform is utilized with the WT due to the number of 

features contained in the current waveform when compared to the number of features found 

in the voltage waveform. Chang et al. [38]-[43], have presented extensive work in this area 

in which they have found accuracies greater than 90% for many load types while analyzing 

different features. Duarte et al. [33] compared their work in the STFT to the WT to 

demonstrate an increase in accuracy, while Mathis et al. [44] proposed technical labelling 

with the WT to improve accuracy.  
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These techniques use time-frequency analysis to demonstrate a strong 

representation of the time-frequency approaches that exist in the literature. Each of these 

different methods can be categorized into: the short time Fourier transform, the Hilbert 

transform, and the wavelet transform. Table 2.3 compares these techniques by analyzing 

the different measurements required, if a previous knowledge of loads is imperative, the 

sampling rate, and the overall classification accuracy. The reader should note that the 

majority of these methods utilize a sampling rate of 3-30kHz and the current waveform to 

perform NILM. 

Table 2.3: NILM Methods based on Time-Frequency Domain Analysis Techniques 

Type of 
Method Reference Measurements 

Required 

Previous 
Knowledge 

of Loads 

Sampling 
Rate 

Classification 
Accuracy 

Short Time 
Fourier 

Transform 

[33] V Yes 2.605MHz 71% 
[34] [35] V, I Yes 7.7kHz 100% 

[36] V Yes 5kHz 96% 
Hilbert 

Transform [37] I Yes 1kHz 93% 

Wavelet 
Transform 

[33] V Yes 2.605MHz 80% 
[38] I Yes 15.36kHz 100% 
[39] I Yes 15.36kHz 96% 
[40] I Yes 7.68kHz 100% 
[41] V, I Yes 3.84kHz 88% 
[42] I Yes 15.36kHz 90% 
[43] I Yes 30.72kHz 96% 
[44] V, I Yes 5kHz 95% 

 

2.3 Performance Metrics 

The performance metric of each method is calculated based on the criteria described 

below. Each technique will be compared against the others in time, frequency and time-

frequency analysis. Three metrics will be used to compare each method, the different 

electrical measurements required, the sampling rate and the corresponding classification 
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accuracy. For different electrical measurements, a higher score represents if fewer 

measurements are necessary as well as how simple those measurements are to collect. For 

different sampling rates, a higher score will be assigned to lower sampling rates as a lower 

sampling rate suggests less data is required leading to small storage size with less 

computational burden. Lastly, classification accuracy is the actual ability of each method 

to correctly predict load operation. All of these metrics represent a numeric quantity that 

can be compared in a scientific manner.  

A tool known as pairwise comparison can be employed to weight and judge 

individual metrics so a final performance score can be calculated. Table 2.4 shows the 

pairwise comparison for the three NILM performance metrics. A weight for individual 

metrics is calculated using Equation (2.8) based on the importance of that metric relative 

to the other metrics. It can be observed that classification accuracy is highest (w=0.5), while 

the sampling rate and the measurements required are equal (w=0.25). This becomes clear 

as it is expected that classification accuracy be the most important since if the algorithm is 

not accurate the other metrics are insignificant.  

𝑤A =
𝑚A,]

^
]F_

𝑚`,]
^
]F_

^
`F_

 (2. 8) 

where 𝑤A is the weight for row i, L is the number of metrics, and k and j correspond 

to the row and column, respectively.  
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Table 2.4: Pairwise Comparison of Performance Metrics 

 Measurements 
Required 

Sampling 
Rate 

Classification 
Accuracy Weighting 

Measurements 
Needed 1 1 1/2 0.25 

Sampling Rate 1 1 1/2 0.25 
Classification 

Accuracy 2 2 1 0.5 

 

As a result of the numeric comparison of the performance metrics, a numeric way of 

quantifying a score for each technique is required. Particular metrics need their own 

method of defining a scale. For the required measurements, the scale can be determined 

based on more quantities which represents a lower score in a linear fashion, where not all 

measurements are equal. This is caused by some metrics being a combination of others 

(i.e., Power is the product of voltage and current) while others are more difficult to 

measure. Therefore, each measurement will be given the scores presented in Table 2.5 

where a combination of metrics will have a lower score. 

Table 2.5: Measurement Type Scores 

Metric Score (%) 
Voltage (V) 100 
Current (I) 100 

Voltage and Current 50 
Active Power (P) 50 

Reactive Power (Q) 50 
Apparent Power (S) 50 

Active, Reactive and Frequency 33 
EMI 33 

 

Moreover, a scoring system for the sampling rate is also required. The sampling rate 

is a difficult metric to evaluate due to the vast difference in the analysis types. In time-
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domain analysis, RMS measurements are taken at certain time steps, in order to calculate 

RMS values using Nyquist sampling theorem. In other words, the minimum sampling rate 

required to calculate RMS measurements in theory must be at least 120Hz (60Hz×2). 

However, in reality, the sampling rate must be higher than 120Hz to account for sampling 

the waveform in poor places such as at the zero crossing. Therefore, the minimum sampling 

rate recommended for time domain analysis is 240Hz. Nevertheless, in time-frequency 

domain analysis the fastest sampling rate called for in the literature is 2.605MHz. Using 

this information, maximum and minimum scores are determined based on the slowest 

sampling rate of 240Hz and the highest sampling rate of 3MHz. Accordingly, 240Hz 

corresponds to a score of 100% while 3MHz corresponds to a score of 0%. Furthermore, a 

sampling rate of 50kHz can be selected as the middle value (50%), considering most 

common DAQ / A2D hardware samples up to 50kHz, where anything faster requires more 

expensive hardware. Knowing these three points, a scoring line can be created using a 

logarithmic regression line, which is chosen due to the fact that it quickly decreases to its 

mid-point of (50%), allowing it to be ideal in order to compare methods that have similar 

sampling rates in the 2-30kHz region. Logarithmic regression lines decrease at a slower 

pace for the remaining 50% so as to not significantly hinder methods with faster sampling 

rates. The equation of the logarithmic regression line can be calculated using the maximum 

(3MHz), minimum (240Hz) and midpoint (50kHz), which can be seen in Equation (2.9). 

The plot of the logarithmic regression line can be seen in Fig. 2.2. 

y =-10.54×ln(x)+159.66 (2. 9) 
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Fig. 2.4 Logarithmic Regression Line for a Performance Metric of Sampling Frequency 

The last metric that needs to be determined is for classification accuracy. This metric 

can be taken directly as the percentage of correct classifications between 0 and 100%.  

2.3.1 Calculating the Performance of Each Method 

As a result of the performance evaluation system, each method can be compared 

against the three performance metrics discussed in the section above. Specifically, the 

measurements required, the sampling rate, and the classification accuracy. At this point, a 

final score can be calculated for individual techniques based on the weightings shown in 

Table 2.4. In Table 2.6, metrics are calculated for each method, and a final score is 

presented. 
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Table 2.6: Performance of Each Method 

Analysis 
Techniqu

e Method Referenc
e 

Measurement
s Required 

(%) 

Samplin
g Rate 

(%) 

Classificatio
n Accuracy 

(%) 

Final 
Scor

e 
(%) 

Ti
m

e 
D

om
ai

n 
A

na
ly

si
s 

Change in 
Power 

[3] 50 100 N/A N/A 
[17] 50 100 96 85.5 
[18] 50 100 86 80.5 

Appliance 
Mapping 

[19] 50 100 99 87 
[20] 50 100 99 87 
[21] 50 100 96 85.5 

[22] 33 100 98 82.2
5 

[23] 50 100 80 77.5 
Step 

Changes 
[24] 50 100 56 65.5 
[25] 50 100 98 86.5 

Hidden 
Markov 
Model 

[26] 50 100 90 82.5 

[27] 50 100 99 87 

Fr
eq

ue
nc

y 
D

om
ai

n 
A

na
ly

si
s 

Optimizatio
n 

Approaches 
[28] 50 68 96 77.7 

Principal 
Component 
Null Space 
Analysis 

[29] 33 7 80 50 

Harmonic 
Comparison [30] 50 81 90 77.7

5 

Ti
m

e-
Fr

eq
ue

nc
y 

D
om

ai
n 

A
na

ly
si

s 

Short Time 
Fourier 

Transform 

[33] 100 4 71 61.5 

[34] [35] 50 65 100 78.7
5 

[36] 100 70 96 90.5 
Hilbert 

Transform [37] 100 87 93 93.2
5 

Wavelet 
Transform 

[33] 100 4 80 66 
[38] 100 58 100 89.5 
[12] 100 58 96 87.5 

[40] 100 65 100 91.2
5 

[41] 50 73 88 74.7
5 

[42] 100 58 90 84.5 

[43] 100 51 96 85.7
5 

[44] 50 70 95 77.5 
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2.4 Summary 

In this chapter, three different analysis techniques of performing NILM have been 

investigated: time domain analysis, frequency domain analysis, and time-frequency 

domain analysis. These techniques all differ in many ways and as such were investigated 

separately in this literature review. Each method of NILM was explained and sampling 

rates were compared to demonstrate the variety of different approaches and signal types 

that have attempted in literature. A performance metric was developed in order to compare 

each method. In Table 2.6, the performance metrics in bold represent the best attempt to 

date for the methods discussed in this literature review. In order to further research in the 

area of NILM, two different directions exist. In time domain analysis, HMM is in the area 

of interest around methods of mathematical modeling different states. In time-frequency 

domain analysis, the WT has produced intriguing results based on feature extraction to 

identify loads. Several unanswered questions still exist such as: the choice of wavelet to 

use in the WT, as well as the ideal length of wavelet filter. 

The subsequent chapters in this thesis will answer these questions by developing a 

systematic approach that can be employed for different loads in many possible 

configurations under all load conditions. 
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3. Orthogonal Wavelet Design 

3.1 Introduction 

Time-frequency analysis techniques provide a time-frequency representation of the 

analysis signal which allows for the signal information to be preserved in both time and 

frequency. The wavelet transform as a time-frequency representation of the signal, has a 

large library of wavelet families that have different wave shapes which offers great 

flexibility in representing the waveform in the time and frequency domains. To date, little 

research has been conducted regarding the choice of the wavelet functions in the NILM 

application. This chapter will thoroughly describe the discrete wavelet transform, followed 

by a detailed explanation of how the energy of the coefficients can be calculated using 

multi resolution analyses for feature extraction. Additionally, the wavelet design concept 

will be introduced, including an explanation of the process of generating a family of new 

wavelets. Finally, two different methods of choosing a unique wavelet from the set of 

designed wavelets will be presented. These two methods are Procrustes and covariance 

analysis, both of which are common mathematical methods of comparing two different 

shapes.  

3.2 Discrete Wavelet Transform 

This section introduces the Fourier Transform (FT), the STFT, and the WT. The 

Discrete FT can be described mathematically in Equation (3.1). 

𝑋[𝑓] =
1
𝑁 𝑥[𝑡]𝑒OA<PQ2/D

DO>

2F>

  (3. 1) 
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In Equation (3.1), the target signal is represented as x(t), the function to perform the 

FT is 𝑒OA<PQ2/D, and the frequency representation of the target signal is X(f), where t is 

time, f is the frequency, and N is the length of the signal. The FT has several complications 

in signal processing, first, the window size is fixed since the FT is computed for the entire 

signal at once, which creates problems in the case of non-stationary signals. Moreover, the 

time information in the signal is lost since the transform provides only amplitude-frequency 

spectrum of the signal. Second, the basic functions used to compute the FT are fixed (i.e., 

sine or cosine), proving the solution space in which the transform exists is always the same. 

The first complication of having a fixed window size for the entire function can be partly 

corrected by inserting a fixed moving window into the transform. This change allows a 

fixed window size over smaller sections of the waveform, which is the STFT.  

In Equation (2.4), the STFT is presented with the only adjustment being the insertion 

of the moving window function 𝑔 𝑡 − 𝜏 , where 𝜏 is the amount in which the window shifts 

at one time. The addition of the moving window in the time domain creates a new issue. 

As the moving window in time gets smaller, the frequency resolution gets higher but at a 

poor time resolution. This trade-off should be realized when using the STFT. In order to 

address the previous complication of a fixed window size, as well as the problem of using 

the basic sine and cosine functions, the wavelet transform was developed. The WT has a 

non-fixed window size which allows for more than one function to be used in the transform. 

To change the window size, two parameters have been used in the transform, these 

parameters are υ and φ, which signify the time scale and shift parameters, respectively. In 

addition, the basic functions in the FT and STFT can be replaced by a function, w(t) which 

can be described as the mother wavelet as seen in Equation (2.7). The mother wavelet w(t), 



27 
 

is a compactly supported function for which the baby wavelets form an orthogonal basis. 

Baby wavelets are scaled and shifted waveforms of mother wavelets where baby wavelets 

follow two main conditions: wavelet coefficients must be normalized and wavelets must 

follow double shift orthogonality. These conditions will be explained in more detail in the 

wavelet design section of this chapter.  

Additionally, the WT can be mathematically represented using Multi-Resolution 

Analysis (MRA). In MRA, the signal x[t] is broken down into a sum of its high and low 

frequency components. These components form an orthonormal basis, and are linked to 

the low pass and high pass filters by Equation (3.2). For more information on MRA, the 

reader may refer to [45]. 

𝑉 𝑡 = ℎ_(𝑘) 2𝑉(2𝑡 − 𝑘)
`

 

𝑊 𝑡 = ℎ>(𝑘) 2𝑉(2𝑡 − 𝑘)
`

 

(3.2) 

Where ℎ_ is the low pass filter coefficients, ℎ> is the high pass filter coefficients, V 

is the scaling function and W is the wavelet function. 

MRA can be described as the signal passing through a series of filters which will split 

the signal into its low and high frequency components. This process is called 

decomposition, where the number of decomposition levels (filters) is related to the 

sampling frequency. For each decomposition level, there is an approximation of the signal 

and a number of details that correspond to the decomposition level. The signal can be 

synthesized from the approximation (low frequency) and the details (high frequency). The 

approximation and each detail represent a separate frequency range, which, therefore 

correspond to the series of filters. These coefficients have extracted unique parts of the 
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signal from that frequency range which make them useful in feature extraction. An example 

of three levels of decomposition for a target signal using the wavelet ‘db5’ can be seen in 

Fig. 3.1 where the MATLAB Wavelet Toolbox was utilized to complete the decomposition 

[46]:  

 

Fig. 3.1: Multi-resolution Analysis Example 

Where s is the target signal, a3 is the approximation for three levels of 

decomposition, and d1, d2 and d3 are the details for each level. 

𝑐𝐴f
] (𝑙) = 𝑋, 𝑉],h  

𝑐𝐷f
](𝑙) = 𝑋,𝑊],h  

(3.3) 

Mathematically, this can be represented in Equation (3.3) where A is the 

approximation, D is the detail and j is the decomposition level. 
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3.3 Feature Extraction and Identification 

In the wavelet transform, the details and approximation of the wavelet transform are 

unique to the signal being transformed which can be described as features. The energy of 

each of the coefficients can be calculated, as to not have a signal for each feature, but rather 

a single set of values that can be considered as the features for each waveform. To calculate 

the energy of the coefficients for the approximation and the details, Equation (3.4) is used.  

𝐸"klm
= 𝑐𝐴f

] (𝑙)
<

h

 

𝐸"nlm
= 𝑐𝐷f

](𝑙)
<

h

 
(3.4) 

3.4 Wavelet Design Procedures 

3.4.1 Introduction  

In general, wavelets are time localized signals that share a special set of properties 

(e.g., normalization, double shift orthogonality) that allow them to be used to extract 

features from a target signal. Previous work on wavelets utilized a standard set of wavelets, 

due to their ease of use and inclusion in the MATLAB Wavelet Toolbox [46]. However, 

the small section of wavelets families represented in the MATLAB Wavelet Toolbox (i.e., 

Daubechies (db) family of wavelets which are compactly supported orthonormal wavelets), 

do not represent the full scope of wavelets that exist as well as what can be used in power 

system applications such as NILM. In fact, the wavelet families that exist in MATLAB are 

usually better suited to other signal processing applications such as compression, video or 

image processing. Therefore, this section will thoroughly describe the design constraints 

around wavelets, as well as create a new family of wavelets for the NILM application. 

Lastly, a library of wavelets will be created for several different lengths of wavelet filters.  
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3.4.2 Wavelet Filter Properties 

 In order to design wavelets, the properties of wavelets must first be examined. The 

two scale equations described in Equation (3.2) can be used as a starting point in this 

investigation. Specifically, by substituting t-n for t into the scaling function V(t), it 

becomes delayed by the integer n.  

𝑉 𝑡 − 𝑛 = ℎ_(𝑘) 2𝑉(2(𝑡 − 𝑛) − 𝑘)
`

= ℎ_(𝑘) 2𝑉(2𝑡 − 2𝑛 + 𝑘 )
`

 (3.5) 

Next, m=k+2n can be substituted into Equation (3.5).  

𝑉 𝑡 − 𝑛 = ℎ_(𝑚 − 2𝑛) 2𝑉(2𝑡 − 𝑚)
o

= ℎ_(𝑘 − 2𝑛) 2𝑉(2𝑡 − 𝑘)
`

 (3.6) 

Similarly, the same procedure can be followed for the wavelet function W(t).  

𝑊 𝑡 − 𝑛 = ℎ>(𝑘 − 2𝑛) 2𝑉(2𝑡 − 𝑘)
`

 (3.7) 

This leads to a compelling result, since the time shift of the scaling and wavelet function 

are orthogonal as seen in Equation (3.8), where 𝛿 𝑡  is the delta-dirac function. 

𝑉 𝑡 𝑉 𝑡 − 𝑛 𝑑𝑡 = 𝛿 𝑡 = ℎ_(𝑘)ℎ_(𝑘 − 2𝑛)
`

S

OS
 

𝑊 𝑡 𝑊 𝑡 − 𝑛 𝑑𝑡 = 𝛿 𝑡 = ℎ>(𝑘)ℎ>(𝑘 − 2𝑛)
`

S

OS
 

𝑉 𝑡 𝑊 𝑡 − 𝑛 𝑑𝑡 = 0 = ℎ_(𝑘)ℎ>(𝑘 − 2𝑛)
`

S

OS
 

(3.8) 

In addition, this can be utilized to determine the properties of the low pass and high pass 

filters. 
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Property 1: n=0 

ℎ_
< 𝑘 = 1, ℎ>

< 𝑘
q

= 1	
`

 (3.9) 

Property 2: n≠0 

ℎ_(𝑘)ℎ_(𝑘 − 2𝑛) = 0, ℎ>(𝑘)ℎ>(𝑘 − 2𝑛)
`

= 0	
`

 (3.10) 

Property 3: h1(k) is an alternating flip of h0(k), therefore there is an odd integer M that: 

ℎ> 𝑘 = −1 `ℎ_(𝑀 − 𝑘) (3.11) 

Where h0(k) is low pass since: 

−1 `ℎ_ 𝑘 = 0
`

 
(3.12) 

These properties as described in Equations (3.9) – (3.12) form the minimum requirements 

necessary to design the low pass filter h0(k) and the high pass filter h1(k). 

3.4.3 Design Fundamentals 

3.4.3.1 Length-2 Filter 

In the case of wavelet design for the length-2 filter, the two filter coefficients are 

h0(0) = ±1/√2 and h0(1) = h0(0). This leads to a unique solution using properties 1 and 3, 

but does not provide any degrees of freedom to conduct wavelet design. Therefore, wavelet 

design in the length-2 filter is not feasible, as such it will not be presented in this thesis. 

3.4.3.2 Length-4 Filter 

In the case of wavelet design for the length-4 filter, a parametric solution exists using 

properties 1 and 3, which only provides one degree of freedom to conduct wavelet design. 
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This significantly limits the number of wavelet design possibilities for the length-4 filter 

rendering it useless for NILM. The target goal of this wavelet design process is to match 

wavelets based on their shape to unique loads in order to perform NILM. But in the case 

of the length-4 filter, there is not enough variety in shape to perform a pattern analysis. 

Therefore, wavelet design in the length-4 filter will not be presented in this work. 

3.4.3.3 Length-6 Filter 

In the case of wavelet design for the length-6 filter, a solution with two degrees of 

freedom exists with filter coefficients h0(0), h0(1), h0(2), h0(3), h0(4), h0(5). When 

substituting these filter coefficients into the three properties described in Equations (3.9) - 

(3.12), the following equations for h0 can be determined: 

Property 1: 

ℎ_< 0 + ℎ_< 1 + ℎ_< 2 + ℎ_< 3 + ℎ_< 4 + ℎ_< 5 = 1 (3.13) 

Property 2: 

ℎ_ 0 ℎ_ 2 + ℎ_ 1 ℎ_ 3 + ℎ_ 2 ℎ_ 4 + ℎ_ 3 ℎ_ 5 = 0 

ℎ_ 0 ℎ_ 4 + ℎ_ 1 ℎ_ 5 = 0 
(3.14) 

Property 3: 

ℎ_ 0 − ℎ_ 1 + ℎ_ 2 − ℎ_ 3 + ℎ_ 4 − ℎ_ 5 = 0 (3.15) 

These properties create four equations and six unknowns, thus allowing two degrees of 

freedom. A solution in terms of two parameters, a and b is calculated. 
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ℎₒ 0 =
1 + cos 𝑎 + 𝑠𝑖𝑛 𝑎 1 − cos 𝑏 − sin 𝑏 + 2 sin 𝑏 cos 𝑎

4 2
 

ℎₒ 1 =
1 − cos 𝑎 + sin 𝑎 1 + cos 𝑏 − sin 𝑏 − 2 sin 𝑏 cos 𝑎

4 2
 

ℎₒ 2 =
1 + cos 𝑎 − 𝑏 + 𝑠𝑖𝑛 𝑎 − 𝑏

2 2
 

ℎₒ 3 =
1 + cos 𝑎 − 𝑏 − 𝑠𝑖𝑛 𝑎 − 𝑏

2 2
 

ℎₒ 4 =
1
2
− ℎₒ 0 − ℎₒ(2) 

ℎₒ 5 =
1
2
− ℎₒ 1 − ℎₒ(3) 

(3.16) 

Which	can	be	simplified	using	trigonometric	identities	and	setting	c=π/4	–a-b	to:	

ℎₒ 0 = cos(𝑐)×𝑐𝑜𝑠(𝑏)×𝑐𝑜𝑠(𝑎) 

ℎₒ 1 = cos(𝑐)× cos 𝑏 × sin(𝑎) 

ℎₒ 2 =– cos 𝑐 × sin 𝑏 × sin 𝑎 − [sin(𝑐)×sin(𝑏)×cos(𝑎)] 

ℎₒ 3 =– cos 𝑐 × sin 𝑏 × sin 𝑎 − [sin(𝑐)×sin(𝑏)×sin(𝑎)] 

ℎₒ 4 =– sin(c)×cos(b)×sin(a) 

ℎₒ 5 = sin 𝑐 × cos 𝑏 ×cos(𝑎) 

(3.17) 

The final step in the wavelet design process is to choose numeric values for a and b. 

The goal of this design process is to design a set of wavelets to be matched to load signals. 

Another important note is that a and b are only used inside sine and cosine functions. 
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Therefore, a and b can be varied between –π and π to solve for all possible combinations 

of wavelet filter coefficients. In this manner, all of the different possibilities of wavelet 

shapes are incorporated into the design process. Accordingly, a resolution is required in 

order to determine a quantity to vary each parameter by. A resolution of 0.1 × π is selected 

as it was observed experimentally that any further increase in resolution did not produce a 

significant change in wavelet shape. This computation was performed in MATLAB for 

each of the 21 steps (-0.1×(- π to π)) for a and b, respectively, where 441 (212=441) 

different wavelets were designed. 

3.4.3.4 Length-8 Filter 

In the case of wavelet design for the length-8 filter, a solution with three degrees of 

freedom exists, where the filter coefficients are h0(0), h0(1), h0(2), h0(3), h0(4), h0(5), h0(6), 

h0(7). When substituting these filter coefficients into the three properties presented in 

Equations (3.9) - (3.12), the following equations for h0 can be determined: 

Property 1: 

ℎ_< 0 + ℎ_< 1 + ℎ_< 2 + ℎ_< 3 + ℎ_< 4 + ℎ_< 5 + ℎ_< 6 + ℎ_< 7 = 1 (3.18) 

Property 2: 

ℎ_ 0 ℎ_ 2 + ℎ_ 1 ℎ_ 3 + ℎ_ 2 ℎ_ 4 + ℎ_ 3 ℎ_ 5 + ℎ_ 4 ℎ_ 6

+ ℎ_ 5 ℎ_ 7 = 0 

ℎ_ 0 ℎ_ 4 + ℎ_ 1 ℎ_ 5 + ℎ_ 2 ℎ_ 6 + ℎ_ 3 ℎ_ 7 = 0 

ℎ_ 0 ℎ_ 6 + ℎ_ 1 ℎ_ 7 = 0 

(3.19) 
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Property 3: 

ℎ_ 0 − ℎ_ 1 + ℎ_ 2 − ℎ_ 3 + ℎ_ 4 − ℎ_ 5 + ℎ_ 6 − ℎ_ 7 = 0 (3.20) 

These properties create five equations and eight unknowns, thus allowing three degrees of 

freedom. A solution is determined in terms of three parameters, d, e and f, where g=	π/4	

–d-e-f. 

ℎₒ 0 = cos 𝑔 × cos 𝑓 × cos 𝑒 × cos 𝑑  

ℎₒ 1 = cos 𝑔 × cos 𝑓 × cos 𝑒 × sin 𝑑  

ℎₒ 2 =– cos 𝑔 × cos 𝑓 × sin 𝑒 × sin 𝑑 − cos 𝑔 × sin 𝑓 × sin 𝑒 × cos 𝑑

− sin 𝑔 × sin 𝑓 × cos 𝑒 × cos 𝑑  

ℎₒ 3 = cos 𝑔 ×cos 𝑓 ×sin 𝑒 × cos 𝑑 − cos 𝑔 × sin 𝑓 × sin 𝑒 × sin 𝑑

− sin 𝑔 × sin 𝑓 × cos 𝑒 × sin 𝑑  

ℎₒ 4 =– cos 𝑔 ×sin 𝑓 ×cos 𝑒 × cos 𝑑 − sin 𝑔 × sin 𝑓 × sin 𝑒 × sin 𝑑

− sin 𝑔 × cos 𝑓 × sin 𝑒 × cos 𝑑  

ℎₒ 5 = cos 𝑔 ×sin 𝑓 ×cos 𝑒 × cos 𝑑 − sin 𝑔 × sin 𝑓 × sin 𝑒 × cos 𝑑

− sin 𝑔 × cos 𝑓 × sin 𝑒 × sin 𝑑  

ℎₒ 6 =– sin g × cos f × cos e × sin d  

ℎₒ 7 = sin g × cos f × cos e × cos d  

(3.21) 

Similarity to the length-6 filter design, the last step in the design process is to 

determine numeric values for d, e and f. Hence, d, e and f will be varied between –π and π, 

to match the length-6 design process, which creates all of the different possibilities of 
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wavelets. Finally, a resolution of 0.1 × π is implemented for each possible parameter as it 

was found experimentally that any additional increase in resolution does not produce a 

variation in change in shape. Overall, this computation was performed in MATLAB for 

each of the 21 steps of d, e and f, respectively where 9261 (213=9261) different wavelets 

were designed. 

3.4.4 Wavelet Clustering 

In section 3.4.3, a set of wavelets of length-6 and 8 were designed totaling 9,702 

different wavelets. This large number of wavelets can cause computational problems due 

to the high computational complexity which requires powerful processing and large storage 

capacity. Therefore, a clustering technique can be developed to group wavelets with similar 

shapes, without removing wavelets that possess a unique shape. Unsupervised k- means 

clustering [47] is implemented based on the Euclidean distance of the wavelet against all 

other wavelets in the set. This process is utilized to group wavelets of the same filter length 

[47]. The Euclidean distance of two wavelets, 𝑊> and 𝑊< is calculated based off of 

Equation (3.22): 

𝐸𝐷 = [𝑊> 𝑙 −𝑊< 𝑙 ]<
^

 
(3.22) 

3.4.4.1 K-means Clustering 

K-means is a well-known method which can partition a dataset, x, into k clusters 

based on a chosen distance metric. In the first iteration, a random set of k starting points is 

chosen as the initial centroids, where each point in x is evaluated against the centroids using 

the distance metric seen in Equation (3.22). K-means sets each point into its closest cluster 
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which forms the preliminary clusters. During the subsequent iterations, the centroids are 

calculated using the mean of all current points in the cluster where each point in x is once 

again evaluated against the centroids. If a point xi is found to be closer to a new cluster, it 

is moved towards that new cluster. This process is repeated until either k-means cannot 

improve the clusters centroid location, which signifies that a solution has been determined, 

or a maximum number of iterations is reached. In this work, 100 iterations have been 

selected as it was experimentally observed that after 100 iterations, the error of the clusters 

did not improve. A number of iterations had to be determined because k-means has the 

possibility of running for a prolonged period of time, where the possibility of finding a 

feasible solution might not be within the time constraints available. 

Once this process was complete for all wavelet pairs, a vector of EDs representing 

the similarity between wavelet pairs was utilized to cluster the wavelets. In order to identify 

the most suitable number of clusters, the Sum of Squares Error (SSE) can be computed for 

all clusters N. 

3.4.4.2 Sum of Square Error (SSE) 

The SSE is the evaluation of a point’s distance to its cluster centroid. Using this 

metric, it is viable to observe the variance of cluster points from the ideal cluster centroid. 

The formula for the SSE is observed in Equation (3.23). 

𝑆𝑆𝐸 = 𝐸𝐷(𝛾A, 𝛾)<�∈�
D
�F> , where 𝛾A =

>
��

𝛾�∈�  (3.23) 

Where Zi is the ith cluster, and 𝛾A is the centroid of cluster Zi with µi data objects in 

the ith cluster. When using clustering techniques, it is known that increasing the number of 
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clusters reduces the SSE. The Silhouette coefficient (Si) is utilized to determine the optimal 

number of representative clusters / wavelets.  

3.4.4.3 Silhouette Coefficient 

The silhouette coefficient [47] is one of the metrics utilized to interpret the validity 

of clusters of data. Silhouette is an effective measure because it evaluates a point’s distance 

to every other point in the same cluster, 𝑎A, where the same point’s distance is compared 

to points in a neighboring clusters, 𝑏A. The equation for the silhouette coefficient can be 

seen in Equation (3.24). 

𝑆A =
(𝑏A − 𝑎A)
max	(𝑎A, 𝑏A)

 (3.24) 

A point is considered well fitted when 𝑆A equals 1, and the whole set of clusters is 

considered well partitioned when the mean of all 𝑆A equals 1. 

3.4.4.4 Golden Section Search 

Golden section search [48] is an optimization technique which employs using the 

golden ratio to find an optimal solution of a unimodal problem. Golden section search is a 

numerical optimization algorithm which searches within a boundary for a solution that is 

either a maximum or minimum. By evaluating a function at 38.2% and 61.8% from within 

its boundaries, it is possible to determine the direction the function is pointing toward [48]. 

By shifting the lower or upper boundary during each iteration, the boundary of the problem 

is restricted to a smaller area where the optimized solution exists. 
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3.4.4.4.1 Optimal Cluster Evaluation 

In order to evaluate which k value is ideal in k-means, the boundary of the problem 

is restricted to k = 1,2,3,…,𝑘o��, where 𝑘o�� and 𝑞 can be calculated using the equations 

in (3.25). 

𝑘o�� =
𝑛

𝐹𝑖𝑏0
 

𝑞 =
𝑤𝑎𝑣𝑒𝑙𝑒𝑡_𝑙𝑒𝑛𝑔𝑡ℎ

2 + 1 

(3.25) 

Where, n is the number of wavelets in the dataset and q is the index number for the 

required Fibonacci number [48]. 

As a result, the number of wavelets in the dataset gets exponentially larger when 

increasing the length of the wavelet coefficients. Therefore, a way to preprocess the range 

where the optimal solution exists is required. By using Fibonacci’s exponential rate of 

increase, it is realistic to choose a number, based on the length of the wavelet, which 

restricts where the optimal k value resides. In Equation (3.26), an example of how to find 

this optimal value for length-6 is presented, in order to find the corresponding q value. 

Where 𝐹𝑖𝑏¡ is the 4th Fibonacci number. 

𝑞 =
6
2 + 1 = 4, 𝐹𝑖𝑏¡ = 3 

𝑘o�� =
441
3 = 147 

(3.26) 

Golden section search can be utilized to process k-means at the two points where 

the golden ratio resides. k-means is implemented with 10 replications to increase the 
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chances at which the precise solution at the specified k value is determined. The Silhouette 

coefficient is calculated for each golden section split, as such the boundary gets smaller 

based on the point that has the greater silhouette coefficient. This is completed for as long 

as necessary until golden section search converges onto one k value that generates a 

silhouette coefficient of 1. Below, in Fig. 3.2 and Fig. 3.3 is a brief example of applying 

this method to length-6 for 3 iterations to show how golden section converges onto the 

optimal k value, where W. is short for Wavelets: 

441 Wavelets

K_min = 1 K_max = 147

147 Wavelets

K_min = 1 K_max = 147K_38.2 = 57 K_61.8 = 91
SIL = 0.7382 SIL = 1

90 Wavelets

K_min = 57 K_max = 147K_38.2 = 92 K_61.8 = 113
SIL = 0.9944 SIL = 0.8708

5 Wavelet

K_min = 89 K_max = 93K_38.2 = 91 K_61.8 = 91
SIL = 1 SIL = 1

...

 

Fig. 3.2: Length-6 Golden Section Example for 3 Iterations 

441 Wavelets

147 W.

90 W.

56 W.

 

Fig. 3.3: Golden Section Converging onto Optimal k value 
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3.4.4.5 Length-6 Wavelet Clustering 

In the case of length-6, the optimal number of clusters was determined to be 91 based 

on a Silhouette coefficient of 1 and an SSE of 4.825×10-29. Fig. 3.4 and Fig. 3.5 present the 

SSE and Silhouette coefficient in the case of the length-6 filter. 

  
Fig. 3.4: Sum of Squares Error vs Number of Representative Wavelets 

  
Fig. 3.5: Silhouette Coefficient vs Number of Representative Wavelets 
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3.4.4.6 Length 8 Wavelet Clustering 

In the case of length-8, the optimal number of clusters was determined to be 820 

based on a Silhouette coefficient of 1 and an SSE of 1.273×10-26. Fig. 3.6 and Fig. 3.7 

present the SSE and Silhouette coefficient in the case of the length-8 filter. 

  
Fig. 3.6: Sum of Squares Error vs Number of Representative Wavelets 

  
Fig. 3.7: Silhouette Coefficient vs Number of Representative Wavelets 
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3.4.4.7 Wavelet Clustering Summary 

To conclude, k-means clustering was implemented with the Euclidean distance on 

each wavelet pair in order to cluster wavelets of the same length. This reduces the 

computational complexity associated with a large number of wavelets. The SSE and 

silhouette coefficient were used to find the optimal number of clusters for each filter length. 

Golden section search was implemented to limit the number of trials in order to find the 

optimal solution. The results of clustering can be seen in Table 3.1 below. 

Table 3.1: Number of Wavelets before and after clustering 

Filter Length Before Clustering 
(Original Wavelets) 

After Clustering 
(Representative Wavelets) 

6 441 91 
8 9,261 820 

 

3.4.5 Wavelet Naming 

After the designed wavelets have been clustered, a naming convention is necessary 

to keep track of wavelets of different length and version (either clustered or un-clustered). 

Typically, wavelets have a family name and a short name. The family name has been 

chosen as Gillis-Morsi, where the wavelet short name is ‘GM’ in accordance to the 

convention described in [15]. In order to denote the different lengths of filters, a “3” will 

be utilized for length-6, and a “4” will be utilized for length-8. This is common to work 

presented in literature with other wavelets that have been designed. For example, 

Daubechies wavelets (wavelet short name “db”) follow a similar convention. “db3” is 

Daubechies wavelet of length-6, while “db4” is Daubechies wavelet of length-8 [49]. Next, 

a number representing the clustering version is placed beside the length to determine 

whether the wavelet is part of the clustered or un-clustered set. A “0” represents the original 
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un-clustered set while a “1” denotes the clustered set. Lastly a number from 1 to the length 

of that set of wavelets is implemented as the third index. Each of these numbers will be 

separated by a period to make the name clear. An example of this naming convention is 

presented in Fig. 3.8. The “3” in the second block represents length-6, the “1” in the third 

block represents the clustered wavelet set and the “24” in the last block represents the 24th 

wavelet in that set. The complete name for this wavelet is written as GM3.1.24.  

GM 3. 1. 24

Wavelet 
Short 
Name

Index for 
Filter 

Length

Wavelet 
Clustering 
Version

Representative 
Wavelet 
Number  

Fig. 3.8: Wavelet Naming Example [15] 

3.5 Procrustes Analysis 

In order to identify a specific wavelet among all of the representative wavelets in 

each filter length that best resembles the transient in the target signal (i.e., transient load 

pattern), a method which relies on shape comparison is necessary. Procrustes Analysis 

(PA) [50] is a shape comparison tool that can be utilized to identify the wavelet W that best 

resembles the transient of the load signal 𝑋f. PA minimizes the difference between the 

comparison signal R and the transient of the load signal 𝑋f by changing the transformation 

parameters o, ξ and β [50] as seen in Equation (3.27). 
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𝑅 = 𝑜𝑊ξ + β 

min	{ 𝑋𝑑,𝑖 − 𝑅A
<

D

AF>

} 
(3.27) 

The dissimilarity λ between the transient signal 𝑋f and the comparison signal R is 

evaluated using the mean 𝑋f, which can be observed in Equation (3.28). 

λ = 𝑋f,A − 𝑅𝑖
2𝑁

𝑖=1

𝑋f,A − 𝑋f
2𝑁

𝑖=1

	 (3.28) 

The minimum dissimilarity between all wavelets and the transient signal 𝑋f in the set 

is taken as the identified wavelet W*. 

3.6 Covariance Analysis 

A second method to identify a specific wavelet among all of the representative 

wavelets in each filter length that best resembles the transient in the target signal is by 

utilizing Covariance Analysis (CA). In CA, the covariance of each representative wavelet 

sequence 𝑊¨ 𝑙  and the sequence of the target signal 𝑋f 𝑙  is computed, where the 

representative wavelet that provides the maximum covariance is considered the best 

matched wavelet 𝑊¨
∗(l) to the target signal 𝑋f 𝑙 .  

cov 𝑋f,𝑊¨ =
1

𝐿 − 1 (𝑋f 𝑙 − 𝜇l)(𝑊¨ 𝑙 − 𝜇®¯(𝑙))
^

hF>

 (3.29) 

Where 𝜇l and 𝜇®¯ are the mean of the sequence of the target signal Xd and the 

mean of the representative wavelet 𝑊¨, respectively. If the Covariance is normalized using 

the standard deviation of 𝑋f and 𝑊¨, the values range from zero to one where zero indicates 

no linear relationship between the signals, while a covariance of one indicates a perfect 

linear relationship between the signals [47]. 
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3.7 Summary  

In this chapter, the STFT and WT were presented as different time-frequency analysis 

techniques utilized in feature extraction. It was observed that the FT does not preserve the 

time information making it a poor choice for this application. The STFT introduced a 

window function to the FT to preserve the time information, however the transform still 

used the sine and cosine functions and hence were found to be not suitable to analyze 

nonstationary signals. Moreover, both FT and STFT suffer from a fixed window size where 

there is usually a trade-off between time resolution and frequency resolution. The WT was 

presented as a method which not only overcame the issues associated with the FT and 

STFT but also allows for MRA by providing variable window sizes for different frequency 

ranges of a signal to be examined separately through the use of different decomposition 

levels. The wavelet choice with respect to the WT has also been discussed where wavelet 

design was introduced as a method to create a set of wavelets. In wavelet design, different 

properties of wavelets were examined in order to conduct the wavelet design process for 

length-6 and length-8 filters. By varying the parameters in the wavelet design equations 

from –𝜋 to 𝜋, it was observed that a large number of wavelets (9,702), each with a unique 

shape, were designed. In total, 441 wavelets in length-6 and 9,260 wavelets in length-8 

were designed. Due to this large number of wavelets, clustering was introduced as a method 

to decrease the number of wavelets down to 91 and 820, for length-6 and length-8, 

respectively. Next, wavelet selection methods were introduced to match each load transient 

to a wavelet utilizing Procrustes and covariance analysis. These two methods of selection 

offer two different ways to choose a wavelet for each load. In Procrustes analysis, the 

minimum dissimilarity was calculated while in covariance, the maximum covariance was 
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calculated. Both of these methods relied on comparing each wavelets shape to the load 

transient under study. The next chapter is dedicated to show the implementation of wavelet 

design and wavelet-signal matching in the NILM problem.  
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4. Machine Learning Classification for Non-Intrusive Load 

Monitoring 

4.1 Introduction 

The discrete wavelet transform with the wavelet design process including the results 

before and after clustering have been presented in Chapter 3. Procrustes and covariance 

analysis were presented in order to choose a specific wavelet based on the shape of the 

transient load signal. Machine learning classifiers will be introduced in this chapter, where 

both a lazy learner and an eager learner will be utilized in this work. Moreover, this chapter 

presents a complete NILM algorithm that uses wavelet design and machine learning 

classifiers. In addition, a system will be designed to test the effectiveness of the proposed 

method, by detailing the different components required to determine the performance of 

the NILM algorithm.  

4.2 Signal Acquisition 

In order to capture load transients, several parameters must be considered such as the 

sampling frequency and the waveform to be captured. The voltage signal may be used; 

however, the voltage waveform contains little information regarding the features in the 

transients. The voltage signal is prone to any abnormal change in the supply with very 

small changes to load switching. On the other hand, the current is more sensitive to changes 

in load operation compared to the voltage due to the fact that each load will draw a unique 

current. Therefore, the signatures of the current waveform will be investigated in this 

thesis. It was discussed in Chapter 3, that the sampling frequency directly affects the 

number of decomposition levels, which thus impacts the number of features to be extracted 

for identification. Each feature (decomposition level) can be described as a band pass filter 
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for a specific frequency range. Furthermore, Nyquist theorem states that for the chosen 

sampling rate, only half of that rate contributes to feature identification in order to ensure 

the sampled signal is alias-free (i.e., a signal that does not suffer from aliasing, or the effect 

that can cause several signals to become indistinguishable from each other). This effect is 

a significant problem in many signal processing applications, as usually aliasing removes 

the ability to separate the low frequency components of a signal [51]. Finally, in Chapter 2 

it was observed that most time frequency analysis techniques apply a sampling frequency 

in the range of 1kHz to 2MHz where any higher frequency above 50kHz does not guarantee 

that economic hardware exists. Therefore, a sampling frequency greater than 1kHz and less 

than 50kHz is favored. Every decomposition level of the wavelet transform is related to 

frequency in Table 4.1 where the choice of the sampling frequency and the number of 

decomposition levels ensures that the frequency of the power system (60 Hz) is centered 

at the approximation level.  

Table 4.1: Decomposition Levels for different Sampling Frequency 

Decomposition Level Frequency Band (Hz) Nyquist Sampling Frequency 
Approximation 0-120 240 
Detail Level 1 120-240 480 
Detail Level 2 240-480 960 
Detail Level 3 480-960 1,920 
Detail Level 4 960-1,920 3,840 
Detail Level 5 1,920-3,840 7,680 
Detail Level 6 3,840-7,680 15,360 
Detail Level 7 7,680-15,360 30,720 
Detail Level 8 15,360-30,720 61,440 

 

It can be observed from Table 4.1 that at level 8, the sampling frequency required is 

higher than 50kHz and therefore level 8 is undesirable. The majority of power quality 
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analyzers evaluate loads at either 128 samples per cycle (7,680Hz) or 256 samples per 

cycle (15.36kHz) due to the reason the harmonic magnitude gets attenuated beyond these 

values. Therefore, a sampling frequency of 15.36kHz is selected, where 6 levels of 

decomposition exist in the wavelet transform.  

In order to accurately capture the switching transient, all steady state information 

must be removed. The preferred method to remove steady state information is to perform 

a sequence (cycle) subtraction in which the previous cycle is subtracted from the next cycle. 

By performing this subtraction, only the transient information remains in the signal. An 

example of sequence subtraction can be examined in Fig. 4.1. 

 

Fig. 4.1: Sequence Difference between Samples 

4.3 Cycle Length 

Following the choice of the sampling frequency as 15.36kHz, the next step is to 

identify the number of cycles of the signal which will be utilized for processing. In order 

to determine the proper number of cycles, a simple investigation into transients can be 
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conducted. In the smart grid research laboratory at UOIT, a Chroma 2kVA programmable 

AC source was set to create a perfect sine wave at 60Hz and 120 Volts. A Dranetz PX-5 

power quality analyzer was used to sample the current waveform at 15.36kHz, where a 60 

Watt ILB was switched on after two seconds of measurements. Fig. 4.2 represents the 

experimental setup utilized in capturing the electrical signals. A summary of specifications 

for each component can be found in the Appendix. 

Calibrated 
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A.C. Source
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Power Quality 
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Current 
Transformer 
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Switch

 

Fig. 4.2: Experimental Set-up for Analysis of Current Waveform 

Visual inspection of Fig. 4.3 revealed that after nearly two cycles, the transient 

reaches steady state. In Fig. 4.4, the switching transient after applying the sequence 

subtraction described in section 4.2 is presented. This sequence subtraction removes all 

steady state information, leaving only the switching transient. Typically, when transients 

are analyzed, one complete cycle is studied from when switching occurs, which can be seen 

in Fig. 4.5. Therefore, one cycle is selected for this thesis.   



52 
 

 

Fig. 4.3: Switching Transient in the case of ILB 

 

Fig. 4.4: Switching Transient of ILB after Sequence Subtraction 
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Fig. 4.5: Switching Transient of ILB after Sequence Subtraction for One Cycle 

4.4 Smart Matching Module 

Wavelet design was introduced in Chapter 3, followed by the computation of the 

sequence subtraction for the target signal Xd(l), which was described in section 4.2. A 

systematic method to choose a representative wavelet based on the represented current 

waveform is required. The current waveform is matched to one of the representative 

wavelets, generated in the wavelet design section for the length-6 and length-8 filters. After 

applying the wavelet clustering procedures, Procrustes or covariance analysis can be 

utilized for each representative wavelet sequence 𝜓¨(𝑙) and the sequence of the target 

signal 𝑋f(𝑙). The dissimilarity for Procrustes analysis in (3.28) or the covariance in 

covariance analysis in (3.29) is computed where the representative wavelet is selected 

based on the minimum dissimilarity or maximum covariance, which is considered the best 
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matched wavelet 𝜓¨∗(𝑙) to the target signal 𝑋f(𝑙) for each respective method.  

This process is repeated until each load signal (i.e., target signal) is matched to the 

best representative wavelet, from each list of wavelets in the wavelet library. This includes 

91 wavelets from length-6 and 820 from length-8. This entire process can be achieved 

through the developed Smart Matching Module (SMM) which can be observed in Fig. 4.6. 

Pre-processing
(Digitization and 

Differencing)

Target 
Signal Xo

Xd

Original Wavelet Library

9261 wavelets (Length-8)

Representative Wavelet 
Library

Wavelet 
Clustering

ψR

Max{cov(Xd,ψR)}
or

Min{∆(Xd,ψR)}

ψ*R

441 wavelets (Length-6) 91 wavelets (Length-6)

820 wavelets (Length-8)

 

Fig. 4. 6: Depiction of wavelet smart matching module [15] 

4.5 Machine Learning Classifiers 

Pattern discovery in a dataset using machine learning [52]-[53] may be determined 

by employing a classifier such as Decision Tree (DT) [54] which attempts to learn the 

pattern from the hidden features (i.e., the energy of the wavelet coefficients in the NILM 

application). Other classification techniques such as support vector machine (SVM) and 

Bayesian classifiers might be utilized, however, since the aim of this work is to investigate 

the effectiveness of introducing the concept of wavelet design to NILM, it is desirable to 

use a deterministic classification technique. These techniques include DT or k-Nearest 

Neighbor (K-NN), instead of other non-deterministic techniques such as SVM which 

utilize optimization theory or Bayesian which relies on probability theory in the case of 

Bayesian classifiers. Typically, in machine learning, the dataset is divided into two subsets, 
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one dataset for training, while the other set is preserved for testing. In addition, the chosen 

machine learning method is trained with the information in the training set, followed by 

using this knowledge to classify the loads using the testing set. This classification process 

produces a classification accuracy which can be used to compare the effectiveness of this 

method against other approaches. In this study, two machine learning classifiers (DT as an 

eager learner and k-NN as a lazy learner) are employed to estimate class labels (i.e., loads) 

in a supervised way. 

4.5.1 k-Nearest Neighbor 

Unlike eager learners that perform load classification based on an induced 

classification model using all labeled data, lazy learners such as k-NN [55] delay the 

process of model development and perform classification by finding all training instances 

(τ, υ) Є θ that are relatively similar to the attribute test instance ζ = (τ', υ'). The algorithm 

uses the Euclidean distance proximity measure δ to generate a list θζ containing all nearest 

neighbours (NN) that are closest to the training instance ζ.  

𝛿 𝜏, 𝜏± = (𝜏h − 𝜏h±)<
^

hF>

 (4.1) 

The class label of the test instance is predicted using a majority voting scheme which 

can be observed in Equation (4.2). This scheme relies on comparing the class label c with 

the class label υ of the NN using the indicator function Ξ which returns one if true and zero 

otherwise:  
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𝜐± = 𝑎𝑟𝑔max
"

Ξ(c = 𝜐±)
(´µ,¶µ)·¸¹

 
(4.2) 

The role of the indicator function Ξ is to compare the class label of the test record 

with the class labels of its neighbors. If the class label of the test record matches the class 

label of the record in the neighborhood, the indication function returns one, otherwise it 

returns zero. The class is predicted using the maximum argument (argmax) which indicates 

the correct class would be the class of the majority of records in the neighborhood. 

4.5.2 Decision Tree 

The load classification procedures in NILM applications using an eager learner such 

as DT usually requires all input data to be labeled. The input dataset is split into two 

subsets: one set Ϊ for training and another set Ϋ for testing. The training dataset Ϊ is utilized 

in constructing the classification model through the DT induction algorithm [54]. The 

process of developing the classification tree works by determining the best split amid the 

features of the data set, while also calculating the impurities in the tree nodes using the 

Gini index, which can be seen in Equation (4.3) [54]: 

𝐺𝑖𝑛𝑖 𝜎 = 1 − [𝑓(𝑐|𝜎)]<
nO>

fF_

 (4.3) 

Where D is the number of classes and )( scf  is the fraction of records belonging to 

class d at a given node σ. 

4.6 k-fold Cross Validation  

This section presents the procedures involving the estimation of the classification 

accuracy using cross-validation. In k-fold cross-validation [56], the data is subdivided into 
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k equal-sized folds, where during each run one-fold is utilized for testing while the 

remaining k-1 folds are used for training. This process is repeated k times, where for each 

run the error εk is computed using the number of records incorrectly predicted 𝛾 and the 

total number of records Γ. The cross-validation error εcv can be computed by summing the 

errors for all k runs.  

𝜀` =
𝛾
Γ		, 𝜀𝑐𝑣 = 𝜀𝑘

𝑘
 (4.4) 

The accuracy 𝜔, which is a measure of the performance of the classifier can be defined as: 

𝜔 = 1 − 𝜀"# (4.5) 

In order to test the confidence of the classifiers, it was necessary to assess their 

performances with different training and testing conditions. To facilitate this, k-fold cross 

validation can be used to split the dataset into two different partitions. An example for 2-

fold cross validation is to split the dataset into two equal sets, where one is used for training 

while the other is used for testing. Therefore, the classifier uses half of the total dataset for 

training and is tested on the remaining half of the dataset. A 3-fold split takes 1/3 of the 

dataset as the testing set and the remaining 2/3 as the training set. The general formula is 

to take 1/K as the testing set and (K-1)/K as the training set [47]. In this work, 10-fold cross 

validation was implemented.  

4.7 Monte Carlo 

Monte Carlo was first introduced in 1949 as a numerical method to solve complex 

problems that involve stochastic parameters [57]. The training of DT (eager learner) and 

K-NN (lazy learner) along with cross-validation introduces uncertainty in the classification 

accuracy due to the stochastic nature of these algorithms. This work considers the Monte 
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Carlo method to probabilistically estimate the classification accuracy. 

The training of both DT and K-NN classifiers and the cross-validation procedures to 

estimate the classification accuracy 𝜔 are computed in each trial µ of Monte Carlo. After 

a large number of trials M, the mean classification accuracy 𝜔o½�R is computed.  

𝜔𝑚𝑒𝑎𝑛 =
𝜔(�)

𝑀

¾

�F>

 (4.6) 

4.8 One Against the Rest 

Typically, more than two loads need to be determined, inferring more than two 

classes exist. In order to apply binary classification (i.e., one class is positive and the other 

class is set to negative) [54] of more than two loads, the problem is decomposed into N 

binary classification problems (where N is the total number of loads). For each load (i.e., 

class), a binary problem is generated by considering all records that belong to one class as 

positive while the remaining records are considered negative [54]. For example, in the first 

binary classification problem, load 1 is considered the positive class while the remaining 

loads (2 to N) are considered the negative classes. 

4.9 The Complete NILM Algorithm 

The first step of this approach is to measure the current waveform, which can be 

performed using clamp on Current Transformers (CTs) placed around the main lines 

entering the home. Next, these CTs reduce the current magnitude so the A2D converter can 

sample the analog signal at the specified frequency of 15.36kHz, before sending the 

sampled data to a computer or microcontroller for processing. Fig. 4.8 presents a complete 

diagram of both the electrical and data signal flow. In the pre-processing stage, the first 

step is to compute the sequence subtraction followed by computing the wavelet transform 
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employing each specified wavelet chosen from the SMM. The energy of the coefficients is 

calculated using Equation (3.4) where 7 energy values (for each WT) are fed into a binary 

machine learning classifier that based on its training set, is able to identify the load class 

type. The classification accuracy can be computed for this algorithm using Equation (5.1).  

By implementing the approach discussed in this thesis, several questions remain 

unanswered:  

1- What is the best way to choose a representative wavelet for each load (Procrustes 

or covariance)?  

2- What is the best machine learning classifier to apply to this work? 

3- Does the choice of machine learning classifier depend on the wavelet choice? 

4-  Does this method work for many different load types such as: resistive loads, 

reactive loads, and switched mode power supplies?  

In order to answer all of these questions, a test system is designed to evaluate the 

performance of the proposed approach. This test system will be used in both a simulation 

environment, followed by an experiment to verify the results of the simulation as detailed 

in the following chapter. This complete algorithm can be seen in Fig. 4.7. 
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Fig. 4.7: The Complete NILM Algorithm 

 

4.10 Summary 

  In this chapter, the complete NILM method is developed starting with looking at the 

process of capturing load transients. The sampling rate is chosen based off of the number 

of decomposition levels, followed by the sequence subtraction which is utilized to remove 

all steady state information. Furthermore, the number of cycles of the transient waveform 

needed to complete the analysis is determined, where one cycle starting at when switching 

occurs is chosen in this thesis. Next the SMM is introduced as a method to choose wavelets 

using Procrustes and covariance analysis. In addition, machine learning classification is 

introduced where K-NN and DT classifiers are described. The method of k-fold cross 

validation was presented as a means to assess the performance through computing the 

classification accuracy after applying Monte Carlo to address the stochastic nature of the 

cross validation. The OAR method is introduced by turning each load classification 

problem into a binary classification problem. Finally, the complete NILM algorithm is 
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developed in order to test the approach in both simulation and through an actual experiment 

as will be presented in Chapter 5.  
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5. Results and Evaluation 

5.1 Introduction 

This chapter will assess the performance of the proposed NILM algorithm developed 

in this thesis through simulation and experimentation. First, a test system is presented in 

which four loads can be utilized to evaluate the effectiveness of the algorithm. A dataset 

generated in a Power System Computer Aided Design (PSCAD) software is presented by 

building load models for the selected four loads. The voltage, frequency and harmonic 

distortion are varied to verify the algorithm is robust against power quality disturbances 

that occur on the electric power grid. In addition, these loads are switched on for each 

possible combination to create a series of different cases, where the current waveforms 

from each of these cases are sampled at 15.36kHz and saved into a set of comma separated 

values (CSV) files.  

Next a simulation is constructed in MATLAB based on the results of the SMM. This 

simulation examines a series of different cases corresponding to different switching 

combinations of each load, which have been generated in PSCAD. Furthermore, the 

simulation calculates the energy of the wavelet coefficients for each case, followed by 

utilizing both K-NN and DT machine learning classifiers to calculate the classification 

accuracy. Finally, k-fold cross validation and Monte Carlo are applied to determine a 

proper classification accuracy over many trials based on the stochastic nature of the 

problem. The classification accuracies are examined using two different machine learning 

classifiers. These machine learning classifiers are DT and K-NN which represent an eager 

and lazy learner, respectively. Results are presented to illustrate the effectiveness of the 

approach through the simulation. 
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The performance of the wavelet-based approach is applied through an experimental 

endeavor. Initially, the experimental setup will be described to illustrate how the test 

system was constructed with lab equipment in order to match the same setup utilized in 

simulation. In addition, the hardware specifications for each component will be described, 

to make sure the hardware chosen correctly performs under transient and steady state 

conditions. Upon completion of the hardware testing, a dataset will be generated in a 

similar manner to the one created in the simulation. The only difference between this 

experimental set and the dataset generated in simulation is that in this set, switching occurs 

at a random point in the voltage waveform rather than always at the same point as was the 

case in simulation. Such phenomena is referred to as the zero crossing and will also be 

discussed in this chapter.  

MATLAB is utilized to perform post processing on the dataset in a similar manner 

to that of the simulation. Both K-NN and DT machine learning classifiers will be 

implemented with k-fold cross validation and Monte Carlo to determine the actual 

classification accuracy. The classification accuracies will be examined for both machine 

learning classifiers, and the results are presented. These results will be compared to what 

was obtained in simulation validating both the experiment and simulation showing that this 

method outperforms the other NILM algorithms discussed in Chapter 2.  

5.2 Test System Description  

In order to address the questions raised in Chapter 4, a test system with the following 

hardware must be designed: different load types, constant AC source, CTs and A2D 

converter, switches, and a computer for processing. 
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There are many typical load types that exist in homes. Resistive loads like heaters, 

stoves or dryers are the primary load type, while others are inductive loads with motors, 

like air conditioners or washing machines. Each load in a home has a different power 

consumption pattern over a different period of time. In the literature review, it was 

discussed that large loads like an air conditioner, stove or dryer can be detected using time, 

frequency or time-frequency analysis techniques. However, smaller loads that exhibit a 

similar power consumption are difficult to detect and are usually switched on for large 

periods of a day. Some examples of these loads could be light bulbs, computers, cable 

boxes, audio receivers or cell phone chargers which are plugged in and remained turned on 

for an extended period of time. These low power / high energy loads are the loads of interest 

in this thesis. Loads representing resistive, non-resistive, and switched mode power supply 

loads need to be investigated for these small load examples. The simplest example of a 

resistive load is an ILB and therefore a 60 Watt ILB can be chosen. For a non-resistive 

load, a simple example that exists in almost all homes is a Compact Florescent Lightbulb 

(CFL), therefore a 13 Watt CFL is selected. The next load type is the switched mode power 

supply and there are several different types of loads that exhibit this behavior. A simple 

example that exists in most homes is a personal computer (PC), so a 100 Watt Laptop PC 

can be chosen. However, this 100 Watt PC cannot be used to represent all loads as some 

switched mode loads are much larger than 100 Watts while others are much smaller. 

Therefore, a general battery charger will be included in which the size of the battery can 

be modified to test the behavior of this load at higher and lower power levels. These 4 loads 

(ILB, CFL, PC, and Battery Charger) are representative of different small load types that 

exist in homes. A diagram of the complete test system can be observed in Fig. 5.1. In this 
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diagram, the four loads are on the left, followed by a switch for each load to turn the load 

on or off for testing. The calibrated AC power source provides power to the system, and a 

single CT is used to reduce the magnitude of current for measuring. The output of the CT 

is sampled using an A2D converter were these discrete samples are transferred into a 

computer for processing. This test system will be modeled in simulation and will be 

developed using real hardware. 
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Fig. 5.1: NILM Test System 

5.3 Dataset Generation 

In order to test the proposed algorithm, a dataset is necessary for training and testing. 

Several commercially available datasets exist such as Pecan Street’s Dataport [58], and 

Reference Energy Disaggregation Dataset (REDD) [59]. However, after examining all of 
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these datasets it was determined that none were suitable for testing this approach because 

most of these datasets only provide steady state information, while the ones that do provide 

transient information, only provide a short time interval which is not useful as an effective 

way to test the algorithm. With that in mind, it was necessary to create a dataset with load 

models of each load in order to switch them on and off. Moreover, this allows for variations 

in voltage, frequency, and harmonics, which give a more realistic analysis of the 

performance of the algorithm.  

Each of the four load models were created in PSCAD [60]. The circuit models of 

each load developed in the PSCAD environment are depicted in Fig. 5.2. More information 

on how these load models were designed can be found in [61] and [62]. 

     
(a)                                           (b) 



67 
 

 
                                           (c)                                            (d) 

Fig. 5.2: PSCAD models of the loads used in the test system.  

(a) Battery charger, (b) Incandescent light bulb, (c) Personal computer, (d) Compact fluorescent lamp 

In PSCAD, the simulation time was fixed to ten seconds while the loads were 

switched on after three seconds. The current waveforms were sampled at 256 samples per 

cycle implying the time per cycle was 0.0167 s (i.e., 1/60 s). First, the process switches on 

each individual load after three seconds for all possible combinations of the remaining 

loads. For example, if the CFL is assumed as the load involved in switching, eight cases 

represent the remaining loads while taking all possible combinations as can be observed in 

Table 5.1, with the rest of the loads remaining in their previous states (on / off) while 

switching occurs. Considering there are four loads, 32 cases (4 loads × 8 cases) are the 

result of all possible switching combinations. This procedure is repeated several times, 

each time applying one of three power quality disturbances. The voltage variation can be 

determined in accordance with the ANSI c84.1 [63] standard of voltage variation for Class 
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A, between 114 Volts and 126 Volts, while ANSI c37.106 [64] can be utilized for 

frequency variations, between 55 Hz to 65 Hz. The three types of power quality 

disturbances are therefore:  

1- voltage magnitude variation (±5% in 1% steps) 

2- frequency variation (55 to 65 Hz in 1 Hz steps) 

3- harmonic distortion by adding a fifth harmonic (1% to 5% in 1% steps) 

These power quality disturbances bring the total number of cases to 864, which is the 

outcome of adding all of the possible cases: 11 voltage variation cases × 32 switching cases 

= 352, and 11 frequency variation cases × 32 switching cases = 352, and 5 harmonic 

distortion cases ×32 switching cases = 160. The waveforms from each of these cases are 

saved in a CSV file for further processing in MATLAB.  

Table 5.1: Switching Strategy to Generate Dataset 

  

Case Battery Charger  CFL*
 PC ILB 

1 0    0 0 
2 0  0 1 
3 0  1 0 
4 0  1 1 
5 1  0 0 
6 1  0 1 
7 1  1 0 
8 1  1 1 

 

Where 1 represents a load switched on, 0 represents a load switched off, and  

represents the load in question being switched. 

5.4 Daubechies Wavelets 

In order to accurately compare the results of Procrustes and covariance analysis, 

another wavelet must be chosen for comparison. In the majority of the literature presented 
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to date, Daubechies wavelets are utilized due to their strong abilities in feature extraction. 

Therefore, this thesis will use Daubechies wavelets as the base case of comparison. 

However, there are several different ways of observing Daubechies wavelets. In the 

MATLAB Wavelet toolbox, the true definition of Daubechies is implemented where the 

wavelet coefficients are calculated to a high degree of accuracy. This is not the best 

comparison against the wavelet design method due to the high resolution of Daubechies 

wavelets in the MATLAB toolbox, where the wavelet design process utilizes a lower 

resolution. Therefore, to more accurately compare the results of wavelet design, the 

wavelet representing Daubechies in the wavelet design set (at a lower resolution) to 

Daubechies can be used. These wavelets represent Daubechies to the resolution presented 

in this work. In the results section, the results from the lower resolution Daubechies 

wavelets are presented to give an accurate comparison against the wavelet design process 

utilizing the SMM. In Fig. 5.3 and Fig. 5.4, Daubechies wavelets in the MATLAB wavelet 

toolbox are compared against their equivalent in the wavelet design set. The names 

presenting the wavelets corresponding to Daubechies can be observed in Table 5.2. 

Table 5.2: Daubechies Wavelets used in the Results 

MATLAB Toolbox Wavelet Design Set 
db3 GM3.1.45 
db4 GM4.1.399 
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Fig. 5.3: db3 Against Wavelet Design Set 

 
Fig. 5.4: db4 Against Wavelet Design Set 

5.5 MATLAB Simulation 

As a result of the dataset created in PSCAD, the algorithm can be implemented 

through simulation in MATLAB computational software with the Wavelet Toolbox [46]. 

Initially, the dataset is imported into MATLAB by translating each CSV file generated in 

PSCAD into the MATLAB workspace. Additionally, wavelet-signal matching is 

performed using the SMM where a wavelet is selected for each load. The selected wavelets 
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can be observed in Tables 5.3-5.6. The load signature recorded to perform the analysis is 

the waveform at 120 Volts and 60Hz with no harmonic distortion. This ensures the best 

wavelet is selected for the specific load, where no power quality disturbances modify the 

waveform. The SMM is applied for each length of wavelet filter (length-6 and length-8). 

Moreover, the measured currents are utilized to compute the sequence subtraction in order 

to find the change in current and hence the signal Xd. The WT is applied to compute the 

energy of the coefficients for the six decomposition levels, where the choice of six wavelet 

decomposition levels ensures that the power system frequency (i.e., 60 Hz) is centered at 

the approximation which is over the interval of 0 to 120 Hz. This dataset consists of 864 

records × 7 features (one approximation and six details) which represent the dataset to be 

employed for the classification using DT and K-NN. Class labels corresponding to each 

load are added by creating eight points in the dataset. The dataset including class labels are 

transferred into machine learning classifiers that perform classification. Supervised 

classification was performed, in which each classifier works independently to classify the 

load operation. Classification accuracies were computed and were compared against the 

GM wavelet most closely matching Daubechies wavelets of the same length. The complete 

steps of the simulation algorithm are depicted in Fig. 5.5. 



72 
 

Wavelet 
Library

(Length 6, 8)
SMM

Target Signal 
(Subtraction)

WT
Calculate 
Energy of 

Coefficients 

Replicate 
for Cases 
of V,f,h

Create Excel 
file for 864 

Cases

Add Class 
Labels

DT

KNN
Classification 

Accuracy

 

Fig. 5.5: MATLAB Simulation Algorithm  

The total number of Monte Carlo trials is determined to be 1,000 as it has been seen 

that any increase does not provide much change in the results. Fig. 5.4 below depicts the 

classification accuracy for each load over 1,000 trials. The reader may observe that the 

accuracy does not vary after about 300 trials.  

 
Fig. 5.6: Trends of 1,000 Monte Carlo Trials  
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5.6 Simulation Results 

In this section, the results are presented for supervised learning, where K-NN and 

DT will be presented separately, to allow for a comparison in machine learning techniques. 

In addition, the results of length-6 and length-8 filters are compared, where Daubechies 

wavelet results are set side to side with the results of Procrustes and covariance analysis 

utilizing the SMM. In each of these tables, the classification accuracy is calculated using 

Equation (5.1). This classification accuracy represents the true positive classification 

accuracy as the purpose of this work is to show the effectiveness of the approach. If any 

other classification accuracy was presented, the results would be skewed due to the method 

in which the OAR technique handles negative classification. 

𝐴𝐶𝐶% =
𝑇𝑃
𝑃232

 (5.1) 

Where TP is the number of true positive classifications, and 𝑃232 is the total number 

of positives cases. 

5.6.1 Length-6 

Table 5.3: Simulation- K-NN for 1 Cycle of Length-6 

Load Daubechies 
Wavelet 

Accuracy 
(%) 

Procrustes 
SMM 

Accuracy 
(%) 

Covariance 
SMM 

Accuracy 
(%) 

Battery GM3.1.45 96.63 GM3.1.53 98.04 GM3.1.53 96.64 
CFL GM3.1.45 86.33 GM3.1.58 86.10 GM3.1.58 86.33 
PC GM3.1.45 96.36 GM3.1.45 96.39 GM3.1.45 96.37 
ILB GM3.1.45 89.18 GM3.1.53 86.98 GM3.1.58 86.08 
Total  92.12  91.88  91.35 
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Table 5.4: Simulation- DT for 1 Cycle of  Length-6 

Load Daubechies 
Wavelet 

Accuracy 
(%) 

Procrustes 
SMM 

Accuracy 
(%) 

Covariance 
SMM 

Accuracy 
(%) 

Battery GM3.1.45 97.81 GM3.1.53 98.19 GM3.1.53 97.76 
CFL GM3.1.45 94.10 GM3.1.58 94.90 GM3.1.58 94.03 
PC GM3.1.45 98.27 GM3.1.45 98.23 GM3.1.45 98.26 
ILB GM3.1.45 93.18 GM3.1.53 92.74 GM3.1.58 95.87 
Total  95.84  96.01  96.48 

 

5.6.2 Length-8 

Table 5.5: Simulation- K-NN for 1 Cycle of Length-8 

Load Daubechies 
Wavelet 

Accuracy 
(%) 

Procrustes 
SMM 

Accuracy 
(%) 

Covariance 
SMM 

Accuracy 
(%) 

Battery GM4.1.399 99.03 GM4.1.268 97.96 GM4.1.268 97.95 
CFL GM4.1.399 87.49 GM4.1.531 84.55 GM4.1.531 84.52 
PC GM4.1.399 95.48 GM4.1.471 95.51 GM4.1.471 95.50 
ILB GM4.1.399 90.25 GM4.1.543 90.80 GM4.1.653 90.71 
Total  93.06  92.21  92.17 

 

Table 5.6: Simulation- DT for 1 Cycle of  Length-8 

Load Daubechies 
Wavelet 

Accuracy 
(%) 

Procrustes 
SMM 

Accuracy 
(%) 

Covariance 
SMM 

Accuracy 
(%) 

Battery GM4.1.399 98.58 GM4.1.268 96.97 GM4.1.268 96.98 
CFL GM4.1.399 96.32 GM4.1.531 98.57 GM4.1.531 98.67 
PC GM4.1.399 96.88 GM4.1.471 96.95 GM4.1.471 96.93 
ILB GM4.1.399 94.38 GM4.1.543 98.70 GM4.1.653 98.71 
Total  96.54  97.80  97.82 

 

5.7 Discussion 

5.7.1 Length-6 

In the results listed in Tables 5.3 and 5.4, several different trends and conclusions can 

be observed. First, in length-6, the results presented demonstrate Daubechies wavelets 
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receive an accuracy of 92% and 95.8% for K-NN and DT, respectively. The accuracy for 

K-NN is about 0.3-0.75% higher than both of the wavelets selected using the SMM in both 

Procrustes and covariance. However, in the case of DT, the wavelets selected in the SMM 

outperform Daubechies case by 0.15-0.75%. This is due the fact that in the case of the 

length-6 filters, there are only 91 wavelets in the set to choose from. This results in 

significant duplication in wavelet choice (3 of the 4 loads) for both Procrustes and 

covariance utilizing the SMM.  This duplication of wavelets does not allow for a different 

set of features to be extracted for each load. Investigating further, the CFL and ILB 

misclassify more than the battery charger and PC, by approximately 10% for K-NN and 

3% for DT, which shows some wavelets are matched favorably while others are not. 

Overall, the most important observation in the case of the length-6 filter is that for K-NN, 

Daubechies wavelet outperforms the SMM, while in DT the SMM outperforms Daubechies 

wavelet.   

5.7.2 Length-8 

In length-8 a pattern starts to emerge, in which the SMM utilizing Procrustes and 

covariance produce a better result (1.3% higher) than Daubechies case in DT, while the 

opposite is true for K-NN (0.8% lower). This is an important observation considering it 

demonstrates that the selection in wavelet as well as the choice of machine learning method 

has a direct effect on the classification accuracy. Moreover, in the length-8 filter, each load 

has a specific wavelet which supports a reason for improving the number of correct 

classifications. In length-8 there are 820 wavelets to choose from when compared to 91 in 

length-6, which allowed both Procrustes and covariance to select superior wavelets for 

feature extraction in this application. Finally, for the length-8 filter it is observed that 
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covariance produces a similar result to Procrustes as the wavelets selected are identical for 

all loads except the ILB, which implies the result that covariance and Procrustes analysis 

are almost identical in choosing wavelets for NILM.  

5.8 Simulation Discussion 

The goal of this chapter is to assess the performance of the SMM utilizing Procrustes 

and covariance analysis in identifying load operation when compared to Daubechies case 

presented in the literature. The differences in K-NN and DT utilizing supervised learning 

will be discussed for varying filter lengths. Specifically, Procrustes and covariance with 

the SMM produce similar results, making it difficult to select one method as superior to 

the other since there are some cases where covariance outperforms Procrustes (e.g. in the 

case of length-8 with DT, 96.48% for covariance and 96.01% for Procrustes), while in 

other cases the opposite is true (e.g. in the case of length-6 with K-NN, 91.88% for 

Procrustes and 91.35% for covariance). It is important to note that Procrustes and 

covariance select the same wavelet for every load except the ILB. Finally, by observing 

the different machine learning classifiers, DT outperforms K-NN by an average of 3% in 

part because DT is an eager learner that builds a large tree for each load, where K-NN is a 

lazy learner that utilizes the Euclidean distance to determine load operation.  

5.9 Experimental Setup 

To verify the results of the previous simulations, an experimental set up was 

developed to test the proposed algorithm where the same four-load system has been 

developed with hardware to test the algorithm. Fig. 5.1 shows a depiction of the set-up 

where each load is plugged in at a single point, the power is provided from a constant AC 

source, and the current at a single point is measured using a current transformer. The output 
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of the current transformer is a voltage across a resistor which is measured by a data 

acquisition module (DAQ) represented by an A2D converter. In accordance with the 

algorithm, the sampling rate is set to 256 samples per cycle or 15.36kHz. Moreover, the 

DAQ transfers the data into a computer via USB where a C-language program performs 

the algorithm, which allows for classification to be computed in real time, as what would 

be expected in a home. A schematic and a picture of the actual experimental setup can be 

observed in Fig. 5.1 and Fig. 5.7, respectively. 

 
Fig. 5.7: Actual Experimental Setup 

5.9.1 Hardware Specifications 

This section will thoroughly describe each hardware component utilized in the 

experiment, where specifications for each component have been summarized in the 

Appendix. Data presented in this section was recorded using the Dranetz PX5 power 

quality analyzer. The PX5 is a commercial grade power quality analyzer capable of 
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sampling four different currents and three different voltages simultaneously at 15.36kHz. 

It is able to capture steady state and transient events as well as harmonics, inter-harmonics 

and other power quality indices. More specifications on the PX5 are summarized in the 

Appendix. 

5.9.1.1 ILB 

In simulation, a 60 Watt ILB was modelled in PSCAD as a pure resistive load. In 

order to verify the simulation, a Philips Duramax 60 Watt lightbulb was selected [65]. This 

lightbulb operates at 120 Volts and in steady state conditions draws 0.5 Amps of current, 

with a rated light output of 830 lumens. A summary of the specification sheet for the ILB 

is listed in the Appendix. Figures 5.8-5.11 present the captured electric signals in both 

transient and steady state.  

 
Fig. 5.8: Transient Voltage Signal in case of ILB 
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Fig. 5.9: Transient Current Signal in case of ILB 

 
Fig. 5.10: Steady State Voltage Signal in case of ILB 
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Fig. 5.11: Steady State Current Signal in case of ILB 

 

5.9.1.2 CFL  

In simulation, a 13 Watt CFL was modelled in PSCAD. In order to verify the 

simulation, a Globe 13 Watt lightbulb was selected and operates at 120 Volts where under 

steady state conditions draws 0.21 Amps of current with a rated light output of 900 lumens. 

Figures 5.12-5.15 demonstrate the gathered electric signals in both transient and steady 

state for the CFL.  
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Fig. 5.12: Transient Voltage Signal in case of CFL 

 
Fig. 5.13: Transient Current Signal in case of CFL 
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Fig. 5.14: Steady State Voltage Signal in case of CFL 

 
Fig. 5.15: Steady State Current Signal in case of CFL 

5.9.1.3 PC  

In simulation, a 100 Watt laptop was modelled in PSCAD. In order to verify the 

simulation, a Dell Studio 1535 was selected [66] and operates at 120 Volts in steady state 

conditions while drawing 1 Amp of current. A summary of the specification sheet can be 
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observed in the Appendix. Figures 5.16-5.19 demonstrate the gathered electric signals in 

both transient and steady state that have been collected for the PC.  

 
Fig. 5.16: Transient Voltage Signal in case of PC 

 
Fig. 5.17: Transient Current Signal in case of PC 



84 
 

 
Fig. 5.18: Steady State Voltage Signal in case of PC 

 
Fig. 5.19: Steady State Current Signal in case of PC 

5.9.1.4 Battery Charger  

In simulation, a 12 Volt battery charger was modelled in PSCAD. In order to verify 

the simulation a Canon Camera Battery Charger was selected as it generates a similar 

transient to a larger battery, but does not draw as high of a current. This battery charger 

operates at 120 Volts and in steady state conditions draws 0.12 Amps of current. The 
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battery chosen is a 6.36 Watt hour Lithium Ion battery. Figures 5.20-5.23 demonstrate the 

captured electric signals in both transient and steady state for the battery charger.  

 
Fig. 5.20: Transient Voltage Signal in case of Battery Charger 

 
Fig. 5.21: Transient Current Signal in case of Battery Charger 
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Fig. 5.22: Steady State Voltage Signal in case of Battery Charger 

 
Fig. 5.23: Steady State Current Signal in case of Battery Charger 

5.9.1.5 Current Transformer  

The CTs selected in this thesis are Siemens CTs [67], which are rated for a five Amp 

pickup current with a step-down turn’s ratio of 175.  



87 
 

5.9.1.6 Data Acquisition Module	 

The DAQ selected in this thesis is an Omega 1608FS-PLUS [68]. A summary of the 

specification sheet can be observed in the Appendix, but the basic specifications are that it 

can sample up to eight channels at a maximum speed of 50 kHz per channel or four 

channels at 100 kHz while delivering 16-bit accuracy. Since the DAQ allows for USB 

output, any USB compatible device can be enabled to work. Currently a laptop running 

Windows 8 is being utilized but in the future it is possible to implement a microcontroller 

or FPGA in order to implement the algorithm.  

5.9.1.7 Programmable AC Power Source 

The programmable AC source chosen is a Chroma 61604 [69]. This is a 2000 Volt-

Ampere source with an accuracy of +- 0.2% and a THD of less than 0.3%. It is capable of 

varying frequency between 0 and 1,000 Hz while varying voltage between 0 and 300 Volts 

AC. A summary of the specification sheet can be found in the Appendix.  

5.9.1.8 Electronic Circuit Breakers 

The electronic circuit breakers selected in this work are Belkin WeMo Insight Smart 

Home Monitoring devices [70]. These switches are controlled using Wi-Fi and operate in 

a similar manner to a wall outlet meaning they are able to pass 120 Volts at up to 15 Amps.  

5.9.2 Test Environment 

The dataset was generated using a Programmable AC Power Source following the 

same procedures explained in subsection 5.3. The specifications for the AC Source have 

been described above and are listed in the Appendix, however, measurements were 

captured in the lab to verify the specification sheet and the measurement equipment. As 

can be seen from Table 5.7, most of the measurements that were captured are within the 
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proper range as presented in the specification sheet. A voltage snapshot can be observed in 

Fig. 5.24. 

Table 5.7: Programmable AC Source Power Quality Measurements 

Criteria Specification Sheet Actual Measurement 
Voltage at 120V 119.76-120.24 119.7-120.5 

Frequency at 60Hz 59.91-60.09 59.96-59.98 
THD-V in % 0.3 0.20-0.31 

 
Fig. 5.24: Programmable AC Source Voltage Waveform  

5.10 Experimental Dataset Generation 

As a result of the hardware testing, an experimental dataset can be generated to test 

the proposed technique where each transient will be captured five times to ensure 

consistency. Upon completion of each possible case (32 cases in total) being switched on 

five times, the voltage is varied between 114 Volts and 126 Volts in accordance with the 

ANSI c84.1 standard of voltage variation for Class A [63]. A step change of 2 Volts in 

each configuration is utilized to train the classifier, where the number of cases is 32 which 

represents the result of all switching combinations. The voltage is varied between 114 Volts 

and 126 Volts in 2-Volt steps providing seven levels of voltage, which is applied to the 
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original 32 cases bringing the total number of cases to 32 cases × 7 voltage levels = 224 

cases. These cases were replicated five times which brings the overall number of cases to 

be 224 cases × 5 times = 1,120 cases. Overall, 1,120 different transients are collected to 

guarantee a comprehensive dataset is utilized in testing. Two cycles of each transient were 

captured starting half a cycle before triggering to one and a half cycles after switching. This 

ensures the entire transient is captured in order to analyze the desired part of the waveform. 

At the end of the dataset, an integer was added corresponding to the load that was triggered 

to create that transient. A numeric ‘1’ refers to the ILB, ‘2’ for the CFL, ‘3’ for the PC, and 

‘4’ for the Battery Charger. This resulted in a dataset of 1,120 rows and 513 columns (256 

samples per cycle × 2 cycles +1).  

In order to generate this dataset an automated approach was required. A program was 

written in Python and C that alternates through each case to turn on and off the electronic 

switches while saving each transient to a CSV file before proceeding to the next case. Each 

voltage level was manually set, followed by the program being executed for that set of 160 

cases where each load is switched to the proper case, followed by the load to be tested 

being switched on and the transient being saved. Each load would remain in an on state for 

five seconds which was chosen to give enough time for the load to reach steady state. Next, 

the loads were switched back off for 30 seconds to make sure the transient expired. The 

five second and 30 second times were determined experimentally, as it was observed that 

about one second was necessary for each load to completely reach steady state. Five 

seconds was selected to ensure that the loads always reached steady state. It was also 

observed that if the loads were switched within 20 seconds of the previous switching event, 

the transient may become distorted. Therefore, 30 seconds was preferred to make sure the 
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transients appeared in a consistent manner. The overall length of one complete run of (32 

cases × 5 of each case = 160 cases) took 93 minutes (35 seconds ×160 case) to complete. 

This was repeated seven times to incorporate the voltage magnitude variations resulting in 

the entire time of gathering data to be about 11 hours if performed continuously. Table 5.8 

lists each of the 32 different cases that exist for switching each of the four loads. 

Table 5.8: Load Configuration Chart 

Case Number ILB CFL PC Battery 
Charger 

1  0 0 0 

2  0 0 1 

3  0 1 0 

4  0 1 1 

5  1 0 0 

6  1 0 1 

7  1 1 0 

8  1 1 1 

9 0  0 0 

10 0  0 1 

11 0  1 0 

12 0  1 1 

13 1  0 0 

14 1  0 1 

15 1  1 0 

16 1  1 1 

17 0 0  0 

18 0 0  1 

19 0 1  0 

20 0 1  1 

21 1 0  0 
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5.10.1 The Experimental Dataset 

After completing the above generation of the dataset, some notes about the dataset 

can be mentioned, such as every transient in the dataset is different. This is an expected 

and almost obvious result; however, it can be observed by comparing five transients for 

the same case at the same voltage. It is important to recognize that all of the transients have 

the same shape but differ in some small ways. Fig. 5.25 shows five different transients of 

an ILB all taken at the same voltage level and same case. 

22 1 0  1 

23 1 1  0 

24 1 1  1 

25 0 0 0  
26 0 0 1  
27 0 1 0  
28 0 1 1  
29 1 0 0  
30 1 0 1  
31 1 1 0  
32 1 1 1  
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Fig. 5.25: 5 ILB Transients for Case 1 at 114V 

One final note is that the transient is dependent on when the load is switched in the 

voltage cycle. If the voltage is near zero when the load is switched, the transient will be 

almost zero. This can be observed in Fig. 5.26 and Fig. 5.27. Fig. 6.26 presents the expected 

transient with the location of where switching occurred in the voltage cycle. Fig. 5.27 

displays the current transient recorded when switched at the voltage zero crossing, which 

is significantly different from the transient that was expected. These transients are included 

in the dataset as they have an equal possibility of occurring in real life to the dataset. This 

also provides an explanation into why five switching’s were completed for each case. 

 
Fig. 5.26: CFL Normal Transients 



93 
 

 

Fig. 5.27: CFL Abnormal Transient 

5.11 Computation and Processing  

In this section, the classification accuracy is computed after pre-processing the 

transient signals obtained from the experimental set-up. Monte Carlo is then applied to 

assess the performance of the machine learning classifiers.  

5.11.1 Cycle Lengths 

The recorded signals were captured as two cycles in length, half a cycle pre-trigger 

plus one and a half cycles post-trigger. This allows for testing the algorithm with exactly 

one cycle of information, consisting of only the 256 samples where the transient existed 

after switching. This infers no signal is taken regarding pre-switching or after one cycle in 

processing, where Fig. 5.28 demonstrates one cycle of an ILB transient. 
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Fig. 5.28: ILB 1 Cycle Transient Example 

5.11.2 Monte Carlo method 

5.11.2.1 Preprocessing 

Before running the Monte Carlo method, wavelets need to be selected for each 

transient using the same approach used in simulation (i.e., SMM). By relying on Procrustes 

and covariance, the waveform is compared to all of the GM wavelets to find the one which 

best matches the switching transient. 

5.11.2.2 Processing 

The Monte Carlo simulation was set to use 10-fold cross validation and 1,000 

iterations. 10-fold cross validation was selected in order to verify the simulation. The 1,000 

iterations were experimentally determined to be enough for confidence convergence as can 

be observed in Fig. 5.29. 
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Fig. 5.29: Monte Carlo Accuracy Convergence over Iterations 

MATLAB interrupts all of the transients in the experimental dataset from a CSV 

file, where it separates them into two different matrices. The first matrix separates the 

transients from their respective classes, while the second matrix extracts one cycle of 

information starting when switching occurred. After extracting the transient waveforms, 

the selected wavelets from the SMM perform the Discrete Wavelet Transform in order to 

calculate the energy of the coefficients. Inside the Monte Carlo loop the data was randomly 

sampled, with no replacement, to create 10% testing and 90% training sets. This 

corresponds with the 10-fold technique described in subsection 4.5.4 which provides a 

pseudo random set during each trial allowing the training sets to be presented to a K-NN 

and DT classifier in order to train the classifiers to calculate classification accuracy. 

Each classifier is trained as a binary classifier utilizing the OAR approach, which 

implies there is a classifier for each load where if the class is 1, the load is positive, and if 

the class is 0 the load is negative. The trained classifiers can be tested against the testing 
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set previously set aside in k-fold. This step provides the accuracy and the confusion 

matrices of each load which allows for the analysis of the quality of the performance of 

each classifier. 

5.11.2.3 Post Processing 

The results of the Monte Carlo trials were saved to a spreadsheet, which included the 

accuracy of the simulation along with the confusion matrices of all of the classifiers. 

5.12 Experimental Results 

The results will be presented in four tables. As a benchmark for comparison, the 

results of the wavelets representing Daubechies of the same resolution have been presented 

to compare the results of the SMM. The classification accuracy is calculated utilizing 

Equation (5.1). 

5.12.1 Length 6 

Table 5.9: Length 6 – Classification Accuracy using K-NN 

Load Daubechies 
Wavelet 

Accuracy 
(%) 

Procrustes 
SMM 

Accuracy 
(%) 

Covariance 
SMM 

Accuracy 
(%) 

Battery GM3.1.45 84.46 GM3.1.53 71.32 GM3.1.53 71.32 
CFL GM3.1.45 59.64 GM3.1.45 59.64 GM3.1.45 59.64 
PC GM3.1.45 81.52 GM3.1.20 89.67 GM3.1.20 89.67 
ILB GM3.1.45 62.05 GM3.1.12 76.74 GM3.1.12 76.74 
Total  71.92  74.34  74.34 
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Table 5.10: Length 6 – Classification Accuracy for Supervised DT 

Load Daubechies 
Wavelet 

Accuracy 
(%) 

Procrustes 
SMM 

Accuracy 
(%) 

Covariance 
SMM 

Accuracy 
(%) 

Battery GM3.1.45 95.89 GM3.1.53 94.04 GM3.1.53 94.04 
CFL GM3.1.45 77.14 GM3.1.45 77.14 GM3.1.45 77.14 
PC GM3.1.45 97.19 GM3.1.20 95.54 GM3.1.20 95.54 
ILB GM3.1.45 79.03 GM3.1.12 85.11 GM3.1.12 85.11 
Total  87.31  87.96  87.96 

 

5.12.2 Length 8 

Table 5.11: Length 8 – Classification Accuracy for Supervised K-NN 

Load Daubechies 
Wavelet 

Accuracy 
(%) 

Procrustes 
SMM 

Accuracy 
(%) 

Covariance 
SMM 

Accuracy 
(%) 

Battery GM4.1.399 81.014 GM4.1.173 90.86 GM4.1.623 80.64 
CFL GM4.1.399 63.70 GM4.1.451 68.58 GM4.1.460 68.54 
PC GM4.1.399 87.66 GM4.1.173 87.39 GM4.1.173 87.39 
ILB GM4.1.399 72.95 GM4.1.101 78.88 GM4.1.101 78.88 
Total  76.33  81.43  78.86 

 

Table 5.12: Length 8 – Classification Accuracy for Supervised DT 

Load Daubechies 
Wavelet 

Accuracy 
(%) 

Procrustes 
SMM 

Accuracy 
(%) 

Covariance 
SMM 

Accuracy 
(%) 

Battery GM4.1.399 96.48 GM4.1.173 97.80 GM4.1.623 96.00 
CFL GM4.1.399 85.88 GM4.1.451 80.52 GM4.1.460 83.14 
PC GM4.1.399 96.28 GM4.1.173 96.14 GM4.1.173 96.15 
ILB GM4.1.399 83.94 GM4.1.101 82.64 GM4.1.101 82.64 
Total  90.65  89.28  89.48 

 

5.13 Discussion and Analysis 

After generating the experimental dataset, the energy of the wavelet coefficients were 

calculated for the chosen wavelets of each load. The 10-fold cross validation for 1,000 

Monte Carlo trials was performed to obtain results for each possible situation. Results for 

Daubechies wavelet were also presented to allow for a comparison between the wavelet 
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design process and the literature. This section will thoroughly describe the results presented 

in Tables 5.9-5.12 and these results will be compared to the simulation results when 

applicable. 

5.13.1 Length-6 

The results for length-6 and length-8 filters for K-NN and DT were presented in 

5.9-5.12. The total classification accuracies for Daubechies wavelet and the wavelets 

selected with the SMM using Procrustes and covariance are displayed. Immediately the 

reader should note that the wavelets chosen using Procrustes and covariance for the length-

6 filter were the same for all four loads. This is similar to the simulation work in subsection 

5.6 where three of the four wavelets that were selected were the same. This is expected as 

only 91 wavelets exist in the set, implying the number of possible wavelets to choose from 

is quite low. Experimentally, it can be observed that Daubechies wavelet does not perform 

as well as the SMM in both K-NN and DT for the length-6 filter. In addition, since both 

Procrustes and covariance selected the same wavelet their results are the same at 74% and 

88% for K-NN and DT, respectively. The result of DT being a better machine learning 

classifier for this application remain the same as what was observed in the simulation 

results of subsection 5.6. The simulation results are all higher than what was seen 

experimentally and in some cases are different by 10%. This is caused by the different 

transients that were produced in PSCAD against the real transients displayed in 

experiments and the effect of the voltages zero crossing. Overall for length-6, DT 

outperforms K-NN and Procrustes and covariance choose the same wavelets for each load 

as the number of wavelets to choose from is limited to 91.  
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5.13.2 Length-8 

When examining the length-8 wavelet filters, it was observed in simulation that the 

accuracy improves, which is also the case in the experimental results. Instead of having 91 

wavelets to choose from as in length-6 there are now 820 different wavelets in the wavelet 

library. It is expected and observed that Procrustes and covariance now start to choose 

different wavelets for some of the loads. Once again DT outperforms K-NN and 

Daubechies wavelet is only about 1% higher than the SMM wavelets in the case of DT. 

However, in K-NN the SMM produces a better result than Daubechies wavelet of length-

8. Overall for length-8, DT produces a higher result than K-NN, while both outperform 

what was observed in the length-6 filter. This is the same pattern as in the simulation results 

demonstrating a pattern is starting to form in which as the wavelet filter length increases 

the accuracy improves.  Moreover, Procrustes and covariance utilizing the SMM choose 

similar wavelets for some but not all loads as the number of wavelets to choose from is 

now 820.  

5.14 Summary 

In this chapter, a simulation is implemented to test the proposed NILM approach. To 

start, a dataset was generated using PSCAD for a number of different cases in which 

voltage, frequency and harmonics were varied, in order to test the robustness of the 

approach where in total 864 different cases were simulated. The transients of these cases 

were imported into MATLAB where the sequence subtraction was performed and the WT 

using six levels of decompositions was utilized to calculate the energy of each coefficient. 

Both K-NN and DT machine learning classifiers were trained using supervised machine 

learning with k-fold cross validation and tested using Monte Carlo. Classification 
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accuracies for each machine learning technique were presented, where results showed that 

DT outperformed K-NN and Procrustes and covariance analysis exceeded Daubechies 

wavelet in DT for length-6 and length-8 filters. Classification accuracies were highest for 

covariance analysis using length-8 wavelets at 97.82%. This is the best case as in length-8 

there are 820 wavelets that can be selected against 91 in the case of length-6. Next, the 

experimental work to test the proposed NILM method was presented and from the results 

conclusions were drawn. This chapter discussed the experimental setup that was utilized 

while thoroughly describing each hardware component. This included a rigorous test of 

each load in both steady state and transient conditions. Upon completion of these hardware 

tests, a dataset was generated using the hardware described in a comparable way to the 

simulation. The total number of cases generated was 1,120 which forms the dataset. In 

order to assess the performance of the proposed algorithm, the k-fold cross validation and 

Monte Carlo for one cycle of the transient waveform was used along with DT and K-NN 

machine learning techniques. The classification accuracies were computed and compared 

against Daubechies wavelets with the same resolution. It was observed that the 

classification accuracies were lower than what was observed in simulation due to the effect 

of the zero crossing. However, patterns similar to the simulation were observed such as 

accuracy improving as wavelet length increased.  
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6. Conclusions and Recommendations 

6.1 Conclusion 

The work presented in this thesis aims to study the time-frequency analyses 

techniques applied to the NILM application. The work presented in the literature has been 

reviewed by analyzing the advantages and disadvantages of each method after grouping 

them into three categories: time-domain, frequency domain and time-frequency domain 

techniques. The NILM approach based on the time domain techniques used power 

quantities such as active power, reactive power, voltage, and current to predict load 

operation. These techniques only retain the information in the time domain, inferring the 

information contained in the frequency domain is lost and hence the time-domain based 

approaches fail to extract the features necessary to detect load operation. This significantly 

degrades the detection performance and the load identification process. For example, 

methods which rely on appliance mapping break down when only one time based 

parameter is available and in cases with resistive loads where only one parameter is useful 

in distinguishing loads. On the other hand, frequency domain approaches rely on utilizing 

quantities in the frequency domain such as harmonics and principal component analysis of 

a frequency feature set. By examining only quantities in the frequency domain, time 

domain information such as voltage and current waveforms are lost and hence decrease 

these algorithms abilities to determine load operation. For example, in harmonic analysis, 

a list of loads with known harmonics are compared against the harmonic profile of a home. 

However, some loads do not produce harmonics making them impossible to detect with 

these methods. The time-frequency analysis techniques combine the benefits of time and 

frequency domain together by preserving the information contained in both domains 



102 
 

simultaneously. The short time Fourier transform and Wavelet Transform are two 

examples of different time-frequency methods that can be used to extract features from 

waveforms to detect load operation. After thoroughly investigating both time-frequency 

analysis techniques, it has been determined that the short-time Fourier transform suffers 

from a fixed window size and hence any attempt to increase the frequency resolution comes 

at the expense of poor time resolution and vice versa. Moreover, as a Fourier-based 

transform, there are only two basic functions (i.e., sine and cosine) which make the 

transform not suitable for analyzing transients. Therefore, the work in this thesis focuses 

on time-frequency analysis by employing the wavelet transform with wavelet design for 

the NILM application.  

The wavelet transform was introduced as an advanced time-frequency analysis 

technique that can be applied to transient waveforms. The energy of the wavelet 

coefficients for the different decomposition levels can be calculated in order to detect load 

operation with different machine learning approaches. Attention turned to which wavelet 

to use in the wavelet transform introducing the wavelet design procedure. The work in this 

thesis presented 91 wavelets of length-6 and 820 wavelets of length-8 which were designed 

after clustering was applied for Procrustes and covariance analysis to select a wavelet that 

best matches the shape of each unique load transient. These chosen wavelets were 

compared against Daubechies wavelet of the same length at the same resolution in which 

the wavelet design process with the smart matching module can be compared. Daubechies 

are common in literature and popular among other signal processing applications due to 

their orthogonality and being characterized by a maximal number of vanishing moments. 
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Two different machine learning classifiers were implemented in order to observe if 

different machine learning techniques influenced the classification accuracy. Specifically, 

k-nearest neighbor was selected as a lazy learner while decision tree was chosen as an eager 

learner. Supervised machine learning, in which all data points are labelled was utilized to 

train the DT and k-NN classifiers using k-fold cross validation, which is a method to split 

a dataset into training and testing sets. Monte Carlo trials were performed as a method to 

determine proper classification accuracies based on the randomness introduced by k-fold.  

The proposed approach was tested through simulation by creating a dataset based on 

a test system in PSCAD where each possible switching configuration for four loads was 

performed and voltage, frequency and harmonics were varied with respect to their given 

standards. This resulted in a dataset of 864 cases, which was processed based on wavelets 

chosen through the smart matching module. The energies of the different levels of 

decomposition were computed in order to train and test the supervised machine learning 

approaches for both decision tree and k-nearest neighbor. The results demonstrated that 

wavelet design produced a better result than utilizing Daubechies wavelet. For example, in 

length-8 with decision tree the classification accuracy using the smart matching module 

was 97.8% when compared to Daubechies wavelet of 96.54%, which is an increase of over 

1%. 

Finally, an experiment was performed to verify the simulation utilizing hardware set-

up in the smart grid laboratory at UOIT. The dataset was developed by switching on loads 

in each possible switching configuration five times as to make sure that switching had 

randomly occurred throughout the voltage waveform to account for the zero crossing. The 

load transients were processed in the same manner as what the simulation where the results 
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showed the same patterns that were seen in the simulation. For example, in length-8 with 

k-nearest neighbor the classification accuracy using the smart matching module was 

81.43% when compared to Daubechies wavelet of 76.33%, which is an increase of over 

5%. In the case of the length-8 filter, the classification accuracies in both k-nearest neighbor 

and decision tree increased substantially showing an increase in the number of wavelets to 

choose from increases classification accuracy, which was also depicted in the simulation 

results. This shows the proposed non-intrusive load monitoring approach based on wavelet 

design and machine learning is able to perform well, even in situations where power quality 

disturbances exist and where switching occurs with respect to the zero crossing. 

6.2 Recommendations 

Based on the work presented in this thesis, two recommendations can be established. 

The first is to standardize methods of testing NILM algorithms and the second is to start 

building smart meters that are able to capture load transients. 

In order to standardize methods of testing different NILM approaches a dataset 

should be constructed to be utilized for all methods of NILM. In doing this, a more accurate 

score could be awarded to each approach based on the quality of that approach against 

other methods. This will in turn allow researchers to easily further research in this field 

while putting all approaches through the same rigorous test. Existing smart meters are 

allowing utilities to collect data at high sampling rates. These smart meters should be 

constructed to be able to capture and process switching transients in the voltage and current 

waveforms. Allowing NILM approaches to be built into brand new smart meters, thus 

reducing the amount of data being delivered to the utility. If this were commercially 

implemented, utilities and consumers would be able to access their data in a secure way 
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without concerns about third party companies processing the data for the purposes of 

NILM. When third party vendors gain access to the data, not only does the data security 

become a concern but it also asks the question of what other malicious purposes could the 

company use the data for. 

6.3 Future Work 

Some next steps that can be taken to build on the work presented in this thesis are: 

investigating the effect of more machine learning types, modifying the machine learning 

approaches to use unsupervised and semi-supervised learning, design of higher order 

wavelet filters, including more loads of varying load type and power consumption, 

modifying the technique for a lower sampling rate, and developing an improved method of 

one-against-the-rest where as the number of loads increases the system complexity remains 

constant. Each of these additions will allow the proposed technique to be more realistic in 

a home environment.  

 

 

  



106 
 

References 

[1] "Historical Electricity Prices: OEB", 2016. [Online]. Available: 
http://www.ontarioenergyboard.ca/OEB/Consumers/Electricity/Electricity+Prices/Histo
rical+Electricity+Prices. [Accessed: 19- Oct- 2016]. 

[2] Ontario Energy Board, "Developing an Ontario Electricity Support Program", Ontario 
Energy Board, Toronto, ON, 2014. 

[3] G. W. Hart, "Nonintrusive appliance load monitoring," Proceedings of the IEEE, vol. 80, 
no. 12, pp. 1870-1891, Dec 1992. 

[4] D. Egarter and W. Elmenreich, "Autonomous load disaggregation approach based on 
active power measurements," in Proc. Pervasive Computing and Communication 
Workshops, St. Louis, MO, 2015, pp. 293-298. 

[5] J. Froehlich, E. Larson, S. Gupta, G. Cohn, M. Reynolds and S. Patel, "Disaggregated 
End-Use Energy Sensing for the Smart Grid," in Proc. IEEE Pervasive Computing, vol. 
10, no. 1, pp. 28-39, Jan. 2011. 

[6] H. H. Chang, M. C. Lee, N. Chen, C. L. Chien and W. J. Lee, "Feature extraction based 
hellinger distance algorithm for non-intrusive aging load identification in residential 
buildings," in Proc. Industry Applications Society Annual Meeting, Addison, TX, 2015, 
pp. 1-8. 

[7] H. Najmeddine et al., "State of art on load monitoring methods," in Proc. Power and 
Energy Conference, Johor Bahru, 2008, pp. 1256-1258. 

[8] D. Jung, H. H. Nguyen and D. K. Y. Yau, "Tracking appliance usage information using 
harmonic signature sensing," in Proc. IEEE International Conference on Smart Grid 
Communications, Miami, FL, 2015, pp. 459-465. 

[9] J. A. Hoyo-Montaño, C. A. Pereyda-Pierre, J. M. Tarín-Fontes and J. N. Leon-Ortega, 
"Overview of Non-Intrusive Load Monitoring: A way to energy wise consumption," in 
Proc. International Conference on Power Electronics, Guanajuato, 2016, pp. 221-226. 

[10] C. Duarte, P. Delmar, K. Barner and K. Goossen, "A signal acquisition system for non-
intrusive load monitoring of residential electrical loads based on switching transient 
voltages," in Proc. Power Systems Conference, Clemson, SC, 2015, pp. 1-6. 

[11] L. Du, D. He, R. G. Harley and T. G. Habetler, "Electric Load Classification by Binary 
Voltage–Current Trajectory Mapping," IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 358-
365, Jan. 2016. 

[12] H. H. Chang, K. L. Lian, Y. C. Su and W. J. Lee, "Power-Spectrum-Based Wavelet 
Transform for Nonintrusive Demand Monitoring and Load Identification," IEEE Trans. 
Industry Applications, vol. 50, no. 3, pp. 2081-2089, May 2014. 

[13] J. M. Gillis, S. M. Alshareef and W. G. Morsi, "Nonintrusive Load Monitoring Using 
Wavelet Design and Machine Learning," IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 320-
328, Jan. 2016. 

[14] J. M. Gillis and W. G. Morsi, "Non-Intrusive Load Monitoring Using Semi-Supervised 
Machine Learning and Wavelet Design," IEEE Trans. Smart Grid, to be published. 

[15] J. Chung, J. M. Gillis and W. G. Morsi, " Non-Intrusive Load Monitoring Using Wavelet 
Design and Co-Testing of Machine Learning Classifiers," presented at the Electrical 
Power and Energy Conference, Ottawa, ON, 2016 



107 
 

[16] J. M. Gillis and W. G. Morsi, "Non-Intrusive Load Monitoring Using Orthogonal Wavelet 
Analysis, " in Proc. Canadian Conference on Electrical and Computer Engineering, 
Vancouver, BC, 2016 

[17] M. Dong, P. C. M. Meira, W. Xu and W. Freitas, "An Event Window Based Load 
Monitoring Technique for Smart Meters," IEEE Trans. on Smart Grid, vol. 3, no. 2, pp. 
787-796, Jun. 2012. 

[18] N. Henao, K. Agbossou, S. Kelouwani, Y. Dubé and M. Fournier, "Approach in 
Nonintrusive Type I Load Monitoring Using Subtractive Clustering," IEEE Trans. Smart 
Grid, to be published. 

[19] T. Hasan, F. Javed and N. Arshad, "An empirical investigation of V-I trajectory based 
load signatures for non-intrusive load monitoring," in Proc. IEEE PES General Meeting, 
National Harbor, MD, 2014, pp. 1-1. 

[20] A. I. Cole and A. Albicki, "Algorithm for nonintrusive identification of residential 
appliances," in Proc. IEEE International Symposium on Circuits and Systems, Monterey, 
CA, 1998, pp. 338-341 vol.3. 

[21] S. Drenker and A. Kader, "Nonintrusive monitoring of electric loads," in Proc. IEEE 
Computer Applications in Power, vol. 12, no. 4, pp. 47-51, Oct 1999. 

[22] A. Marchiori, D. Hakkarinen, Q. Han and L. Earle, "Circuit-Level Load Monitoring for 
Household Energy Management," in Proc. IEEE Pervasive Computing, vol. 10, no. 1, pp. 
40-48, Jan.-March 2011. 

[23] Z. Wang and G. Zheng, "Residential Appliances Identification and Monitoring by a 
Nonintrusive Method," IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 80-92, Mar. 2012. 

[24] A. J. Bijker, Xiaohua Xia and Jiangfeng Zhang, "Active power residential non-intrusive 
appliance load monitoring system," in Proc. AFRICON, Nairobi, 2009, pp. 1-6. 

[25] X. C. Le, B. Vrigneau and O. Sentieys, "l1-Norm minimization based algorithm for non-
intrusive load monitoring," in Proc. Pervasive Computing and Communication 
Workshops, St. Louis, MO, 2015, pp. 299-304. 

[26] D. Egarter, V. P. Bhuvana and W. Elmenreich, "PALDi: Online Load Disaggregation via 
Particle Filtering," IEEE Trans. Instrumentation and Measurement, vol. 64, no. 2, pp. 
467-477, Feb. 2015. 

[27] S. Makonin, F. Popowich, I. V. Bajić, B. Gill and L. Bartram, "Exploiting HMM Sparsity 
to Perform Online Real-Time Nonintrusive Load Monitoring," IEEE Trans. Smart Grid, 
vol. 7, no. 6, pp. 2575-2585, Nov. 2016. 

[28] H. H. Chang, L. S. Lin, N. Chen and W. J. Lee, "Particle Swarm Optimization based non-
intrusive demand monitoring and load identification in smart meters," in Proc. Industry 
Applications Society Annual Meeting, Las Vegas, NV, 2012, pp. 1-8. 

[29] T. Guzel and E. Ustunel, "Principal components null space analysis based non-intrusive 
load monitoring," in Proc. Electrical Power and Energy Conference, London, ON, 2015, 
pp. 420-423. 

[30] C. Y. Feng, H. M. Hoe, M. P. Abdullah, M. Y. Hassan and F. Hussin, "Tracing of energy 
consumption by using harmonic current," in Proc. IEEE Student Conference on Research 
and Development, Putrajaya, 2013, pp. 444-449. 

[31] D. Bradley, "Applying predictive maintenance to power quality, " in 
Proc. Telecommunications Energy Conference, Edinburgh, UK, 2001, pp. 229-237. 

[32] T. S. Sidhu and Z. Xu, "Detection of Incipient Faults in Distribution Underground 
Cables," IEEE Trans. Power Delivery, vol. 25, no. 3, pp. 1363-1371, Jul. 2010. 



108 
 

[33] C. Duarte, P. Delmar, K. W. Goossen, K. Barner and E. Gomez-Luna, "Non-intrusive 
load monitoring based on switching voltage transients and wavelet transforms," in 
Proc. Future of Instrumentation International Workshop, Gatlinburg, TN, 2012, pp. 1-4. 

[34] S. B. Leeb, S. R. Shaw and J. L. Kirtley, "Transient event detection in spectral envelope 
estimates for nonintrusive load monitoring," IEEE Trans. Power Delivery, vol. 10, no. 3, 
pp. 1200-1210, Jul. 1995. 

[35] S. R. Shaw, S. B. Leeb, L. K. Norford and R. W. Cox, "Nonintrusive Load Monitoring 
and Diagnostics in Power Systems," IEEE Trans. Instrumentation and Measurement, vol. 
57, no. 7, pp. 1445-1454, Jul. 2008. 

[36] S. Kong, Y. Kim, R. Ko and S. K. Joo, "Home appliance load disaggregation using 
cepstrum-smoothing-based method," IEEE Trans. Consumer Electronics, vol. 61, no. 1, 
pp. 24-30, Feb. 2015. 

[37] J. M. Alcalá, J. Ureña and Á Hernández, "Event-based detector for non-intrusive load 
monitoring based on the Hilbert Transform," in Proc. 2014 IEEE Emerging Technology 
and Factory Automation, Barcelona, 2014, pp. 1-4. 

[38] H. H. Chang, K. L. Chen, Y. P. Tsai and W. J. Lee, "A New Measurement Method for 
Power Signatures of Nonintrusive Demand Monitoring and Load Identification," IEEE 
Trans. Industry Applications, vol. 48, no. 2, pp. 764-771, Mar. 2012. 

[39] H. H. Chang, K. L. Lian, Y. C. Su and W. J. Lee, "Power-Spectrum-Based Wavelet 
Transform for Nonintrusive Demand Monitoring and Load Identification," IEEE Trans. 
Industry Applications, vol. 50, no. 3, pp. 2081-2089, May 2014. 

[40] Y. C. Su, K. L. Lian and H. H. Chang, "Feature Selection of Non-Intrusive Load 
Monitoring System Using STFT and Wavelet Transform," in Proc. e-Business 
Engineering, Beijing, 2011, pp. 293-298. 

[41] K. L. Chen, H. H. Chang and N. Chen, "A new transient feature extraction method of 
power signatures for Nonintrusive Load Monitoring Systems," in Proc. Applied 
Measurements for Power Systems, Aachen, 2013, pp. 79-84. 

[42] H. H. Chang, K. L. Lian, Y. C. Su and W. J. Lee, "Energy spectrum-based wavelet 
transform for non-intrusive demand monitoring and load identification," in Proc. Industry 
Applications Society Annual Meeting, Lake Buena Vista, FL, 2013, pp. 1-9. 

[43] H.-H. Chang, “Non-Intrusive Demand Monitoring and Load Identification for Energy 
Management Systems Based on Transient Feature Analyses,” Energies, vol. 5, no. 12, pp. 
4569–4589, Nov. 2012. 

[44] M. Mathis, A. Rumsch, R. Kistler, A. Andrushevich and A. Klapproth, "Improving the 
Recognition Performance of NIALM Algorithms through Technical Labeling," in 
Proc. Embedded and Ubiquitous Computing, Milano, 2014, pp. 227-233. 

[45] G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, 2nd 
Edition, Wellesley, MA, USA, 1996. 

[46] "Wavelet Toolbox - MATLAB", Mathworks.com, 2016. [Online]. Available: 
https://www.mathworks.com/products/wavelet/. [Accessed: 19- Oct- 2016]. 

[47] P.-N. Tan, Introduction to Data Mining. Boston, MA, USA: Pearson Education, 2007. 
[48] E. K. P. Chong and S. H. Zak, An Introduction to Optimization. New York, NY: John 

Wiley & Sons, 2001. 
[49] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: Society for Industrial and 

Applied Mathematics, 1992. 
[50] I.L. Dryden and K.V. Mardia, Statistical Shape Analysis, John Wiley & Sons, 1998. 



109 
 

[51] Y. Geerts, W. Sansen and M. Steyaert, Design of Multi-Bit Delta-Sigma A/D Converters. 
New York, NY: Springer, 2002. 

[52] L. El Ghaoui, G. Li, Viet-An Duong, V. Pham, A. Srivastava, K. Bhaduri, "Sparse 
Machine Learning Methods for Understanding Large Text Corpora," in Proc. Intelligent 
Data Understanding, Mountain View, CA, 2011 

[53] J. Xu, H. He and H. Man, "DCPE co-training: Co-training based on diversity of class 
probability estimation," in Proc. International Joint Conference on Neural Networks, 
Barcelona, 2010, pp. 1-7. 

[54] Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression 
Trees. New York, NY: Chapman & Hall/CRC, 1984 

[55] A. F. Atiya, "Estimating the Posterior Probabilities Using the K-Nearest Neighbor 
Rule," Neural Computing, vol. 17, no. 3, pp. 731-740, March 2005. 

[56] R. Kohavi., A study of cross-validation and bootstrap for accuracy estimation and model 
selection.” in Proc. International joint conference on Artificial intelligence - Volume 2, 
San Francisco, CA, 1995, 1137-1143. 

[57] N. Metropolis and S. Ulam, “The Monte Carlo method”, J. Amer. Stat. Assoc. vol. 44, 
no. 247, pp. 335-341, 1949. 

[58] "Dataport: A Universe of Energy Data, Available Around the World", [Online]. 
Available: https://dataport.pecanstreet.org/. [Accessed: 19- Oct- 2016]. 

[59] J. Kolter and M. Johnson.  “REDD: A public data set for energy disaggregation research”.   
in Proc. 2011 SustKDD workshop on Data Mining Applications in Sustainability, 2011. 

[60] V. Lizard, "PSCAD Home: PSCAD", 2016. [Online]. Available: https://hvdc.ca/pscad/. 
[Accessed: 19- Oct- 2016]. 

[61] P. R. Nasini, N. R. Narra and Santosh A.  “Modeling and Harmonic Analysis of 
Domestic/Industrial Loads”, International Journal of Engineering Research and 
Applications. vol. 2, no. 5, pp. 485-491, 2012. 

[62] C. Venkatesh, D. Srikanth Kumar, D.V.S.S. Siva Sarma, and M. Sydulu.  “Modelling of 
Nonlinear Loads and Estimation of Harmonics in Industrial Distribution System”.  in 
Proc. National Power Systems Conference, Bombay, 2008. 

[63] American National Standard for Electric Power Systems and Equipment-voltage Ratings 
(60 Hz), ANSI C84.1-2011, by National Electrical Manufacturer Association, Rosslyn, 
VA, 2011. 

[64] IEEE Guide for Abnormal Frequency Protection for Power Generating Plants," IEEE 
Standard C37.106-2003 (Revision of ANSI/IEEE C37.106-1987), 2004 

[65] Philips Lighting Holding B.V, "Standard A Shape Frosted", Feb. 2016. 
[66] Dell, "Dell Studio 1535/1536 Quick Reference Guide", Dell, Round Tock, TX, 2016. 
[67] A. Gilani, "Outstanding functionality in a compact design", Siemens, Oakville, ON, 2012. 
[68] Omega, "8-Channel Simultaneous Analog Input USB Data Acquisition Modules", 

Omega, 2016. 
[69] S. Hughes-Jelen, "Low Power Programmable AC Source with Transients 61500 

Chroma", Chroma Systems Solutions Inc., 2016. [Online]. Available: 
http://www.chromausa.com/product/low-power-programmable-ac-source-61500/. 
[Accessed: 19- Oct- 2016]. 

[70]  WeMo Electronic switches home automation, Belkin. [Online], 
Available: http://www.belkin.com/us/Products/home-automation/c/wemo-home-
automation/ 



110 
 

Appendix 

Hardware Component Specifications 

Phillips Incandescent Light Bulb 

Base Medium (Single Contact Medium Screw) 
Base Information Aluminum Base 
Bulb A19 
Bulb Finish Soft White 
Filament Shape CC6 (Straight) 
Operating Position Universal (Any or Universal) 
Main Application Household 
Atmosphere Gas 
Life with 3h/day use 1.4 years 
Color Temperature 2750 
Lumens (Brightness) 830 
Power 60 W 
Voltage 120 V 

 

Dell Studio 1535 Personal Computer 

Battery  
Type  9-cell smart lithium ion 
Weight                     0.34kg (0.75 lb.) 
Voltage    11.1 VDC (6/9 cell) 
Charge Time 4 hours 
Life Span              300 discharge/charge cycles 
Operating Temperature 0° to 35° (32°F to 95°F) 
Storage Temperature -40°C to 65°C (-40° to 149°F) 
Coin-cell battery CR-2032 
AC Adapter 
Input 100-240 VAC 
Input Current (maximum) 1.5A 
Input Frequency 50-60 Hz 
Output Current 90 W 4.62 A (continuous) 
Dimensions 
Height 34.2 mm (1.35in) 
Width 60.9 mm (2.39in) 
Length 153.42mm (6.04in) 
Temperature 
Operating 0° to 35°C (32° to 95°F) 
Storage -40° to 65°C (-40 to 149°F) 
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Omega 1608FS-PLUS Data Acquisition Module 

Analog inputs 8 single-ended 
A/D Sampling Rate (Continuous Scan to 
Computer Memory) 

100kS/s maximum for any channel 

Channel-Gain Current Up to 8, ordered elements 
Digital Output Current ±2.4 mA per pin 
Calibration Factory calibration only 
External Clock Input 100 kHz maximum 
Trigger Sensitivity Edge or level sensitive 
Counter Input 1 MHz input frequency maximum 
Range Accuracy 
±10V 5.66mV 
±5V 2.98mV 
±2V 1.31mV 

 

Chroma Programmable AC Source Model# 61604 

Output Rating-AC 
Output Phase 2000VA 
Power/Phase 2000VA 
Voltage Range/Phase 150V/300V/Auto 
Voltage Accuracy 0.2%+0.2%F.S. 
Voltage Resolution 0.1V 
Voltage Distortion*1 0.3%@50/60Hz, 1%@15-kHz 
Voltage Line Regulation 0.1% 
Voltage Load Regulation*2 0.2% 
Max. Current/Phase R.M.S 16A/8A (150V/300V) 
Max. Current/Phase Peak 96A/48A (150V/300V) 
Frequency Range DC, 15-1kHz 
Frequency Accuracy 0.15% 
Output Rating-DC 
Power 1000W 
Voltage  212V/424V 
Current(per phase) 8A/4A(212V/424V) 
Range 0Ω+200µH-1Ω+1mH 
Harmonics Bandwidth 2400Hz 
Input  
Voltage Range 90/250V, 1Ø 
Frequency Range 47-63Hz 
Current(per phase) 28A Max @ 90V 
Interface GPI8, RS-232 (Optional) 
Dimensions(W×H×D) 482x132.6x570mm 
Weight 21kg 
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Dranetz PX5 Power Quality Analyzer 

Analog inputs 4 differential @ 1-600 Volts RMS 
4 differential @ 1-6000 Amps RMS 

A/D Sampling Rate (Continuous Scan to 
Computer Memory) 

256 samples / cycle or 15360Hz with 16 
bit accuracy 

Calibration 0.1% rdg + 0.05% FS 
Maximum Sampling Rate 1 MHz with 14 bit accuracy 
Trigger Sensitivity Edge or level sensitive 
Frequency Resolution 10mHz 
Size (H x W x D) 12″ x 2.5″ x 8″ (30cm x 6.4cm x 20.3 cm) 
Weight 4.2 Pounds (1.9kg) 

Additional Features 

IEEE 1159 Compliant 
IEC 61000-4-30 Class A Compliant 
EN50160 Quality of Supply Compliant 
Voltage Fault recording 
Long Term Monitoring 
Continuous Data Logging with min/max 
and average 
Cycle-by-cycle analysis 
RMS Recordings V&I 
Wave shape Recordings 
Low and Medium Frequent Transients – 
V&I 
High Frequency Transients – V&I, 3% FS 
trigger 
Harmonics Summary 
RMS Event Characterization (IEEE or 
IEC) 
Transient Event Characterization 
Harmonics/Inter-harmonics per IEC 1000-
4-7 
THD/Harmonic Spectrum 

 

 


