314 research outputs found

    Convertibility Evaluation of Automated Assembly System Designs for High Variety Production

    Get PDF
    © 2017 The Authors. The recent advancements in technology and the high volatility in automotive market compel industries to design their production systems to offer the required product variety. Although, paradigms such as reconfigurable modular designs, changeable manufacturing, holonic and agent based systems are widely discussed to satisfy the need for product variety management, it is essential to practically assess the initial design at a finer level of granularity, so that those designs deemed to lack necessary features can be flagged and optimised. In this research, convertibility expresses the ability of a system to change to accommodate product variety. The objective of this research is to evaluate the system design and quantify its responsiveness to change for product variety. To achieve this, automated assembly systems are decomposed into their constituent components followed by an evaluation of their contribution to the system's ability to change. In a similar manner, the system layout is analysed and the measures are expressed as a function of the layout and equipment convertibility. The results emphasize the issues with the considered layout configuration and system equipment. The proposed approach is demonstrated through the conceptual design of battery module assembly system, and the benefits of the model are elucidated

    Convertibility Evaluation of Automated Assembly System Designs for High Variety Production

    Get PDF
    The recent advancements in technology and the high volatility in automotive market compel industries to design their production systems to offer the required product variety. Although, paradigms such as reconfigurable modular designs, changeable manufacturing, holonic and agent based systems are widely discussed to satisfy the need for product variety management, it is essential to practically assess the initial design at a finer level of granularity, so that those designs deemed to lack necessary features can be flagged and optimised. In this research, convertibility expresses the ability of a system to change to accommodate product variety. The objective of this research is to evaluate the system design and quantify its responsiveness to change for product variety. To achieve this, automated assembly systems are decomposed into their constituent components followed by an evaluation of their contribution to the system's ability to change. In a similar manner, the system layout is analysed and the measures are expressed as a function of the layout and equipment convertibility. The results emphasize the issues with the considered layout configuration and system equipment. The proposed approach is demonstrated through the conceptual design of battery module assembly system, and the benefits of the model are elucidated

    Two Combinatorial Optimization Problems at the Interface of Computer Science and Operations Research

    Get PDF
    Solving large combinatorial optimization problems is a ubiquitous task across multiple disciplines. Developing efficient procedures for solving these problems has been of great interest to both researchers and practitioners. Over the last half century, vast amounts of research have been devoted to studying various methods in tackling these problems. These methods can be divided into two categories, heuristic methods and exact algorithms. Heuristic methods can often lead to near optimal solutions in a relatively time efficient manner, but provide no guarantees on optimality. Exact algorithms guarantee optimality, but are often very time consuming. This dissertation focuses on designing efficient exact algorithms that can solve larger problem instances with faster computational time. A general framework for an exact algorithm, called the Branch, Bound, and Remember algorithm, is proposed in this dissertation. Three variations of single machine scheduling problems are presented and used to evaluate the efficiency of the Branch, Bound, and Remember algorithm. The computational results show that the Branch, Bound, and Remember algorithms outperforms the best known algorithms in the literature. While the Branch, Bound, and Remember algorithm can be used for solving combinatorial optimization problems, it does not address the subject of post-optimality selection after the combinatorial optimization problem is solved. Post-optimality selection is a common problem in multi-objective combinatorial optimization problems where there exists a set of optimal solutions called Pareto optimal (non-dominated) solutions. Post-optimality selection is the process of selecting the best solutions within the Pareto optimal solution set. In many real-world applications, a Pareto solution set (either optimal or near-optimal) can be extremely large, and can be very challenging for a decision maker to evaluate and select the best solution. To address the post-optimality selection problem, this dissertation also proposes a new discrete optimization problem to help the decision-maker to obtain an optimal preferred subset of Pareto optimal solutions. This discrete optimization problem is proven to be NP-hard. To solve this problem, exact algorithms and heuristic methods are presented. Different multi-objective problems with various numbers of objectives and constraints are used to compare the performances of the proposed algorithms and heuristics

    Telescience testbed pilot program, volume 2: Program results

    Get PDF
    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, contains the integrated results. Background is provided of the program and highlights of the program results. The various testbed experiments and the programmatic approach is summarized. The results are summarized on a discipline by discipline basis, highlighting the lessons learned for each discipline. Then the results are integrated across each discipline, summarizing the lessons learned overall

    A New Design for Open and Scalable Collaboration of Independent Databases in Digitally Connected Enterprises

    Get PDF
    “Digitally connected enterprises” refers to e-business, global supply chains, and other new business designs of the Knowledge Economy; all of which require open and scalable information supply chains across independent enterprises. Connecting proprietarily designed and controlled enterprise databases in these information supply chains is a critical success factor for them. Previous connection designs tend to rely on “hard-coded” regimes, which do not respond well to disruptions (including changes and failures), and do not afford these enterprises sufficient flexibility to join simultaneously in multiple supply chain regimes and share information for the benefit of all. The paper develops a new design: It combines matchmaking with global database query, and thereby supports the interoperation of independent databases to form on-demand information supply chains. The design provides flexible (re-)configuration to decrease the impact of disruption, and proactive control to increase collaboration and information sharing. More broadly, the papers results contribute to a new Information System design method for massively extended enterprises, and facilitate new business designs using digital connections at the level of databases

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 323)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April, 1989. Subject coverage includes; aerospace medicine and psychology, life support systems and controlled environments, safety equipment exobiology and extraterrestrial life, and flight crew behavior and performance
    corecore